

A Pseudo-Medium-Wide 8-Competitive
Interface for Two-Level Compositional
Real-Time Scheduling of Constrained-
Deadline Sporadic Tasks on a Uniprocessor

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-091103

Version: 0

Date: 11-01-2009

Björn Andersson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-091103 A Pseudo-Medium-Wide 8-Competitive Interface for Two-Level Composition

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A Pseudo-Medium-Wide 8-Competitive Interface for Two-Level Compositional
Real-Time Scheduling of Constrained-Deadline Sporadic Tasks on a
Uniprocessor
Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Compositional real-time scheduling clearly requires that ”normal” real-time scheduling challenges are addressed but
challenges intrinsic to compositionality must be addressed as well, in particular: (i) how should interfaces be described?
and (ii) how should numerical values be assigned to parameters constituting the interfaces? The real-time systems
community has traditionally used narrow interfaces for describing a component (for example, a utilization/bandwidth-
like metric and the distribution of this bandwidth in time). In this paper, we introduce the concept of competitive ratio
of an interface and show that typical narrow interfaces cause poor performance for scheduling constrained-deadline
sporadictasks (competitive ratio is infinite). Therefore, we explore more expressive interfaces; in particular a class
called medium-wide interfaces. For this class, we propose an interface type and show how the parameters of the
interface should be selected. We also prove that this interface is 8-competitive.

A Pseudo-Medium-Wide 8-Competitive Interface for Two-Level Compositional
Real-Time Scheduling of Constrained-Deadline Sporadic Tasks on a Uniprocessor

Björn Andersson
CISTER Research unit

Polytechnic Institute of Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract—Compositional real-time scheduling clearly re-
quires that ”normal” real-time scheduling challenges are ad-
dressed but challenges intrinsic to compositionality mustbe
addressed as well, in particular: (i) how should interfacesbe
described? and (ii) how should numerical values be assigned
to parameters constituting the interfaces? The real-time sys-
tems community has traditionally used narrow interfaces for
describing a component (for example, a utilization/bandwidth-
like metric and the distribution of this bandwidth in time).
In this paper, we introduce the concept of competitive ratio
of an interface and show that typical narrow interfaces cause
poor performance for scheduling constrained-deadline sporadic
tasks (competitive ratio is infinite). Therefore, we explore more
expressive interfaces; in particular a class called medium-wide
interfaces. For this class, we propose an interface type and
show how the parameters of the interface should be selected.
We also prove that this interface is 8-competitive.

I. I NTRODUCTION

Real-time software is increasing in complexity, both be-
cause the size (number of lines of code; number of function
points/use cases) is increasing but also because the software
is developed by many different individuals, potentially in
different teams and in different organizations or companies.
Compositional theories address this complexity by subdivid-
ing software into components. A component can be highly
complex but a component is described with an interface,
typically of lower complexity. This interface should have the
property that a system integrator should be able to compose
an entire system out of components by only knowing the
interfaces of the components.

Compositional theories are of interest both for (i) ensuring
that components deliver correct results and (ii) ensuring that
components deliver results at the correct time. This paper
deals only with the latter and in order to focus the discussion,
we will assume that:

A1. The system has a single processor;
A2. The software is comprised of a setCOMP=

{COMP1, COMP2, . . . , COMPK} of K compo-
nents;

A3. A component COMPk is comprised of a
set τk={τk

1 , τk
2 , τk

3 , . . . , τk
nk} of nk constrained-

deadline sporadic tasks (note that in this way, we
restrict our attention to a 2-level hierarchy);

A4. A constrained-deadline sporadic taskτk
i is char-

acterized by the parametersT k
i , Ck

i , Dk
i with the

interpretation thatτk
i releases a (possibly infinite)

sequence of jobs with at leastT k
i time units be-

tween successive jobs of taskτk
i and each job of

τk
i requiresCk

i units of execution to be performed
at leastDk

i time units after the release of the job.
It is assumed that the release times of jobs cannot
be controlled by the scheduling algorithm;

A5. A task which executes forL time units on a
processor of speedS completesL · S units of
execution;

A6. If the speed of a processor is not explicitly speci-
fied, it is assumed that the speed is one;

A7. The parametersT k
i , Ck

i , Dk
i are integers (we use

the assumption of integer parameters only because
it simplifies our discussion about the amount of
storage needed for task sets and interfaces); arrivals
of tasks are allowed to occur at non-integer times
and preemptions are allowed to occur at non-
integer times as well;

