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Abstract  

An approach for the analysis of uncertainty 

propagation in reliability-based design optimization of 

composite laminate structures is presented. Using the 

Uniform Design Method (UDM), a set of design points 

is generated over a domain centered on the mean 

reference values of the random variables. A method- 

ology based on inverse optimal design of composite 

structures to achieve a specified reliability level is 

proposed, and the corresponding maximum load is 

outlined as a function of ply angle. Using the generated 

UDM design points as input/output patterns, an 

Artificial Neural Network (ANN) is developed based 

on an evolutionary learning process. Then, a Monte 

Carlo simulation using ANN development is per- 

formed to simulate the behavior of the critical Tsai 

number, structural reliability index, and their relative 

sensitivities as a function of the ply angle of laminates. 

The results are generated for uniformly distributed 

random variables on a domain centered on mean 

values. The statistical analysis of the results enables the 

study of the variability of the reliability index and its 

sensitivity   relative   to   the   ply   angle.  Numerical 

 
 

 

examples showing the utility of the approach for robust 

design of angle-ply laminates are presented. 
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1 Introduction 

 
The most realistic failure analysis of structures under 

uncertainty is associated with the use of reliability 

analysis methods. Therefore, the need for reliability 

analysis associated with optimal design with respect 

to composite structures  has  increased  in  the  last  

15 years, and reliability-based design optimization 

(RBDO) of composite structures is currently a very 

important area of research (Adali et al. 2003; Boyer 

et al. 1997; Carbillet et al. 2009; António et al. 1996, 

2001; Rais-Rohani and Singh 2004; Salas and 

Venkataraman 2009; Teters and Kregers  1997). 

Approximate reliability methods, such as the first 

order (FORM) or second order (SORM) reliability 

methods, use the so-called most probable failure point 

(MPP) to estimate the failure probability (Melchers 

1999). The applicability of approximate reliability 

methods depends on the number of uncertainty 

parameters involved and degree of nonlinearity of the 

system response. In the ladder case, it is necessary  to 
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use simulation techniques such as Monte Carlo sim- 

ulation. Nevertheless, the efficiency of the method is 

poor when estimating low failure probabilities. To 

overcome this problem, advanced simulation tech- 

niques, such as importance sampling, have been 

considered. The use of approximate models in reli- 

ability analysis and RBDO has been studied. In 

particular, Artificial Neural Networks (ANNs) have 

been used to approximate the limit state function and 

its derivatives (Nguyen-Thien and Tran-Cong 1999; 

Deng et al. 2005). Cheng (2007) proposed a hybrid 

technique based on ANN in combination with genetic 

algorithms (GAs) for structural reliability analysis. 

The proposed ANN–GA method uses a back-propa- 

gation training algorithm for the ANN learning 

process, after which the GA searches the MPP point 

and corresponding reliability index. Cheng et al. 

(2008) propose another method for structural reliabil- 

ity analysis by integrating the Uniform Design Method 

(UDM) with ANN-based GA. 

As a method of reliability analysis of structures, most 

of the aforementioned models use the ANN as an 

approximation model of the limit state functions as a 

way of reducing the computational effort. In this paper, a 

new approach based on an approximation model 

simulation calculated at the same time as the limit state 

function, reliability index and their derivatives is 

presented. The objective is to study the propagation of 

uncertainties of the input random variables, such as 

mechanical properties, on the response of composite 

laminate structures under an imposed reliability level. 

variability. The Tsai number associated with the MPP, 

reliability index and sensitivities of the reliability index 

are obtained for each UDM design point, using the 

previously calculated maximum load as a reference. 

Second, using the generated UDM design points as 

input/output patterns, an ANN is developed based on 

supervised evolutionary learning. Third, using the 

developed ANN and a Monte Carlo procedure, the 

uncertainty propagation in structural reliability index is 

evaluated as a function of ply angle. Figure 1 shows the 

flowchart of the proposed approach. 

