View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repositério Cientifico do Instituto Politécnico do Porto

I

IPP HURRAY!

\ www.hurrav.pt I
—

Technical Report

A Pseudo-Medium-Wide 8-Competitive
Interface for Two-Level Compositional
Real-Time Scheduling of Constrained-
Deadline Sporadic Tasks on a Uniprocessor

Bjorn Andersson

HURRAY-TR-091103
Version: 0
Date: 11-01-2009

https://core.ac.uk/display/47138817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-091103 A Pseudo-Medium-Wide 8-Competitive Interface for Two-Level Compositior

A Pseudo-Medium-Wide 8-Competitive Interface for Two-Level Compositional
Real-Time Scheduling of Constrained-Deadline Sporadic Tasks on a
Uniprocessor

Bjorn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Compositional real-time scheduling clearly requires that "normal” real-time scheduling challenges are addressed but
challenges intrinsic to compositionality must be addressed as well, in particular: (i) how should interfaces be described?
and (ii) how should numerical values be assigned to parameters constituting the interfaces? The real-time systems
community has traditionally used narrow interfaces for describing a component (for example, a utilization/bandwidth-
like metric and the distribution of this bandwidth in time). In this paper, we introduce the concept of competitive ratio
of an interface and show that typical narrow interfaces cause poor performance for scheduling constrained-deadline
sporadictasks (competitive ratio is infinite). Therefore, we explore more expressive interfaces; in particular a class
called medium-wide interfaces. For this class, we propose an interface type and show how the parameters of the
interface should be selected. We also prove that this interface is 8-competitive.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

A Pseudo-Medium-Wide 8-Competitive Interface for Two-Lewel Compositional
Real-Time Scheduling of Constrained-Deadline Sporadic T&ks on a Uniprocessor

Bjorn Andersson
CISTER Research unit
Polytechnic Institute of Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract—Compositional real-time scheduling clearly re-
quires that "normal” real-time scheduling challenges are al-
dressed but challenges intrinsic to compositionality mustbe
addressed as well, in particular: (i) how should interfacesbe
described? and (ii) how should numerical values be assigned
to parameters constituting the interfaces? The real-time gs-
tems community has traditionally used narrow interfaces fa
describing a component (for example, a utilization/bandwdth-
like metric and the distribution of this bandwidth in time).

In this paper, we introduce the concept of competitive ratio
of an interface and show that typical narrow interfaces caus
poor performance for scheduling constrained-deadline spadic
tasks (competitive ratio is infinite). Therefore, we exploe more
expressive interfaces; in particular a class called mediurwide
interfaces. For this class, we propose an interface type and
show how the parameters of the interface should be selected.
We also prove that this interface is 8-competitive.

I. INTRODUCTION

Real-time software is increasing in complexity, both be-

cause the size (number of lines of code; number of function
points/use cases) is increasing but also because the seftwa

is developed by many different individuals, potentially in
different teams and in different organizations or compsanie
Compositional theories address this complexity by sulodivi

ing software into components. A component can be highly
complex but a component is described with an interface,

typically of lower complexity. This interface should havest

property that a system integrator should be able to compose
an entire system out of components by only knowing the

interfaces of the components.
Compositional theories are of interest both for (i) ensgrin
that components deliver correct results and (ii) ensuriag t

components deliver results at the correct time. This paper

deals only with the latter and in order to focus the discussio
we will assume that:

Al.
A2.

A3.

The system has a single processor;

The software is comprised of a s€iOMP=
{COMP!, COMP?, ..., COMP¥X} of K compo-
nents;

A component COMPX¥ is comprised of a
set TF={rf, 75, 7§, ..., 7%} of n* constrained-
deadline sporadic tasks (note that in this way, we
restrict our attention to a 2-level hierarchy);

A4.

A5.

AG.

A7.

A8.
A9.

A10.

All.

Al2.
Al13.