A8. A task needs no other resource than a processor;
A9. A component COMPk has a static interface

STATIC INTERFACEk and a dynamic interface
DYNAMIC INTERFACEk. The static interface
is comprised of variables that remain constant
over time (for example, pre-specified bandwidth)
whereas the dynamic interface is comprised of
variables that may change with time (for example,
a variable indicating whether there is any task in
the component with unfinished execution at current
time);

A10. There is a global schedulerGLOBAL SCHED
which decides at run-time, at every instant, which
component is assigned the processor. In every
componentCOMPk, there is a local scheduler
LOCAL SCHEDk;

A11. The global scheduler takes decisions based on
both the static and the dynamic interface of all
components;

A12. The global scheduler is EDF [1];
A13. The local scheduler ofCOMPk executes a task in

Figure 1. A small example. (The interfaces are not shown).

τk at time t if the global scheduler has assigned
the processor toCOMPk at time t;

A14. The local scheduler in a component takes decisions
based only on the properties of the tasks in the
component;

A15. The local scheduler in each component is EDF [1];
A16. There is a schedulability test for the global sched-

uler and a schedulability test for each local sched-
uler; these schedulability tests are used before run-
time;

A17. The schedulability test for the global scheduler
does not know tasks in each component and it does
not know the dynamic interface of components. It
only knows the static interface of each component;

A18. The schedulability test for the local scheduler of
COMPk only knows the tasks inτk.

Figure 1 shows an example of such a system.
We address the problem of deciding which parameters

should be used to represent the interfaces and how to select
parameters for them and how the dynamic interface should
be used at run-time. We are interested in doing so and
fulfilling the following two (often conflicting) requirements:

R1. The loss in schedulability should be small;
R2. The interface of a component should reveal as little

as possible about the tasks in the component.

For the purpose of our discussion, we need to quantify
how well an interface fulfills the two requirements above.
Therefore, we will define the conceptscompetitive ratioand

”narrowness”. The former is related to R1 and the latter is
related to R2.

We say that an interface generation algorithmA has
competitive ratioR if R is the smallest number such that
it holds that for every constrained-deadline sporadic task
set partitioned into components, that if this task set can
be scheduled on a single processor with EDF directly on
the processor (that is, without components and without a
global scheduler) then this task set can be guaranteed to meet
its deadlines as well with interface generation algorithmA
provided that the processor isR times as fast. Clearly, a
low competitive ratio is desired.R=1 is the best one can get.
R=∞ suggests that we pay a high price for compositionality.

In order to characterize the ”narrowness” of the interface,
we consider the amount of storage needed to describe the
interface as compared to the amount of storage needed to
describe the tasks in the component. Figure 2 illustrates this.

We say that an interface of a component is:

- narrow if the amount of storage needed by the
dynamic and static interface of the component is
independent of the amount of storage needed to
represent the tasks in the component;

- wide if the amount of storage needed by the
dynamic and static interface of the component is
proportional to the amount of storage needed to
represent the tasks in the component;

- medium-wide if the amount of storage needed by
the dynamic and static interface of the component

Figure 2. The different ”narrowness” of interfaces.

is at most a polynomial of the logarithm of the
amount of storage needed to represent the tasks in
the component or less.

Within the class of medium-wide, we make a special
distinction: We say that an interface ispseudo-medium-wide
if the interface is medium-wide for the case thatT , D, C
parameters are upper bounded.

We will say that the system is narrow if all components
have narrow interfaces. We will say that the system is
medium-wide if all components have narrow or medium-
wide interfaces. Otherwise the system is wide. Clearly,
narrow interfaces are preferable compared to medium-wide
interfaces and medium-wide interfaces are preferred com-
pared to wide interfaces because the former takes greater
advantage of compositionality than the latter.

The real-time systems community has addressed the prob-
lem of characterizing interfaces and selecting parameters
extensively during recently years. A common approach is to
represent the interface of a component with two parameters
(a bandwidth-like metric and figure of the granularity of the
distribution of the bandwidth in time). This approach has
the advantage that it is often easy to apply and it is easy
for designers to comprehend (it is narrow). Unfortunately,
we will see (in Section 2) that this approach can lead to an
infinite competitive ratio (R=∞).

We will discuss wide interfaces (in Section 3) and see that
this allows us to attain a competitive ratio of one (R=1).
But this is undesired as it does not take as much advantage

of compositionality for reducing the complexity of systems
integration as one does with narrower interfaces.