The objective of the proposed approach is to study 

the propagation of uncertainties in input random 

variables, such as mechanical properties, on the 

response of composite laminate structures for a 

specified reliability level. The problem of uncertainty 

propagation in RBDO of composite laminate struc- 

tures is addressed according to the following   steps: 

First step: An approach based on optimal design of 

composite structures to achieve a specified reli- 

ability level, ba, is considered, and the correspond- 

ing maximum load is calculated as a function of  

ply angle, a. This inverse reliability problem is 

solved   for   the   mean   reference   values,   p-i,   of 

mechanical properties of the composite  laminates. 
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Robustness assessment of the reliability-based designed 

composite structures is considered and some criteria are 

outlined for the particular case of angle-ply laminates. 
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2 Uncertainty  propagation  in RBDO 

 
The problem of uncertainty propagation in RBDO of 

composite laminate structures is studied. First, an 

approach based on the optimal design of composite 

structures to achieve a specified reliability level is 

proposed, and the corresponding maximum load is 

outlined as a function of ply angle. This corresponds to 

an inverse reliability problem performed for the mean 

values of the mechanical properties of composite 

laminates. Then, using the UDM, a set of design points 

is generated over a domain centered at mean values of 

random   variables,   aimed   at   studying   the   space 

 

 

learning 

process 

 

 

 

Fig. 1 Flowchart of proposed approach for uncertainty prop- 

agation analysis in RBDO 

Approximation of 

R, s ,  R 

Statistical 

analysis of s 

Uncertainty 

propagation analysis 

Adjoint 

variable 

method 

Inverse Reliability-Based 

Design Optimization 



 

 

 

Second step: Using the UDM, a set of design points 

belonging  to  the  interval  ½p-i - a p-i;  p-i þ a p-i]  is 

generated, covering a domain centered at mean 

reference values of the random variables. This 

method enables a uniform exploration of the 

domain values necessary in the development of 

an ANN approximation model for variability study 

of the reliability index. 

Third step: For each UDM design point, the Tsai 

number, R, associated with the MPP, structural reliabil- 

Lref is the reference load vector. This is a conven- 

tional RBDO inverse optimization problem. To solve 

the inverse problem (1), a decomposition of the 

problem is considered. The Lind–Hasofer method  

and appropriate iterative scheme based on a gradient 

method are applied to evaluate the structural reliabil- 

ity index, bs, in the inner loop (Antó nio et al. 1996; 

António  1995).  From  the  operational  point  of  view, 

the reliability problem can be formulated as the 

constrained optimization problem 

ity index, b, and their sensitivities, rb and rR-, are 

obtained using the previously calculated maximum 
 

 

load for mean values, p-i, as a reference. The Lind– 

Hasofer method is used for reliability index assess- 

ment (Hasofer and Lind 1974). The sensitivity 

analysis is performed by the adjoint variable method 

(António 1995; António et al. 1996). 

Fourth step: An ANN is developed based on 

supervised  evolutionary  learning.  The  generated 

 

where v is the vector of the standard normal 

variables,  b  is  the  reliability  index  and  uðvÞ  is  the 

limit state function. The relationship between the 

standard normal variables and random variables is 

established using the following projection  formula: 

UDM design points and their calculated    response    

values are used as input/output  patterns. 

Fifth step: Using the developed ANN and a Monte 

Carlo procedure, the variance of the structural 

reliability index is evaluated as a function of ply 

angle and uncertainty propagation is  studied. 

 

3 Inverse  reliability analysis 

 
The inverse reliability problem is solved for the mean 

 

where  p-i  and  rpi  are,  respectively,  the  mean  values 

and standard deviations of the basic random vari- 

ables. The limit state function that separates the 

design space into failure (u(p) \ 0) and safe regions  

 

  

values,  p-i,  of  mechanical  properties  of  composite 

laminates. An approach based on the design of 

composite structures to achieve a specified reliability 

level is proposed, and the corresponding maximum 

load is outlined. The objective function describing the 

performance of the composite structure is defined as 

the square difference between the structural reliabil- 

ity index, bs, and the prescribed reliability index, ba. 

