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A B S T R A C T  

  

Variations of manufacturing process parameters and environmental aspects may affect the quality and performance of composite 

materials, which consequently affects their structural behaviour. Reliability- based design optimisation (RBDO) and robust design 

optimisation (RDO) searches for safe structural sys- tems with minimal variability of response when subjected to uncertainties in 

material design parameters. An approach that simultaneously considers reliability and robustness is proposed in this paper. Depend- 

ing on a given reliability index imposed on composite structures, a trade-off is established between the performance targets and 

robustness. Robustness is expressed in terms of the coefficient of variation of the constrained structural response weighted by its nominal 

value. The Pareto normed front is built and the nearest point to the origin is estimated as the best solution of the bi-objective 

optimisation problem. 
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1. Introduction 

 
Structural applications of composite materials have increased 

due to their excellent specific stiffness, low weight, and reduced 

energy consumption. Variations of manufacturing process parame- 

ters and environmental aspects may affect the quality and perfor- 

mance of the product, which consequently affects its structural 

behaviour. Therefore, the need for reliability analysis is increasing, 

and reliability-based design optimisation (RBDO) of composite 

structures is currently a very important area of research    [1–5]. 

Uncertainty and sensitivity analysis are important in studying 

complex systems, such as composite laminated structures, for 

robustness assessment. Specifically, uncertainty analysis refers to 

the determination of the uncertainty in the response as a result 

of uncertainties in random variables, and sensitivity analysis refers 

to the determination of the contributions of individual uncertain- 

ties of random variables to the uncertainty in response results. A 

number of approaches to uncertainty and sensitivity analysis have 

been developed, including differential analysis, response surface 

methodology, Monte Carlo analysis, and variance decomposition 

procedures. Reviews of these methodologies are available in the 

bibliography [6–9]. 
Robust design optimisation (RDO) of composite structures is an- 

 
or stabilising variations in structural response without eliminating 

their causes. Robust design optimisation (RDO) of composite struc- 

tures under probabilistic constraints is a very important field due 

to uncertainties associated with physical properties of fibre-rein- 

forced composites [10]. 

Mixed formulations of RBDO and RDO appear today as a new 

emerging branch of reliability and robustness research areas [11]. 

An approach that simultaneously considers reliability and robust- 

ness is proposed in this paper. The trade-off between the perfor- 

mance target, depending on a given reliability index imposed on 

composite structures, against robustness, expressed in  terms  of the 

coefficient of variation of the constrained structural response 

weighted by its nominal value, is searched. The  Pareto normed front 

is built, and the point closest to the origin is  estimated,  as the  best 

solution  of  the  bi-objective  optimisation problem. 

 
2. Robust design optimisation 

 
In reliability-based design optimisation (RBDO), a mean objec- 

tive is minimised based on probabilistic constraints related to fea- 

sibility under uncertainty. Thus, the RBDO problem is formulated 

as 

other emerging area of research that is thought of as an alternative 
  

design to RBDO. Indeed, the principal objective of robust design   is 

to improve product quality by minimising the uncertainty effects 
 

 

(1) 

 
where F(x, lp) is a function describing the structural performance, 

x 2 Rn is the vector of deterministic design variables, p 2 Rm is the 
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k 

 
 

vector of random variables, and lp is the realisation of p defined as 
the random variables’ vector. In the formulation, bs  is the structural   

  (4) 

reliability index, and ba is the prescribed reliability index. The prob- 

lem defined in Eq. (1) uses two nested optimisation loops, the outer 

  

design optimisation loop and the inner reliability assessment loop. 

The latter is needed for the evaluation of the structural reliability 
 (5) 

Np 

index. Every time the optimisation loop needs to evaluate the   con- 

straint, the inner reliability assessment loop is performed to search 

where Lk  is the kth component of the load vector, Lðba Þ 2  R 
composite structures with linear elastic structural  behaviour, 

. For 

for the most probable failure point (MPP) in the standard normal  
 
 

 (6) 
space.  