Therefore, in this paper, we advocate that medium-narrow
interfaces should be investigated further. In this spirit,we
propose an algorithm for generating pseudo-medium-wide
interfaces. We show that this offers a competitive ratio of
eight (R=8). Consequently, this offers a reasonable trade-
off; it offers the advantages of compositionality in terms of
simplifying system design but it does so without sacrificing
too much in terms of efficiently managing the resource (the
processor).

The remainder of this paper is organized as follows. We
initially (in Sections 2-5) ignore policing in order to only
focus on compositionality. Section 2 discusses narrow inter-
faces. Section 3 discusses concepts that we use for interfaces
that are not narrow. Section 4 discusses wide interfaces. It
presents a new result but it is not particularly useful in its
own right; its value lies in providing an understanding of
new interface concepts which will be used (in Section 5)
when discussing medium-wide interfaces. Section 6 will
then discuss how policing can be achieved. Section 7 gives
conclusions.

II. NARROW INTERFACES

Narrow interfaces have been well-studied. Typically they
describe the interface of a component with a (i) capacity
metric (bandwidth or pre-specified utilization type of metric)
and (ii) a metric specifying how this capacity is distributed

in time. The periodic resource model, also called (Π,Θ)
model [2], is one of them and it is frequently used. It
describes each component with a server periodΠ and a
server budgetΘ. A designer must therefore calculateΠ and
Θ for a component.

Consider a system comprising three componentsCOMP1,
COMP2, COMP3 and each component has a single
task. These tasks are characterized1 as C1

1=C2
1=C3

1=1 and
T 1

1 =T 2
1 =T 3

1 =∞ and D1
1=1;D2

1=2;D3
1=3. It is easy to show

[3] that this task set can be scheduled to meet deadlines by
EDF [1] if components and a global scheduling algorithms
were not used. But with the (Π,Θ) model, we have to
assign a server periodΠ and a budgetΘ to each component
and only Π and Θ are allowed to be used by the global
schedulability test. It is easy to see that in order for tasks
to be guaranteed to meet deadlines by a local schedulability
test, we have to choose:

∀k ∈ {1, 2, 3} :
Θk

Πk
≥

Ck
1

Dk
1

=
1

k
(1)

Note that the superscripts of the variables in (1) refer to
the index of the component. It follows from (1) that:

Θ1

Π1
+

Θ2

Π2
+

Θ3

Π3
≥ 1 +

1

2
+

1

3
=

11

6
(2)

And consequently, no global schedulability test can ensure
that each component meets its deadlines.

In this particular example, it can be seen that it is
necessary to multiply the processor speed by at least11/6
in order to meet deadlines with a compositional framework
using the (Π,Θ) model. This penalty is caused, not because
we made a particularly poor choice in the selection of the
parameters assigned toΠ and Θ but the penalty is caused
by the limitations of the (Π,Θ) model.

We can generalize this reasoning as follows. Let
us consider K components and there is one task
in each component. The tasks are characterized
as C1

1=C2
1=. . .=CK

1 =1 and T 1
1 =T 2

1 =. . .=T K
1 =∞ and

D1
1=1;D2

1=2;D3
1=3;D4

1=4;. . .;DK
1 =K. This task set can

be scheduled without components and without a global
scheduler. With similar reasoning as in the previous
example, we obtain that:

Θ1

Π1
+

Θ2

Π2
+ . . . +

ΘK

ΠK
≥ 1 +

1

2
+

1

3
+ . . . +

1

K
(3)

It is known that for the summation on the right-hand side
of (3), it holds that asK approaches infinity, the summation
approaches infinity2. Therefore we have that:

1This observation is an adaptation of the example in [4] whichis based
on the original (unpublished) observations by Sanjoy Baruah in 1990s.

2The right-hand side of (3) is known as a harmonic series. It isknown
(from works by Nicole Oresme) that infinite harmonic series are infinite
(divergent). For largeK, the right-hand side of (3) is approximatelyln K.

lim
k→∞

Θ1

Π1
+

Θ2

Π2
+ . . . +

ΘK

ΠK
= ∞ (4)

and consequently, the competitive ratio is infinite (R=∞).
We have now discussed the (Π,Θ) model and that it gives

us an infinite competitive ratio. It should be noted however
that one can show, with similar arguments, that other models,
bounded-delay model [5], [6] and the EDP model [7], suffer
from the same drawback: an infinite competitive ratio.