A constrained-deadline sporadic task is char-
acterized by the parametefd, C*, DF with the
interpretation that-* releases a (possibly infinite)
sequence of jobs with at lea%t* time units be-
tween successive jobs of task and each job of

7F requiresC¥ units of execution to be performed
at leastD¥ time units after the release of the job.
It is assumed that the release times of jobs cannot
be controlled by the scheduling algorithm;

A task which executes fod. time units on a
processor of speed completesL - S units of
execution;

If the speed of a processor is not explicitly speci-
fied, it is assumed that the speed is one;

The parameter§’*, C¥, D¥ are integers (we use
the assumption of integer parameters only because
it simplifies our discussion about the amount of
storage needed for task sets and interfaces); arrivals
of tasks are allowed to occur at non-integer times
and preemptions are allowed to occur at non-
integer times as well;

A task needs no other resource than a processor;
A component COMPX¥ has a static interface
STATIC_INTERFACEX and a dynamic interface
DYNAMIC_INTERFACEX. The static interface

is comprised of variables that remain constant
over time (for example, pre-specified bandwidth)
whereas the dynamic interface is comprised of
variables that may change with time (for example,
a variable indicating whether there is any task in
the component with unfinished execution at current
time);

There is a global scheduléiLOBAL_SCHED
which decides at run-time, at every instant, which
component is assigned the processor. In every
componentCOMP¥, there is a local scheduler
LOCAL_SCHEDX;

The global scheduler takes decisions based on
both the static and the dynamic interface of all
components;

The global scheduler is EDF [1];

The local scheduler dfOMP* executes a task in

Local schedul
Local scheduler,
EDF

Al4.

Al5.

Al6.

Al7.

Al8.

Figure 1. A small example. (The interfaces are not shown).

7% at timet if the global scheduler has assigned "narrowness”. The former is related to R1 and the latter is
the processor t&¢ OMPX at timet; related to R2.

The local scheduler in a component takes decisions We say that an interface generation algorithvn has
based only on the properties of the tasks in thecompetitive ratioR if R is the smallest number such that
component; it holds that for every constrained-deadline sporadic task
The local scheduler in each component is EDF [1];set partitioned into components, that if this task set can
There is a schedulability test for the global sched-he scheduled on a single processor with EDF directly on
uler and a schedulability test for each local schedthe processor (that is, without components and without a
uler; these schedulability tests are used before runglobal scheduler) then this task set can be guaranteed tb mee
time; its deadlines as well with interface generation algoritdm
The schedulability test for the global schedulerprovided that the processor B times as fast. Clearly, a
does not know tasks in each component and it doeow competitive ratio is desired?=1 is the best one can get.
not know the dynamic interface of components. It R=cc suggests that we pay a high price for compositionality.
only knows the static interface of each component; |, order to characterize the "narrowness” of the interface,
The schedulability test for the local scheduler of e consider the amount of storage needed to describe the
COMP* only knows the tasks in™". interface as compared to the amount of storage needed to

Figure 1 shows an example of such a system. describe the tasks in the component. Figure 2 illustraties th
We address the problem of deciding which parameters We say that an interface of a component is:

should be used to represent the interfaces and how to select
parameters for them and how the dynamic interface should
be used at run-time. We are interested in doing so and

fulfilling

narrow if the amount of storage needed by the
dynamic and static interface of the component is
independent of the amount of storage needed to

the following two (often conflicting) requiremes: .
9 (9) req represent the tasks in the component;

R1. The loss in schedulability should be small; _ wide if the amount of storage needed by the
R2. The interface of a component should reveal as little dynamic and static interface of the component is
as possible about the tasks in the component. proportional to the amount of storage needed to

For the purpose of our discussion, we need to quantify represent the tasks in the component;
how well an interface fulfills the two requirements above. - medium-wide if the amount of storage needed by

Therefore, we will define the conceptempetitive raticand the dynamic and static interface of the component

- --- Wide Interface
Jat ' Medium-Wide Interface
4T ——Narrow Interface

Amount of storage neededfor describing the
interface of the component

Amount of storage needed for describing the tasks in the component

Figure 2. The different "narrowness” of interfaces.

is at most a polynomial of the logarithm of the of compositionality for reducing the complexity of systems
amount of storage needed to represent the tasks imtegration as one does with narrower interfaces.
the component or less. Therefore, in this paper, we advocate that medium-narrow

Within the class of medium-wide, we make a SpeCia|interfaces should be investigated further. In this spisig

distinction: We say that an interfacepseudo-medium-wide Propose an algorithm for generating pseudo-medium-wide
if the interface is medium-wide for the case that D, C interfaces. We show that this offers a competitive ratio of

parameters are upper bounded. eight (R=8). Consequently, this offers a reasonable trade-