 

In robust design optimisation, the robustness of the system is 

searched during the optimisation process to minimise the sensitiv- 

ity of the performance system function in response to variability of 

the material properties. A  bi-objective  optimisation  is performed 

by considering the following objective functions: (a) a function 

describing the performance of the structural response for a pre- 

scribed reliability index of the structural system, and (b) a function 

describing the robustness of the system related to the variability of 

the structural response. The bi-objective optimisation problem can 

then be established  as 

where C:V :R-ðba Þ is the coefficient of variation of the most critical 

Tsai number, R corresponds to the most probable  failure  point (MPP) 

obtained from the reliability index evaluation scheme and 

minimisation of performance function in (3). Defining the Tsai num- 

ber, Rk, as a strength/stress ratio [12], it can be introduced into the 

interactive quadratic failure criterion of Tsai-Wu and calculated at 

the kth point of the structure, where the stress vector is evaluated, 

by solving the  equation 

 

 (7) 

 

where si are the components of the stress vector, and Fij and Fi are 

 
 

the strength parameters associated with unidirectional    reinforced 

 

 
(2) laminate defined from the macro-mechanical point of view [12]. 

Since the safe region is related to Rk > 1, the most critical Tsai num- 

ber can be established as 

where V(x, lp) is a measure of 

the variation of performance. 
At the end of the 
optimisation process, the 
Pareto front representing 

the 

  

 (8) 

frontier of the trade-off between the ‘‘performance” and the 

‘‘robustness” functions is obtained. 

 
2.1. Performance of composite structures 

 
The objective function describing the performance is defined as 

the square of the difference between the structural reliability in- 

where Ns is the total number of points where the stress vector is 

evaluated. The location of the points where the stresses are evalu- 

ated depends on the post-processing methodology used in the 

structural analysis. In this approach the finite element method is 

used for structural analysis and the stress vector is evaluated at 

the Gauss points of numerical integration. 

From Eq. (6), the robustness can be written  as, 

dex, bs, and the prescribed reliability index, ba. The design variables 

are the ply angle, a, and the load factor, k, both of which are aggre- 
gated  in  vector  x.  The  random  variables,  p,  are  the  elastic and 

  

strength material properties. So, the function describing the perfor- 

mance of the structural system  is 

 (9) 

 

  
 

(3) 



 

 
 
 
 

 

 

 

 

 

 

 

Where varðR-ðba ÞÞ is the variance of the most critical Tsai number of 

where lp is the realisation of random variables. The vector of ap- the composite structure. Since the product Lðba ÞR-ðba Þ is equal to the 

plied loads is defined as L ¼   kL ref , where L ref is  the  reference load reference load for composite structures with linear behaviour, it   is 

vector. The reliability index, ba, is the target for the structural reli- 

ability index. 

proven in Eq. (9) that the  robustness defined in (4)  is a    weighted 

function of standard deviation of the most critical Tsai number eval- 

uated at bs  = ba. The variance in Eq. (9) can be obtained   from 

2.2. Formulation for robustness  
  

 

 (10) 

The fundamental objective of robust design is to improve the  

 

 

 

structural safety and to stabilise response performances by 

minimising the effects of the propagation of uncertainties. Although 

some methods are proposed in the literature for robustness 

assessment, their properties, in terms of accuracy and efficiency, are 

not yet fully known. However, the robustness of a  perfor- mance is 

associated with the  dispersion  around  its  mean.  The two most 

important robustness measures are the traditional var- iance and 

the recently proposed percentile difference [8]. An alter- native way 

to define robustness is proposed here. Since, from minimisation of 

the performance function defined in Eq. (3), the maximum  load  

applied  to  the  structure  is  obtained  for  bs  =   ba, 

deviations from that critical load can be associated with   perfor- 

mance variations. Then, in this work, the robustness of the struc- 

tural system is defined using the coefficient of variation, C:V :Lðba Þ, 

of the maximum load, Lðba Þ, applied to the structure weighted    by 

 

 

 

where var(pi) is the variance of the material design parameter, pi, 

defined as a random variable in the vector, p 2 Rm, and the deriva- 

tives are obtained at bs = ba after the sensitivity analysis is per- 

formed using the adjoint variable method. 

 
2.3. Structural reliability assessment 

 
In the structural reliability analysis of composite structures, the 

basic random variables, which are assumed to be uncorrelated, de- 

fine the vector p(p1, p2, . . .  , pn). Their mean values and variances 

describe their statistical nature. In this case, the random variables 

are the elastic and strength properties of the composite laminates 

of the structure. If the boundary surface of the safety domain is 

written as 

 (11) 

its  nominal value: 



 

the values of p belonging to the failure domain will satisfy the 

inequality: 

 (12) 

 

 

The probability of failure is defined   as 

Variables pi), is required to lie entirely in the transformed safety domain. 