The design variables are the ply angle, a, and load 

factor, k. The random variables are the elastic and 

strength material properties. Thus, the optimization 

problem is described as 

  

and Ns the total number of points where the stress 

vector is evaluated. The Tsai number, Rk, which is a 

strength/stress ratio (Tsai 1987), is obtained from the 

Tsai–Wu interactive quadratic failure criterion and 

calculated at the kth point of the structure solving 

equation 
 

 

 

 

 

where si are the components of the stress vector, and Fij 

and Fi are the strength parameters associated with 

unidirectional  reinforced  laminate  defined  from the 
macro-mechanical perspective (Tsai 1987). The solu- 

 
tion, v*, of the reliability problem in Eq. 2 is referred 

to, in technical literature, as the design point or MPP. 

The  bisection  method  used  to  estimate  the load 

factor, k, is iteratively used in the external loop 

(António and Hoffbauer 2009). After the 



 

 

  

 

minimization of the objective function given in Eq. 1, 

the structural reliability index is bs & ba with some 

prescribed error, and the corresponding load vector is 

LðbaÞ. 

 
4 Uniform Design Method 

 
The purpose of the approximation methods is to 

reveal the relationship between response and input 

variables at the lowest cost. The key for this problem 

is to well-define a set of points that provide a good 
 

 

Hlawka inequality (Fang et al. 1994; Fang and  Wang 

variable, and s the maximum number of columns of 

the table. For each UDM table, there is a correspond- 

ing accessory table, which includes a recommenda- 

tion of columns with minimum discrepancy for a 

given number of input variables. Details of the 

algorithm for constructing a Un(n
s
) table are given as 

follows: 
 
 
 

1994; Zhang et al. 1998; Liang et al. 2001) gives    an 
error bound for the expected output value. This  error  

  

bound is equal to a measure of the variation of the 

response time discrepancy of the set of points over 

the entire domain. Using this inequality, the more 

uniform the points distributed over the range of input 

variables, the smaller the error. Therefore, points 

uniformly scattered in the domain are   needed. 

Obtaining points that are most uniformly scattered 

in the s-dimensional unit cube C
s 

is the key of the 

UDM proposed by Fang et al. (1994), which is based 

on a quasi-Monte Carlo method. In fact, the UDM 

can be considered as a kind of experimental design 

with the aim of minimizing discrepancy. In this 

context, the discrepancy is used as a measure of 

uniformity that is universally  accepted. 

• 

  

 

 

 

 

Finally, the UDM table must be transformed into a 

hyper-rectangle region corresponding to the input 

variable domain by linear  transformation. 

 

 
5 ANN  developments 

 
The adopted methodology, including the develop- 

ment of an ANN, is similar to the response surface 

method (RMS). The objective of the application of 

ANN is to overcome the difficulties associated with 

expensive assessment of the structural reliability   for 

   
 

response variability study. Using the generated UDM 

design  points  as  input/output  patterns,  an  ANN  is 
 

 
 

 

random variables are the input parameters and output 

parameters are the limit state function, reliability 

index and respective  sensitivities. 

 
5.1 ANN topology definition 

 
The proposed ANN is organized into three layers of 

nodes (neurons): input, hidden and output layers. The 

linkages between input and hidden nodes and  

between hidden and output nodes are denoted by 

synapses.   These   are   weighted   connections    that 

developed   based   on   evolutionary   learning.   The 

developed   based   on   evolutionary   learning.   The 

estimate of the expected output value. The  Koksma– 
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establish the relationship between input data D
inp 

and 

output data Dout. In the developed ANN, the input 

data vector Dinp is defined by a set of values for 

random variables p, which are the mechanical 

properties of composite laminates, such as elastic   or 

 

signals (total activation) is performed through a 

function, designated as the Activation Function, A(x). 

Thus, the activation of the kth node of the hidden 

layer (p = 1) and output layer (p = 2) is obtained 

through sigmoid functions as follows: 

strength properties. The longitudinal elastic modulus 

E1; transversal elastic modulus E2, transversal 

strength   in   tensile   Y,   and   shear   strength   S are 

 

 

considered the ANN input variables and denoted by p 
¼ ½E1; E2; Y ; S]. In this approach, each set of values 

for the random variable vector p is selected using the 

UDM. The corresponding output data vector Dout 

contains  the  Tsai  number,  R-,  structural  reliability 

index, bs, and Tsai number sensitivities. Figure 2 

shows the topology of the ANN, showing the input 

and output parameters. 