We will say that the system is narrow if all components©ff: it Offérs the advantages of compositionality in ternfs o
have narrow interfaces. We will say that the system iSS|mpI|fy|ng_ system desgn_ but it does so without sacrificing
medium-wide if all components have narrow or medium- o0 much in terms of efficiently managing the resource (the

wide interfaces. Otherwise the system is wide. ClearlyProcesson. _ _ _
narrow interfaces are preferable compared to medium-wide '€ remainder of this paper is organized as follows. We

interfaces and medium-wide interfaces are preferred cominitially (in Sections 2-5) ignore policing in order to only
pared to wide interfaces because the former takes greatfe‘?cus on compositionality. Section 2 discusses narrowr-inte
advantage of compositionality than the latter. faces. Section 3 discusses concepts that we use for ingerfac

The real-time systems community has addressed the protTJhat are not narrow. Sectio_n _4 discussgs wide interfag:eg. It
lem of characterizing interfaces and selecting parametergr‘c"ser_“S a new resul_t bu_t Itis n_oj[particularly usefu_l n 1ts
extensively during recently years. A common approach is tdWn _”ght; its value lies in P“’V"?“”g an unde_rstand|_ng of
represent the interface of a component with two parameter@ew mtgrface_conceptg Wh'c_h W!” be used (in Sectlon 5)
(a bandwidth-like metric and figure of the granularity of the When discussing medium-wide interfaces. Section 6 will
distribution of the bandwidth in time). This approach hasthen d|s_cuss how policing can be achieved. Section 7 gives
the advantage that it is often easy to apply and it is eas\?onclusmns.
for designers to comprehend (it is narrow). Unfortunately,
we will see (in Section 2) that this approach can lead to an
infinite competitive ratio 2=co). Narrow interfaces have been well-studied. Typically they

We will discuss wide interfaces (in Section 3) and see thatlescribe the interface of a component with a (i) capacity
this allows us to attain a competitive ratio of onB=1). metric (bandwidth or pre-specified utilization type of niejr
But this is undesired as it does not take as much advantagend (ii) a metric specifying how this capacity is distribdite

II. NARROW INTERFACES

in time. The periodic resource model, also calldd,&)
model [2], is one of them and it is frequently used. It ol @2 oK
describes each component with a server peiibdénd a am ottt e = (4)
server budge®. A designer must therefore calculdieand
O for a component.

Consider a system comprising three compon€i@3 [P,
COMP?, COMP?3 and each component has a single

and consequently, the competitive ratio is infinif&=o).

We have now discussed thH,) model and that it gives
us an infinite competitive ratio. It should be noted however
that one can show, with similar arguments, that other models

1—2—r13—
talsl<. ;I'_he?)s_e tasks arle_cha;aict'erzz_ad Cl. Ci=Cy=1 and bounded-delay model [5], [6] and the EDP model [7], suffer
T\ =Tt=T7=c0 and D;=1;D5=2;D7=3. It is easy to show P o .
. . from the same drawback: an infinite competitive ratio.
[3] that this task set can be scheduled to meet deadlines by, . . . :
It is therefore interesting to explore other types of inter-

EDF [1] if components and a global scheduling algorithms : . .
were not used. But with theTl(®) model, we have to faces. The next section (Section 3) introduces some useful

assign a server peridd and a budge® to each component concepts. These concepts will be used (in Section 4) which

and onlyIT and © are allowed to be used by the global shows a simple idea on how to obtain much better compet-

- : . itive ratio by using wide interfaces. We will adapt this idea
schedulability test. It is easy to see that in order for tasks Y 9 . ; pir .
. ..1n the section thereafter (Section 5). This adaptation gyive
to be guaranteed to meet deadlines by a local schedulabilit . -))
i s lower performance (higher competitive ratio) but thia ca

test, we have to choose:

be achieved with medium-wide interfaces.

ok ok 1 1. GENERAL CONCEPTS WE USE FORNTERFACES
Vke{1,2,3}: = > =L = = (1) N
4 I = DF & THAT ARE NOT NARROW

Note that the superscripts of the variables in (1) refer to '][he conlcept_s Olf W'dhe mterfa%e and medmm-w{;dea '?'
the index of the component. It follows from (1) that: teriace only stipulate how much storage Is needed for
representing the interface; they do not stipulate exachgtw

ol o o 1 1 11 the interfaces look like. Therefore, in this section, wecdis

=ttt 2l o= — (2) some concepts we will use later in the paper for discussing
11 11 11 23 6 medium-wide interfaces and wide interfaces.
And consequently, no global schedulability test can ensure The main idea is to represent the interface of a component
that each component meets its deadlines. k with a task setr*. The parameters for this task set