It is therefore interesting to explore other types of inter-
faces. The next section (Section 3) introduces some useful
concepts. These concepts will be used (in Section 4) which
shows a simple idea on how to obtain much better compet-
itive ratio by using wide interfaces. We will adapt this idea
in the section thereafter (Section 5). This adaptation gives
us lower performance (higher competitive ratio) but this can
be achieved with medium-wide interfaces.

III. GENERAL CONCEPTS WE USE FORINTERFACES

THAT ARE NOT NARROW

The concepts of wide interface and medium-wide in-
terface only stipulate how much storage is needed for
representing the interface; they do not stipulate exactly what
the interfaces look like. Therefore, in this section, we discuss
some concepts we will use later in the paper for discussing
medium-wide interfaces and wide interfaces.

The main idea is to represent the interface of a component
k with a task setτk′. The parameters for this task set
are derived fromτk, the task set inside the componentk.
Figure 3 shows this.

A. Concepts

About a task, we define the following. We define
activek

i (t) as being true if taskτk
i is active at timet;

otherwise it is false. We say that a task is active if it
is either running or ready. We definearrivalki (t) as the
maximum time when taskτk

i arrives such that this arrival
time is no greater thant. We defineabs deadlinek

i (t) as
arrivalki (t) + Dk

i .
About a component, we define the following. We define

active tasksk(t) as { τk
i : (τk

i ∈ τk) ∧ activek
i (t) }.

We also defineexist active tasksk(t) as a boolean variable
being true ifactive tasksk(t) is non-empty; false otherwise.
For each componentCOMPk, we define a task setτ ′

k

= { τk
1 ′, τk

2 ′, . . . , τk
nk′

′ } with nk′ tasks. These tasks
are constrained-deadline sporadic tasks and hence they are
described withT ,C,D parameters. This primed task set will
be used as an interface and the non-primed task set is not
used as an interface; they are the real tasks in the component.

We defineintf task(τk
i) as a function mapping a taskτk

i

∈ τk to a task inτk′ (”intf” means ”interface”). We define
intf abs deadlinek

i (t) asarrivalki (t) + Dk
q ′, whereq is the

index of the taskintf task(τk
i). Intuitively, the function

intf task performs a mapping from a task in the component

Figure 3. A small example from Figure 1. Interfaces (wide) are shown. Arrows indicate the mapping performed by the function intf task.

to a task in the interface. Also, intuitively, the function
intf abs deadlinek

i (t) gives us the absolute deadline of task
τk
i but instead of calculating the absolute deadline of task

τk
i using the relative deadline ofτk

i , we use the relative
deadline of the task to whichτk

i maps to in the interface.
For a component, we defineintf abs deadlinek(t) as

the minimum of all intf task(τk
i) for all tasks τk

i in
active tasksk(t) if active tasksk(t) is non-empty; other-
wise intf abs deadlinek(t) is infinite.

B. Static Interface

The static interface of a componentCOMPk is variables
representingτk′ = { τk

1 ′, τk
1 ′, . . ., τk

nk
′ }. For each task in

τk′, there is also a counter; that is taskτk
i ′ has the counter

counterki ′.

C. Dynamic Interface

The dynamic interface of a componentCOMPk

is variables representingexist active tasksk(t) and
intf abs deadlinek(t).

D. Run-time behavior

At run-time, the global scheduler, assigns the proces-
sor to COMPk at time t if for every other compo-
nent, COMPq, it holds that intf abs deadlinek(t) ≤

intf abs deadlineq(t). In each componentCOMPk, at time
t, the local scheduler is EDF meaning that the task with
smallest intf abs deadlinek

i (t) is selected for execution
from active tasksk(t). Note that the interface deadline is
used by the global scheduler but the interface deadline is
not used by the local scheduler.

E. Schedulability Analysis

A schedulability test is performed for the global scheduler.
This schedulability test is based on the static interface of
all components, that is,τ1′, τ2′, τ3′, . . . τK ′. A local
schedulability test is not performed; it is not needed.