Each pattern, consisting of an input and output 

vector, needs to be normalized to avoid numerical 

error propagation during the ANN learning process. 

This is obtained using the following data 

normalization: 

 

  

  
 

  

 

 

 

 

 

 

 

 

 

 

 
5.2 Evaluation of ANN performance 

 
The error between predefined output data and ANN 

simulated results is used to supervise the learning 

process, which is aimed at obtaining a complete 

model of the process. As a set of input data are 

introduced to the ANN, it adapts the weights of the 

synapses   and   values   of   the   biases   to   produce 

 
Fig. 2 Artificial Neural 

Network topology 
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consistent simulated results through a process known 

as learning. For each set of input data and any 

configuration of the weight matrix MðpÞ and biases 

rðpÞ,   a   set   of   output   results   is   obtained.   These 

simulated output results are compared with the 

predefined values to evaluate the difference (error), 

which is then minimized during the optimization 

procedure. 

In general, the values of Tsai number at MPP and 

reliability indices are on the same magnitude order 

but very different from the magnitude order of the 

sensitivities. Therefore, a decomposition of the error 

is required and is defined as  follows: 

 

weight of the synapses in matrix MðpÞ; and biases of 

the neurons of the hidden and output layers in vector 

rðpÞ;  are  modified  to  reduce  the  differences  (super- 

vised learning) throughout the optimization  process. 

 
5.3 ANN Learning based on an evolutionary 

procedure 

 
The adopted supervised learning process of the ANN 

based on a GA uses the weights of synapses, MðpÞ; 
and biases of neural nodes at the hidden and output 

layers, rðpÞ; as design variables. A binary code format 

is used for these variables. The number of digits of 
each  variable  can  be  different  depending  on     the 

 

 

  

 

 

 
 

connection between the input-hidden layers or     hid- 
 

 

   

 learning variables and scaling parameters, g(p)
, are the 

control parameters. 

The optimization problem formulation   associated 

 
  

 

   

 

 

 

  
 

  

 

 

 
 

with the ANN learning process is based on the 

minimization of the errors defined in Eqs. 11–13 and 

bias values in Eq. 14. A regularization term associ- 

ated with biases in the hidden and output neurons    is 
 

  

  Since the objective of the evolutionary search is to 

maximize a global fitness function FIT associated 

with ANN performance, the optimization problem is 

defined as follows: 

 

 

 

 

 
 

   

 
 

 
 

 

The errors obtained from Eqs. 11–13 and mean 

quadratic values of biases from Eq. 14 are reflected in 

the ANN learning. This means that the weights of the 

synapses and biases can be modified until the errors 

fall within a prescribed     value. Therefore, the 

 

 

 
 

 

included  in  the  learning  process  and  is  aimed    at 

stabilizing and accelerating the numerical  procedure. 

den-output layers.  The bounds of the domain of   the 

den-output layers.  The bounds of the domain of   the 
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Table 1   Mean reference values of mechanical properties of unidirectional composite    layers 
 

Material E1, GPa E2, GPa E3, GPa m 

E-glass/epoxy (Scotchply 1002) 38.6 8.27 4.14 0.26 

Material X:X0, MPa Y:Y0, MPa S, MPa q, kg/m
3

 

E-glass/epoxy (Scotchply 1002) 1062;610 31;118 72 1600 

 

 
positive fitness and ck are weight constants of 

regularization. 