On the other hand, considering that the probability density in the standard 
normal space decays exponentially with the distance from the origin, the 
point with the maximum probability of failure on the limit-state surface is 
the point of minimum distance to the origin. From the operational point of 
view, the search for this point can be formulated as a constrained 
optimisation problem 

 

 

The assumption that the minimum distance b obtained from the 

solution of the minimisation problem in Eq. (17) is a measure of 

reliability is equivalent to the discretisation at one single point of 

the safety domain boundary, expressed in the space of the stand- 

ardised  variables.  This  corresponds  to  the  substitution  of     the 
hypersurface by the hyperplane passing through the point defined 

  

 (13) 
 

by u*  [3]. By formally introducing a normal probability  distribution 

where f(p) is the joint probability density function of p, X is the fail- 

ure region, and uðpÞ is the so-called limit state function that sepa- 

rates  the  design  space  into  failure  (uðp < 0Þ  and  safe  regions 

(uðp > 0Þ.  In  this  particular  case,  the  formulas  presented  in  Eqs. 

(7) and (8) for the limit state function can be written    as 

 (14) 

 

From the deterministic point of view the structural failure anal- 

ysis is associated to the most critical Tsai number defined in Eq. (8) 

and the composite structure fails at R ¼ 1. However, in reliability 

analysis a limit state function must be considered for each point 

(for example at the Gauss integration points) on structure where 

the Tsai number is evaluated as defined in Eq. (7). This means that 

Ns limit state functions should be considered and so, reliability 

analysis becomes very expensive and unpractical. To overcome this 

difficulty only the limit state associated to the most critical Tsai 

number R will be considered in reliability analysis as proposed in 

Eq. (14). Since the stress vector is evaluated at discrete points 

the measure of structural reliability depends on local conditions 

and on the shape of the failure envelope and so the approximation 

function, U, the first-order approximation to Pf can be written as 

 (18) 

 

where b is known as the reliability index, i.e., the minimum distance 

from the origin to the limit-state  surface. 

The design point or most probable failure point (MPP), u*, is ob- 

tained using an iterative scheme of the Lind–Hasofer method pro- 

posed in the Refs. [1,15] and based on gradients evaluated by the 

adjoint  variable method. 

 
2.4. Algorithm for performance and robustness trade-off 

 
The RDO is performed by solving the bi-objective problem for- 

mulated in Eq. (2), providing an optimal design which is simulta- 

neously reliable and robust. First, two single-objective problems 

are solved and subjected to all constraints in order to obtain the 

utopia point. From the minimisation of the performance function 

defined in Eq. (3), the optimal maximum load for the target reli- 

ability index, ba, is obtained over the entire domain of ply angle de- 

sign variable, a, as follows: 

considered in Eq. (14) is valid as a first design approach. 

The distribution of the basic variables, pi, and the limit state 
 

 

surface, uðpÞ, are known, and the probability of failure can be em- 

ployed  as  a  measure  of  reliability.  However,  Eq.  (13)  cannot  be 

evaluated analytically for realistic structures because the calcula- 

 

 

(19) 

tion of the integral is too difficult. To avoid 

this problem, the mo- ment reliability theory 

is used in this work, namely, the so-called 

Lind–Hasofer reliability index [13,14]. The 

advantage of this meth- od is that it is invariant with respect to 

different failure surface for- mulations in spaces having the same 

dimension. The Lind–Hasofer method is performed in two steps. 