IV. W IDE INTERFACES

Recall that for each componentCOMPk, we represent
STATIC INTERFACEk as a task setτk′ = { τk

1 ′, τk
2 ′,

. . . , τk
nk′

′ }. In this section, we define this as:

T k
i ′ = T k

i

Dk
i ′ = Dk

i

Ck
i ′ = Ck

i

counterki ′ = 1 (5)

Figure 4. A small example from Figure 1. Interfaces (pseudo-medium-wide) are shown. Arrows indicate the mapping performed by the functionintf task.

that is, the task set in the interface of a component is
the same as the tasks in the component. We also define
intf task(τk

i) = τk
i ′. Figure 3 illustrates this based on the

example in Figure 1. It can be seen that this interface mimics
the way tasks would be scheduled if all tasks were scheduled
directly on the processor (that is no components and no
global scheduler). Therefore, this approach has competitive
ratio equal to one (R=1). But unfortunately, the interface
requires an amount of storage that grows linearly with the
number of tasks in the component and therefore it is a wide
interface. The next section will show how we can adapt this
idea to make it a medium-wide interface.

V. M EDIUM-WIDE INTERFACES

We can observe that the dynamic interface described in
Section 3C is narrow so there is no need to reduce the
size of that. We are however interested in keeping a small
static interface and this is where the interface stated by (5)
is insufficient. Therefore, we are interested in reducing the
number of tasks inτk′. We will use three ideas:

I1. If the interface as specified by (5) is used and then
the parametersT k

i ′ andDk
i ′ are reduced andCk

i ′
are increased and if the condition of the global
schedulability test is true after the change ofT k

i ′,

Dk
i ′, Ck

i ′ then we can still be sure that all deadlines
of tasks in components are met.

I2. Consider two tasksτk
u andτk

v in the same compo-
nentk but the tasks may have different characteris-
tics (T ,D,C). If the corresponding interface tasks
of these two tasks have the same characteristics
then we can let both tasksτk

u andτk
v be associated

to the same interface task. It does not impact the
run-time behavior.

I3. If an interface has no task in a component associ-
ated to it then this interface task can be removed.
It does not impact the run-time behavior.

Figure 4 shows how to use these ideas to create an
interface for the example in Figure 1. Figure 5 illustrates
Algorithm 1, which shows the algorithm we will use for
generating static interfaces. Idea I1 is used on lines 2-3 in
Algorithm 1 in Figure 5. Idea I2 is used on lines 4-8. Idea I3
is used on line 9. Note that line 2 which sets the parameters
of the task in the interface creates a constrained-deadline
sporadic task; that is, it is still ensured that for a task in the
interface, it holds thatD for this task does not exceedT for
this task. Given Algorithm 1, we will now discuss (i) the
storage needed by the interface, (ii) whether it guarantees

Figure 5. Algorithm for generating pseudo-medium-wide interfaces.

that deadlines and met and (iii) its competitive ratio.

A. Storage

Let TMAXk be defined as

TMAXk = max
τk

i
∈τk

T k
i

DMAXk and CMAXk are defined analogously. Let
TMAXk′ be defined as:

TMAXk′ = max
τk

i
∈τk

T k
i ′

DMAXk′ andCMAXk′ are defined analogously. Then the
number of tasks in the static interface of componentk is at
most:

((log2 TMAXk′) + 1) ·

((log2 DMAXk′) + 1) ·

((log2 CMAXk′) + 1)

We know (from line 2 in Algorithm 1) that the the primed
and unprimed values ofT andD differ by at most a factor
of two. We also know that the primedC is larger than the
non-primedC. Therefore, we have:

((log2 TMAXk) + 2) ·

((log2 DMAXk) + 2) ·

((log2 CMAXk) + 1) (6)

Let nk denote the number of tasks in componentk.
Clearly, the count variable of a task in the interface cannot
exceednk. Also, storing a value which is at mostnk requires
at most ((log2 nk)+1) bits. Therefore, the amount of storage
needed for the interface of componentk is at most:

((log2 nk) + 1) ·

((log2 TMAXk) + 2) ·

((log2 DMAXk) + 2) ·

((log2 CMAXk) + 1) (7)

B. Meeting deadlines

Theorem 1. Consider a system according to the model as
described in Section 1 and the interfaces are as described
in Section 3 and where for each componentCOMPk, τk′ is
computed using Algorithm 1. Then, if it holds for allL > 0
that

P

∀COMPk∈COMP

P

τk
j

′∈τk ′
max(⌊

L−Dk
j
′

T k
j

′
⌋,0)·Ck

j ′·countk
j ′≤L

then all deadlines of are met.

Proof: Follows from the fact that line 2 in Algorithm 1
associates for each task in the component a task in the
interface with higher demand-bound-function [3].