A GA is an optimization technique based on the 

survival of the fittest and natural selection theory 

proposed by Charles Darwin. The GA basically 

performs on three parts: (1) coding and decoding 

random variables into strings; (2) evaluating the 

fitness of each solution string; and (3) applying 

genetic operators to generate the next generation    of 

6 Numerical simulations 

 
To test the proposed approach applied to composite 

structures, a clamped cylindrical shell laminated 

structure is considered, as shown in Fig. 3. Nine 

vertical loads with mean value Lk  are applied    along 

 

Table 2   UDM     design     points     for     discrepancy    W(n, 

P) = 0.1189 

solution strings in a new  population. Design point 1 4 6 9 

Three  basic  genetic  operators,  namely selection, 
crossover, and mutation are used in this paper. An

 1
 

1 11 15 25 

elitist strategy based on conservation of    the best-fit
 2

 2 22 2 22 

transfers the best-fitted solution into a new population
 3

 3 5 17 19 

for the  next generation.  Once the  new population is
 4

 4 16 4 16 

created,  the  search  process  performed  by the three
 5

 5 27 19 13 

genetic operators is repeated and the   process contin- 6
 6 10 6 10 

ues until the average fitness of the elite group   of the 7
 7 21 21 7 

current   generation   now   longer  shows  significant 8 8 4 8 4 

improvement  over  the  previous generation. Further 9 9 15 23 1 

details on creating and using a GA for  ANN learning 10 10 26 10 26 

can be found in António (2001).  11 11 9 25 23 

12 12 20 12 20 

40000 13 13 3 27 17 

35000 14 14 14 14 14 

15 15 25 1 11 

30000 16 16 8 16 8 

25000 17 17 19 3 5 

18 18 2 18 2 

20000 19 19 13 5 27 

15000 20 20 24 20 24 

21 21 7 7 21 

10000 22 22 18 22 18 

5000 23 23 1 9 15 

24 24 12 24 12 
0 

0 15 30 45 60 75 90 25 25 23 11 9 

angle, a [°] 26 26 7 26 6 

27 
Fig. 4  Maximum  load   for   ba = 3,   corresponding  to  the 

27 17 13 3 

optimal solution of the inverse RBDO  problem 



 

 

 

the free linear side (AB) of the structure. This free 

linear side (AB) is constrained in the y-axis direction. 

The structure is made of one laminate. The balanced 

angle-ply laminates with eight layers and stacking 

sequence ½-a= þ a= - a= þ a]S  are considered in a 

symmetric construction. Ply angle, a, is referenced to 

the x-axis of the reference coordinate, as detailed in 

Fig. 3. All plies have a thicknesses of 2:5 x 10-3 m. 

The structural analysis of laminated composite 

structures is based on the finite element method 

(FEM) and shell finite element model developed by 

Ahmad (1969), and includes improvements from 

Figueiras (1983). The Ahmad shell element is 

obtained from a 3D finite element using a degener- 

ative procedure. It is an isoparametric element with 

eight nodes and five degrees of freedom per node, as 

described by Mindlin shell  theory. 

The laminate is made of an E-glass/epoxy compos- 

ite system (Tsai 1987). The mean reference values of 

the elastic and strength properties of the ply material 

used in the laminate construction of the composite 

structure are presented in Table 1. The elastic con- 

stants of the orthotropic ply are the longitudinal elastic 

modulus, E1; transverse elastic modulus, E2; in-plane 

shear modulus, G12; out-of-plane shear modulus, G13 

and  G23;  and  in-plane  Poisson’s  ratio,  m12.  The  ply 

strength properties are the longitudinal strength in 

tensile,  X;  longitudinal  strength  in  compression,  X0; 

transverse strength in tensile, Y; transverse strength in 

compression, Y0; and shear strength, S. 

To assess reliability, the longitudinal elastic mod- 

ulus, E1; transverse elastic modulus, E2; transverse 

strength in tensile, Y; and shear strength, S; are the 

considered    random    variables    and    denoted   by 

 
 

Table  3  Input 

experimental values used in 
1 2

 