The first one consists of project- ing Eq. (11) into the space of 

standardised   variables:  

This is a conventional RBDO inverse optimisation problem and the 

reliability constraint, bs ðx; pÞ '2 ba , is automatically satisfied. To solve 

the inverse problem  (19),  an  optimisation  algorithm based on 

gradients or evolutionary methods can be implemented. How- ever, 

for the case with two design variables, load factor k and ply an- gle a, a 

decomposition of the problem is considered, and the following  

algorithm  is proposed: 

ui 
 (15)  

 -  

 

where pi   and rpi    
are, respectively, the mean values and the stan- 

dard deviations of the basic random variables. The second step mea- 

sures,  in  this  space,  the  minimum  distance  b  of  the  transformed 

surface 

 (16) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second single sub-problem in Eq. (2) minimises the vari- 

ability of the structural response. This is equivalent to maximising 

the robustness, established as the coefficient of variation of maxi- 

mum load Lðba Þ, associated with the reliability index target, ba, 

weighted by its nominal value as defined in Eq. (4). This robustness 

maximisation is performed over the ply angle design variable, a, 

using the optimal solution for maximum load Lðba Þ obtained from 

the performance minimisation problem of Eq. (19). Then, the sec- 

ond single-problem is equivalent to 

erence axis, as detailed in Fig. 1. All laminates have the same mean 

thickness, hk  = 0.02 m. 

The  structural  analysis  of  laminated  composite  structures  is 

based on the shell finite element model developed  by  Ahmad [16], 

with further improvements [17]. This shell element is ob- tained 

from a 3D  finite  element using  a  degenerative procedure. It is an 

isoparametric element with eight nodes and five freedom degrees 

per node based on the Mindlin shell    theory. 

The mean values of the elastic and strength properties of the ply 
material used in the laminate construction of the composite struc- 

 
 

 ture are presented in Table 1 [12]. The elastic constants of the 

 

(20) orthotropic ply are the longitudinal elastic modulus E1, the trans- 

versal  elastic  modulus  E2,  the  in-plane  shear  modulus  G12,   the 

out-of-plane shear 
modulus G13 

and G23 , and the in-plane Poisson’s 

where -kðaÞ denotes the maximum load factor associated with Lðba Þ . 

Since the optimisation problem is composed of two objectives, 

all optimal solutions belong to the Pareto front. To obtain the 

trade-off of performance against robustness, two steps are imple- 

mented: first, optimal solutions for performance and robustness 

are normalised relative to its maximum nominal value; second, 

the minimum distance from the Pareto normed front to the origin 

of the referential is calculated. The point on the Pareto   normed 

ratio m12. The ply strength properties are the longitudinal strength 

in tensile, X, and in compression, X0 , the transversal strength in ten- 

sile, Y, and in compression, Y0 , and the shear strength, S. 

To investigate the robust design of the composite structures, the 

mechanical properties denoted by (p) are the considered random 

variables. All random variables are non-correlated following a nor- 

mal probability distribution function defined by their respective 

mean and standard deviation. The mechanical properties group, 
(p), includes the following random variables: longitudinal Young’s 

front associated with the minimum distance can be defined as 
the best mathematical trade-off between performance and robust- modulus E1,j , transversal modulus  E2,j , transversal tensile strength 

ness.  The  corresponding  optimal  design  variable  ply  angle      is 
Yj, and  shear strength Sj,  where subscript j  denotes the    laminate 
number. Sixteen mechanical properties are considered as    random 

obtained. parameters  with  uncertainty  in  this  analysis:  E   ,      E ,  Y ,  S , 

1,j 2,j j j 

 

3. Numerical examples 

 
To test the proposed approach, a clamped cylindrical shell lam- 

inated structure made of a E-glass/epoxy (Scotchply 1002, [12]) 

composite system is considered as shown in Fig. 1. Nine vertical 

loads of mean value Lk are applied along the free linear side (AB) 

of the structure. This free linear side (AB) is constrained in the y- 

axis direction. The structure is divided into four macro-elements, 

grouping all elements, and there is one laminate per each macro- 
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j = 1, . . . , 4. The present study can be extended to other random 

vari- ables. Different coefficients of variation, C.V.(p), of 

mechanical prop- erties (p) are tested and the mean values are 

defined in Table 1. 

The constrained minimisation problem given in Eq. (19) is 

solved, and the maximum allowable load, Lðba Þ, on the    

composite 

 
Lind-Hasofer and iterative scheme,   =3 

40000 
 

CV(p)=6% 

element.  The  laminate  distribution  of  the  structure  is  shown in 

Fig.  1.  The  balanced  angle-ply  laminates  with  eight  layers  and 

the stacking sequence [+a/+a/-a/-a]s  are considered in a symmet- 

ric construction. Ply angle, a, is referenced to the x-axis of the ref- 
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Fig. 1.  Cylindrical shell and composite laminates distribution. 