C. Competitive ratio

Lemma 1. Consider a system according to the model as
described in Section 1 and the interfaces are as described
in Section 3 and where for each componentCOMPk, τk′ is
computed using Algorithm 1. Then, if it holds for allL > 0
that

P

∀COMPk∈COMP

P

τk
j
∈τk max(⌊

L−Dk
j

T k
j

⌋,0)·Ck
j ≤L (8)

then it holds that for allL > 0 that

P

∀COMPk∈COMP

P

τk
j

′∈τk ′
max(⌊

L−Dk
j
′

T k
j

′
⌋,0)·Ck

j
′·countk

j
′

8 ≤L (9)

Proof: Follows from the fact that line 2 in Algorithm
1 causes the demand-bound-function [3] of a task in a the
interface of a component to be at most eight times as high
as the sum of the tasks that associates to this task in the
component.

Theorem 2. Consider a system according to the model as
described in Section 1 and the interfaces are as described
in Section 3 and where for each componentCOMPk, τk′ is
computed using Algorithm 1. This interface generation has
competitive ratio at most eight.

Proof: Follows from Lemma 1.

VI. POLICING

Policing can either be performed by the local scheduler
inside each component or by the global scheduler.

Policing can be performed inside a component. For exam-
ple, the run-time scheduling algorithm inside the component
can easily check that jobs are not released more frequently
than specified byT or that jobs do not execute for longer
than as specified byC.

Policing by the global scheduler has the advantage that a
systems integrator can allow non-trusted components to be
added to a system; if this component would violate its spec-
ified behavior then the policing in the global scheduler will
ensure that this does not jeopardize the timing requirements
of the other components. Policing tasks based on checking
their demand-bound function is currently an open question
[8]. If this would be solved then it can be used for the
solutions presented in this paper.

VII. CONCLUSION

We discussed how to specify interfaces of components
comprising constrained-deadline sporadic tasks. We saw that
a narrow interface based on bandwidth offers a competitive
ratio infinity. A wide interface can achieve a competitive ra-
tio equal to one but this defeats the purpose of compositional
design. An interesting ”sweet-spot” is the medium-wide
interfaces. We designed a pseudo-medium-wide interface
and saw that it is possible to achieve a finite competitive

ratio (eight) and still retain the advantages of compositional
scheduling theory.

We left the following three important questions open:

Q1. Can a competitive ratio lower than eight be
achieved with pseudo-medium-wide interface?

Q2. Can a medium-wide interface (that is, not a
pseudo-medium-wide interface) be designed with
a competitive ratio that is finite?

Q3. How should policing be performed on the global
scheduling level when this approach is used?

ACKNOWLEDGMENT

This work was partially funded by the Portuguese Science
and Technology Foundation (Fundação para a Ciência e a
Tecnologia - FCT) and the European Commission through
grant ArtistDesign ICT-NoE- 214373.

REFERENCES

[1] C. L. Liu and J. W. Layland, ”Scheduling Algorithms for Mul-
tiprogramming in a Hard-Real-Time Environment”, Journal of
the ACM, vol. 20, pp. 46 - 61, 1973.

[2] I. Shin and I. Lee, ”Periodic resource model for compositional
real-time guarantees”, In Proc.of Proceedings of IEEE Real-
Time Systems Symposium, 2003.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier, ”Scheduling Hard-
Real-Time Sporadic Tasks on One Processor”, In Proc.of IEEE
Real-Time Systems Symposium, pp. 182-190, 1990.

[4] B. Andersson, ”Synthetic utilization in online aperiodic
scheduling”, In Proc.of IEEE Real-Time Systems Symposium,
Work-in-Progress Session, 2003.

[5] I. Shin and I. Lee, ”Compositional Real-Time Scheduling
Framework”, In Proc.of IEEE Real-Time Systems Symposium,
pp. 57-67, 2004.

[6] A. Mok, X. Feng, and D. Chen, ”Resource partition for real-
time systems”, In Proc. of IEEE Real-Time Technology and
Applications Symposium, 2001

[7] A. Easwaran, M. Anand, and I. Lee, ”Compositional Analysis
Framework using EDP Resource Models”. In Proc.of IEEE
Real-Time Systems Symposium (RTSS 2007), 2007.

[8] S. K. Baruah, ”Component-based design of hard-real-time sys-
tems on multiprocessor platforms: issues and ideas”. In Proc.of
1st Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (Co-located with RTSS), 2008.