the ANN learning process 

E E Y S 

3.628400E ? 10 8.155492E ? 09 3.114308E ? 07 7.565538E ? 07 

3.646215E ? 10 8.575354E ? 09 2.928308E ? 07 7.465846E ? 07 

3.664031E ? 10 

3.681846E ? 10 

7.926477E ? 09 

8.346338E ? 09 

3.142923E ? 07 

2.956923E ? 07 

7.366154E ? 07 

7.266462E ? 07 

3.699662E ? 10 8.766200E ? 09 3.171538E ? 07 7.166769E ? 07 

3.717477E ? 10 8.117323E ? 09 2.985538E ? 07 7.067077E ? 07 

3.735292E ? 10 8.537185E ? 09 3.200154E ? 07 6.967385E ? 07 

3.753108E ? 10 7.888308E ? 09 3.014154E ? 07 6.867692E ? 07 

3.770923E ? 10 8.308169E ? 09 3.228769E ? 07 6.768000E ? 07 

3.788738E ? 10 8.728031E ? 09 3.042769E ? 07 7.598769E ? 07 

3.806554E ? 10 8.079154E ? 09 3.257385E ? 07 7.499077E ? 07 

3.824369E ? 10 8.499015E ? 09 3.071385E ? 07 7.399385E ? 07 

3.842185E ? 10 7.850138E ? 09 3.286000E ? 07 7.299692E ? 07 

3.860000E ? 10 8.270000E ? 09 3.100000E ? 07 7.200000E ? 07 

3.877815E ? 10 8.689862E ? 09 2.914000E ? 07 7.100308E ? 07 

3.895631E ? 10 8.040985E ? 09 3.128615E ? 07 7.000615E ? 07 

3.913446E ? 10 8.460846E ? 09 2.942615E ? 07 6.900923E ? 07 

3.931262E ? 10 

3.949077E ? 10 

7.811969E ? 09 

8.231831E ? 09 

3.157231E ? 07 

2.971231E ? 07 

6.801231E ? 07 

7.632000E ? 07 

3.966892E ? 10 8.651692E ? 09 3.185846E ? 07 7.532308E ? 07 

3.984708E ? 10 8.002815E ? 09 2.999846E ? 07 7.432615E ? 07 

4.002523E ? 10 8.422677E ? 09 3.214462E ? 07 7.332923E ? 07 

4.020338E ? 10 7.773800E ? 09 3.028462E ? 07 7.233231E ? 07 

4.038154E ? 10 8.193662E ? 09 3.243077E ? 07 7.133538E ? 07 

4.055969E ? 10 8.613523E ? 09 3.057077E ? 07 7.033846E ? 07 

4.073785E ? 10 7.964646E ? 09 3.271692E ? 07 6.934154E ? 07 

4.091600E ? 10 8.384508E ? 09 3.085692E ? 07 6.834462E ? 07 

 



 

 

 

p ¼ ½E1; E2; Y ; S].  All  random  variables  are  noncor- 

related, and follow a normal probability distribution 

function defined by their respective mean and stan- 

dard deviation. The present study can be further 

extended to other random  variables. 

 
6.1 Maximum reference load  calculation 

 
To obtain the maximum reference load, the inverse 

RBDO problem defined in Eq. 1 is solved. The 

structural reliability index is bs & ba with some 

prescribed error, and the corresponding maximum 

load  vector,  LðbaÞ,  can  be  obtained.  The  reliability 

assessment  follows  the  procedure  described  in  

Eqs. 2–6. A prescribed reliability index  ba  = 3  for 

the composite structure is considered. The mean 

values of the mechanical properties are assumed to be 

random variables and are defined in Table 1, and the 

coefficient of variation of each random variable is set 

to CV(p) = 6%, relative to the mean    value. 

The MPP values are obtained based on the Lind– 

Hasofer method. After obtaining these values, the 

inverse  RBDO,  formulated  in  Eq. 1,  is  solved  for 

ba = 3 and the maximum load is outlined depending 

on ply angle a. The corresponding maximum load is 

plotted as a function of ply angle a, and shown in  

Fig. 4. This load is used as the reference load for 

further uncertainty propagation analysis in the ANN- 

based UDM and GA  developments. 

 
6.2 ANN-based UDM and GA  developments 

 
The UDM points are considered as experimental 

input values to be used in the ANN learning 

procedure. A number of 27 training data sets is 

selected inside the interval ½p-i - 0:06p-i; p-i þ 0:06p-i], 

with mean reference value p-i set as a random variable 

for each mechanical property and defined in Table 1. 

The UDM values are selected according to the 

approach proposed by Cheng et al.  (2008). 