 
Fig. 2. Performance of structural system measured by maximum load for ba = 3. 

 
Table 1 

Mean value of mechanical properties of unidirectional composite    layers. 

Material E1 (GPa) E2 (GPa) E12 (GPa) m 

E-glass/epoxy (Scotchply 1002) 

 

 
E-glass/epoxy (Scotchply 1002) 

38.6 

X;X0  (MPa) 

8.27 

Y;Y0  (MPa) 

4.14 

S (MPa) 

0.26 

q (kg/m
3
) 

1062; 610 31; 118 72 1600 

=
3
) 

[N
] 



 

 

structure, considering the prescribed reliability index of ba = 3, is 

obtained. This maximum load, as function of ply angle design var- 

iable a, is plotted in Fig. 2 for different values of the coefficient of 

variation for the input mechanical properties group (p). The maxi- 

mum load is more sensitive to variations of the random input vari- 

ables for ply angles over 45°. 

For every kind of random variables, the most probable failure 

point (MPP) values, depending on ply angle a, are presented in Figs. 

3–6, calculated for the coefficient of variation of the input random 

variables, C.V.(p) = 6. These figures correspond to the MPP solutions 

found for the reliability analysis problem defined in Eq. (17) for the 

particular case of ba = 3 and the corresponding maximum load 

shown in Fig. 2. The maximum differences of random variable val- 

ues at MPP relatively to their mean values are: 8.6% for longitudi- 

nal modulus E1,j, 9.2% for transversal modulus E2,j, 16.3% for 

transversal strength Yj, and 8.0% for shear strength Sj, considering 

all laminates on the composite structure, i.e., for j = 1, . . .  , 4. These 

differences are larger than the coefficient of variation, C.V.(p)= 6, 

considered in the input random variables. This means that    the 

MPP vector p* is very far from vector p- of the mean values of ran- 

dom variables. Most of the significant differences for this design 

problem are associated with ply angles over 45°. Since the MPP 

is the point with the maximum probability of failure on the lim- 

it-state surface, and considering that vector p- is not a good approx- 

imation of MPP vector p*, it can be concluded that reliability 

analysis must be considered together with robust design 

optimisation. 

The Figs. 3–6 show the influence of the location on structure of 

the most critical Tsai number R. The limit state function associated 

to  R  is  located  on  laminate  number  one  (j = 1)  for  ply  angle 

a 2 ½0o ; 70o] and is located on laminate number four (j = 4) for ply 

angle a 2 ½0o ; 70o]. The limit state function in Eq. (14) is much more 

sensitive to the random variables belonging to the laminate where 

the most critical Tsai number R is evaluated than to the variables 

associated  to  other  laminates.  Thus,  the  more  sensitive  random 

variables  are  identified  by  subscripts  j = 1  and  j = 4  in  Figs.  3–6 

and are the ones that show wider variations in MPP search estab- 

lished by the minimisation problem defined in Eq. (17). 
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Fig. 3. Variation of MPP value of the longitudinal Young’s modulus for ba = 3. 

 
Fig. 5.  Variation of MPP value of the transversal strength for ba = 3. 
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Fig. 4. Variation of MPP value of the transversal modulus for ba = 3. Fig. 6. Variation of MPP value of the shear strength for ba = 3. 
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The results presented in Fig. 2 can be validated using a Bayesian 

method applied to the inverse problem, i.e., calculating the    proba- 

bility of failure, Pf, associated with the obtained maximum  load, 

 upp 

 

 
 

 
 

(22) 

Lðba Þ,  for  each  ply angle  design variable,  a.  The  objective of the with, N = 2000 first Monte Carlo simulations; K = failures in the 
0 0 

Bayesian methods is to use all available knowledge (a priori infor- 

mation) based on a previous experience, intuition, or results ob- 

tained   in   similar   previous   problems   [18].   In   this   case,   the 

information  source  is  the  knowledge  of  a  previous  Monte  Carlo 

simulation  (N0    simulations,  K0    failure  events).  According  to  the 

Bayesian  techniques,  the  estimation  of  the  failure  probability  is 

based  on  two  distribution  functions.  The  distribution,  a  priori,  is 

the  BetaðK 0  þ 1; N0  - K 0  þ 1Þ  law,  and  the  a  posteriori  distribution 

is  the  BetaðK þ K 0  
þ 1; N - K þ N0  

- K 0  
þ 1Þ  law,  based  on  a  new 

Monte  Carlo  simulation  (N  simulations,  K  failure  events).  A  two 

sided confidence interval of Pf  can be calculated with a given con- 
fidence c. So, the lower Plow 

and upper Pupp 
limits of the confidence 

f f 

interval of Pf  can be obtained from, 

plow 
f 

first Monte Carlo simulations; N = 5000 second Monte Carlo simula- 

tions; K = failures in the second Monte Carlo  simulations. 