In this particular example, it can be seen that it isgre derived fromr*, the task set inside the componént
necessary to multiply the processor speed by at 1886 Figyre 3 shows this.

in order to meet deadlines with a compositional framework

using the [1,0) model. This penalty is caused, not because®- Concepts

we made a particularly poor choice in the selection of the About a task, we define the following. We define

parameters assigned 6 and © but the penalty is caused active['(t) as being true if taskr} is active at timet;

by the limitations of the I{,©) model. otherwise it is false. We say that a task is active if it
We can generalize this reasoning as follows. Letis either running or ready. We defin@rivalk(t) as the

us consider K components and there is one taskmaximum time when task’ arrives such that this arrival

in each component. The tasks are characterizeme is no greater tham. We defineabs_deadlineX(t) as

as Cl=C}=..=CK=1 and T{=T?=..=Tf=0o and arrival¥(t) + DF.

Di=1;D3=2;D3=3;D{=4;..;D¥=K. This task set can About a component, we define the following. We define

be scheduled without components and without a globahctive_tasksk(t) as { 7F : (7F € 7F) A activek(t) }.

3

scheduler. With similar reasoning as in the previousWe also definexist_active_tasks*(t) as a boolean variable

example, we obtain that: being true ifactive_tasks*(t) is non-empty; false otherwise.
For each componen€OMP¥, we define a task set;
ol o2 oK 1 1 1 = { 71, ..., 7k 1} with nys tasks. These tasks

mimt -ttty t -t ¢ (3) are constrained-deadline sporadic tasks and hence they are
described withl",C,D parameters. This primed task set will
be used as an interface and the non-primed task set is not
used as an interface; they are the real tasks in the component

We defineintf_task(7¥) as a function mapping a tas¥

1This observation is an adaptation of the example in [4] whichased € 7% to a task inr*/ ("intf” means "interface”). We define
e s e e s IL_as.dealne () asarsvalf (1) + Dy, whereq is the

g ' index of the taskintf_task(7*). Intuitively, the function

(from works by Nicole Oresme) that infinite harmonic serigs @finite _ !
(divergent). For larges, the right-hand side of (3) is approximately . intf_task performs a mapping from a task in the component

It is known that for the summation on the right-hand side
of (3), it holds that ad< approaches infinity, the summation
approaches infini Therefore we have that:

Local schcdulcr,".l
! EDF \

Figure 3. A small example from Figure 1. Interfaces (widey ahown. Arrows indicate the mapping performed by the famciitf_task.

to a task in the interface. Also, intuitively, the function intf_abs_deadlined(t). In each componer@OMPX, at time

intf_abs_deadlineX(t) gives us the absolute deadline of task ¢, the local scheduler is EDF meaning that the task with

7F but instead of calculating the absolute deadline of taslsmallest intf_abs_deadlinek(t) is selected for execution

7F using the relative deadline off, we use the relative from active_tasks*(t). Note that the interface deadline is

deadline of the task to which® maps to in the interface. used by the global scheduler but the interface deadline is
For a component, we definmtf_abs_deadline*(t) as not used by the local scheduler.

the minimum of all intf_task(r*) for all tasks 7/ in

active_tasks®(t) if active_tasks¥(t) is non-empty; other- E. Schedulability Analysis
wise intf_abs_deadline®(t) is infinite. A schedulability test is performed for the global scheduler
B. Static Interface This schedulability test is based on the static interface of

i1l 2 3 K
The static interface of a componefOMPX is variables &l components, that isg™/, 7%/, 7°/, ... 7%/. A local

representing™*/ = { 77, 7F1, ..., 7£ 1 }. For each task in schedulability test is not performed; it is not needed.
%1, there is also a counter; that is tasf has the counter IV. WIDE INTEREACES
counter¥/.

) Recall that for each componeftOMPX, we represent

C. Dynamic Interface STATIC_INTERFACEX as a task set*s = { f7, ks,
The dynamic interface of a componen€OMP* 7k ;1 |n this section, we define this as:

is variables representingexist_active_tasks®(t) and *

intf_abs_deadlineX(t).