After selecting table U27(27
10

) of the UDM (Cheng 

et al. 2008), where columns 1, 4, 6, and 9 must be 

selected according to the respective accessory table for 

four variables and discrepancy W(n, P) = 0.1189, the 

resulting integer code format is presented in Table 2. 

Then, the interval ½p-i - 0:06p-i; p-i þ 0:06p-i] is equally 

discretized with 27 points and, using the integer code 

format from Table 2, the actual composition for p ¼ 

½E1; E2; Y; S] is obtained, as shown in Table 3. 

Reliability analysis is performed for the input 

values from Table 3, and 27 input/output patterns are 

obtained  and  used  in  ANN  development.  For each 

UDM design point, the most critical Tsai number, R-, 

associated with the MPP; reliability index of struc- 

ture, bs; and sensitivities are obtained by using the 

maximum load previously calculated for each angle, 

a, as a reference and solving the inverse RBDO 

formulation of Eq. 1. A fixed standard deviation rpi  ¼ 

0:06p-i is used in the reliability index evaluation for all 

UDM design points, based on Lind–Hasofer method. 

The sensitivities are calculated based on the adjoint 

variable method. 

A number of 10 neurons are considered for the 

hidden layer of the ANN topology. The ANN  

learning process is formulated as an optimization 

problem, defined in Eq. 15, with 116 design variables 

corresponding to 100 weights of synapses and 16 

biases of neural nodes. 

The ANN-based GA learning process is performed 

using a population of 21 individuals/solutions. The 

elite and mutation groups have seven and four 

solutions,  respectively  (António  2001).  The  binary 

code format with five digits is adopted for both 

designing the values of the weights of synapses, MðpÞ, 

and biases of neural nodes at the hidden and output 

layers,  rðpÞ.  The  learning  process  is  concluded  after 
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Fig. 5 Learning and testing relative errors for optimal ANN- 

based GA 
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15,000 generations of the GA. The mean values in 

Table 1 (point 14 of UDM Table 2) are used for  

ANN testing. Figure 5 shows the relative errors in 

learning and testing processes corresponding to the 

optimal ANN. 

 
6.3 ANN-based Monte Carlo simulation 

 
The Monte Carlo Simulation (MCS) method is used 

to study the reliability index variability relative to 

uncertainties in the mean reference values of mechan- 

ical  properties  of  composite  structures.  Using   the 

Table 4 Linear regression of data obtained using ANN-based 

MCS 
 

Angle, a (0) Linear 

regression 

Coefficient of 

determination (%) 

0 b = 13.88R-13.96 99.70 

15 b = 13.10R-13.04 95.33 

30 b = 12.21R-12.21 96.89 

45 b = 8.65R-8.27 98.10 

60 b = 7.91R-7.61 95.69 

75 b = 46.54R-47.94 96.97 

90 b = 28.99R-28.98 94.68 
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Fig. 6       Reliability index of the structure as a function of most critical Tsai number using ANN-based MCS 
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50 between   the   most   critical   Tsai  number, R-,   and 
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angle, a 

corresponding reliability index of the structure, bs,    

is established for different values of angle, a, as 

shown in Fig. 6. 

From ANN-based MCS data, a linear regression 

based on the least square method is used to determine 

the best line fit of the simulated data presented in 

Table 4. The given coefficient of determination is the 

proportion of the total source of variation in the 

reliability index explained by the fit linear regression. 

The relationship between the reliability index and 

Tsai number is linear for most of the data generated 

by the ANN-based MCS  approach. 

 

 

Fig. 7 Sensitivity of reliability index relative to the most  

critical Tsai number using ANN-based  MCS 

 

 
 

The  obje ctive  of  this  section  is  to  analyze   the 
  influence of mean reference value deviations on the 

structural response measured by the reliability   index 
 

Fig. 8   Interval of variation 

for relative sensitivities of 10 
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of the structure, bs. The concept of relative sensitiv- 

ity, referred in Cacuci (2003), is applied to the 

reliability index of the structure and defined   as 

300 
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 0

 