In  this  case,  the  maximum  load  is  applied  to  the  composite 

structure for each value of ply angle, a, and the Monte Carlo simu- 

lation is used, together with Bayesian inference, to confirm the pre- 

scribed reliability index of ba  = 3. The confidence interval for Pf  is 

shown  in  Fig.  7,  where  the  horizontal  line  indicates  the  failure 

probability  Pf  = U(-3),  calculated  using  Eq.  (18).  The  horizontal 

line  for  Pf  = U(-3)  is  inside  of  the  confidence  interval,  showing 

the  agreement  of  the  results  obtained  using  the  Lind–Hasofer 

method with those from the Monte Carlo simulation together with 

Bayesian inference. 

For every ply angle a, the design variable for robustness, as de- 

fined in Eq. (4), is calculated after solving the RBDO   minimisation 
problem presented in  Eq.  (19).  For  the proposed numerical exam- 

 
0 

(21) 
ple, Fig. 8 shows the influence of ply angle a. The maximisation 

problem given in Eq. (20) is solved using the plotted results. 
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Table 2 

Optimal values for the bi-objective optimisation problem, ba = 3. 

 

1,50E-03        Ply angle, a (°) 

0 

Maximum load, 
 

0.102970971 

Lðba Þ Robustness 

1.000000000 

        5 0.103437757 0.992203215 
1,25E-03        10 0.105961806 0.968306559 

        15 0.111185835 0.925590671 

1,00E-03        20 0.120195227 0.862434482 

        25 0.134468375 0.781209716 

        30 0.155773105 0.650483726 
7,50E-04        35 0.187298885 0.552573011 

        40 0.228160381 0.466003676 

5,00E-04        45 0.278510825 0.392310564 

        50 0.342555546 0.364476184 

        55 0.418716836 0.308134663 
2,50E-04        60 0.506563378 0.260146528 

        65 0.604977157 0.219328801 

0,00E+00        70 0.71235209 0.184901369 
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Fig. 8.  Robustness as function of ply angle a design  variable. 



 

 

A bi-objective optimisation problem based on performance and 

robustness for angle-ply composite structures with linear elastic 

behaviour is implemented. At the end of the optimisation pro- 

cesses, the Pareto normed front representing the frontier of the 

trade-off between the ‘‘performance” and ‘‘robustness” functions 

is obtained, as shown in Fig. 9. 

The normed values of the objective functions of the bi-objective 

optimisation problem and the corresponding optimal ply angle are 

presented in Table 2. According to the considerations made in Sec- 

tion 2.4, the point on the Pareto normed front associated with the 

minimum distance can be defined as the best mathematical trade- 

off between performance and robustness. This point is identified as 

corresponding to ply angle a = 45°. 

 
4. Conclusions 

 
The problem of robust design optimisation (RDO) of composite 

structures is addressed, considering its performance and variation. 

In this work, performance is associated with the target imposed on 

the reliability of the structural system. After solving an inverse 

problem, the maximum allowable load for a prescribed reliability 

index is obtained. Robustness is defined by the coefficient of vari- 

ation of the maximum load weighted by its nominal value. The ori- 

ginal bi-objective optimisation problem is decomposed into two sub-

problems. First, an inverse reliability-based design optimisa- tion 

(RBDO) problem is solved, and the maximum allowable load is 

obtained, by searching over the ply angle domain. Second, based on 

the solution from the previous problem, maximum robustness is 

searched over the ply angle domain. At the end of the optimisa- 

tion processes, the Pareto normed front representing the frontier of 

the trade-off between the ‘‘performance” and ‘‘robustness” func- tions 

is obtained. This bi-objective optimisation is a powerful tool to help 

designers make decision based on a compromise between 

performance  and robustness. 
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