 

where 
obs is obtained from Eq. 16. The results for bs 

are obtained from the ANN-based MCS approach for 

5000 simulations, using previously defined values for 

pi 2 ½p-i - 0:06p-i; p-i þ 0:06p-i].   Figure 8   shows   the 

interval of variation for the relative sensitivities 

obtained from Eq. 17. The objective is to compare  

the relative importance of the input parameters on 

structural response, in particular for the inverse 

RBDO solutions. The reliability index, bs, is very 

sensitive to transverse strength, Y, over the entire 

domain of angle a. Considering the longitudinal 

elastic modulus E1, and transverse elastic modulus  

E2, the reliability index of the structure shows 

important     variations    over     the     intervals     a 2 

½450; 900] and  a 2 ½300; 750],  respectively.  The  sen- 

sitivity relative to the shear strength, S, is fair over the 

entire domain except for a 750  angle. 

Analyzing the same 5,000 simulations of the 

ANN-based MCS, frequency histograms of the 

reliability index of the structure along the domain    

of angle a are obtained and presented in Fig. 9. The 

histograms suggest a variation in the shape of the 

distribution of the reliability index for different 

angles. However, there are no important changes in 

the localization and dispersion of the results. Sym- 

metry in the distribution and inexistence of the gaps 

is also verified for all  angles. 

For an angle, a, of 450 and 600, the data seem to be 

normally distributed, but the Kolmogorov–Smirnov 

test yields very low p-values, indicating significant 

results. Therefore, we conclude here that the data are 

not normally distributed for all  angles. 

Calculated descriptive statistics of the reliability 

index are presented in Table 5. The difference 

between maximum and minimum values is the most 

important  aspect observed in Table 5. The   quartiles 
of  each  distribution  are  clearly  shown  using      an 
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alternative box plot graph of the data, as shown in 

Fig. 10. The lower and upper quartiles define the box 

limits, and the median is near the middle of the   box. 

Reliability index 

 

Fig. 9 Frequency histograms of the reliability index, bs, using 

data from the ANN-based MCS  approach 
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Table 5 Descriptive statistic of the reliability index, bs, using 

data from the ANN-based MCS  approach 

– The variability of the reliability index in RBDO  

and associated sensitivity must be considered for 

robust design of composite  structures. 
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7  Conclusions 

 
The influence of uncertainties of input parameters on 

the output response of composite structures is inves- 

tigated in this paper. In particular, the effects of 

mechanical property deviations from the RBDO 

results are studied. The proposed ANN-based MCS 

approach shows that variations in the mean values of 

mechanical properties propagate and are even ampli- 

fied in reliability index results in RBDO of composite 

structures. Based on the numerical results, the 

importance of measuring input parameters on struc- 

tural response are established and discussed as a 

function of the anisotropy of composite  materials. 

The efficiency of the proposed ANN-based MCS 

approach for uncertainty propagation analysis in 

RBDO has been demonstrated. 

The study proves that the variability of the 

reliability index in RBDO, as a function of uncer- 

tainty of the mean values, can be very high. This high 

variability is also corroborated by evaluated   relative 

Fig. 10 Box plot of the reliability  index, bs, using data from  

the ANN-based MCS approach 
 
 
 

The range of each distribution is shown by the 

extended line. The box plot suggests that the median 

and inter-quartile ranges are similar for all angles, but 

the range is larger for 300, 450 and 600 angles. 

Symmetric distributions are observed for all  angles. 

From the previous analysis, it can be concluded 

that: 

– The reliability index follows a non-normal and 

non-uniform probability distribution function. 

– The mean value of the reliability index is close to 

3, as expected for all ply angles. This aspect 

confirms the accuracy of the proposed ANN- 

based MCS approach. 

– The coefficient of variation of the reliability index 

is equal to 17%. This value is very high when 

compared to the coefficient of variation for the 

input random variables, which has a predefined 

value of 6% of the mean  values. 

sensitivity measures. These aspects must be consid- 

ered for robust design since high structural response 

variability may induce a drastic reduction in the 

quality of the optimal design solutions for composite 

structures. Furthermore, other aspects related to the 

standard deviation and density probability distribu- 

tion of the mechanical properties should also be 

considered in the analysis. 
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based design with a degradation model of laminated 

composite structures. Struct. Optimizat. 12, 16–28 (1996) 
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