Ky — Tk
D. Run-time behavior T =1;

ky— pk

At run-time, the global scheduler, assigns the proces- D"k/_D;c

sor to COMPE at time ¢ if for every other compo- Cir=_¢j
nent, COMPY, it holds that intf_abs_deadline*(t) < counterf/ = 1 (5)

\Local schedulé '
e E;); . fi:r’ Local scheduler,

[
v

-. EDF |

Figure 4. A small example from Figure 1. Interfaces (pseodmium-wide) are shown. Arrows indicate the mapping pentat by the functionntf_task.

that is, the task set in the interface of a component is DF1, CFrthen we can still be sure that all deadlines
the same as the tasks in the component. We also define of tasks in components are met.

intf_task(rF) = 7Fs. Figure 3 illustrates this based on the 12. Consider two tasks” andr* in the same compo-
example in Figure 1. It can be seen that this interface mimics nentk but the tasks may have different characteris-
the way tasks would be scheduled if all tasks were scheduled tics (I',D,C). If the corresponding interface tasks
directly on the processor (that is no components and no of these two tasks have the same characteristics
global scheduler). Therefore, this approach has comypetiti then we can let both taskg andr” be associated
ratio equal to one f=1). But unfortunately, the interface to the same interface task. It does not impact the
requires an amount of storage that grows linearly with the run-time behavior.

number of tasks in the component and therefore it is a wide 13. If an interface has no task in a component associ-
interface. The next section will show how we can adapt this ated to it then this interface task can be removed.
idea to make it a medium-wide interface. It does not impact the run-time behavior.

V. MEDIUM-WIDE INTERFACES Figure 4 shows how to use these ideas to create an
We can observe that the dynamic interface described imterface for the example in Figure 1. Figure 5 illustrates
Section 3C is narrow so there is no need to reduce th@lgorithm 1, which shows the algorithm we will use for
size of that. We are however interested in keeping a smaljenerating static interfaces. Idea 11 is used on lines 2-3 in
static interface and this is where the interface stated By (SAlgorithm 1 in Figure 5. Idea 12 is used on lines 4-8. Idea 13
is insufficient. Therefore, we are interested in reducing th is used on line 9. Note that line 2 which sets the parameters
number of tasks in*s. We will use three ideas: of the task in the interface creates a constrained-deadline
I1. If the interface as specified by (5) is used and thersporadic task; that is, it is still ensured that for a taskhe t
the parameterd’*s and DY/ are reduced and’*/ interface, it holds thaD for this task does not exceddfor
are increased and if the condition of the globalthis task. Given Algorithm 1, we will now discuss (i) the
schedulability test is true after the changeTdf, storage needed by the interface, (ii) whether it guarantees

Algorithm 1.
Output: for each component, a static interface is generated.

1. for each component COMPONENT" do
2. create STATIC INTERFACFF as

& o]

TF=2
]_;fc': 2'.1981 o]
(_"z_k _ 3[10&03‘]
comrff" =1
3. and set intf task(Z}-7""
4. while there is a pair of tasks (75, 7") and (7", /") such that (7 in 7) and (7% in 7) and (z/ in) and (5" in &)
and (intf task(z)=5F) and (intf task(z)=%") and (TF=TF) and (D,/=D,") and (C/=C/")) and
((count,F=1) or (count,F>1)) do
5. count,)” = counter,)” + count,”’
6. countf =0
7. intf task(z}y=7)"
8. end while
9. remove all tasks in 7" for which count=0
10. end for
Figure 5. Algorithm for generating pseudo-medium-wideeifdces.
that deadlines and met and (iii) its competitive ratio. Let n* denote the number of tasks in componént
A St Clearly, the count variable of a task in the interface cannot
. Storage

exceedh*. Also, storing a value which is at most requires

Let TMAX® be defined as at most ({og, n*)+1) bits. Therefore, the amount of storage

TMAXE — max Tk needed for the interface of componénis at most:
Therk !
DMAXY and CMAXk are defined analogously. Let .
TMAXY/ be defined as: ((logyn™) +1) -
k .
TMAXY = max T ((log, TMAX™) +2)
rherk ((logy DMAX*) 4 2) -
DMAXY and CMAX*/ are defined analogously. Then the ((logy CMAX™) 4 1) (7)
number of tasks in the static interface of comporeint at
most: B. Meeting deadlines
Theorem 1. Consider a system according to the model as
((logy TMAX*1) +1) - described in Section 1 and the interfaces are as described
((logy DMAX™ 1) + 1) - in Section 3 and where for each compon€QMP¥, 7%/ is
((logy CMAX* 1) +1) ;:t:);?puted using Algorithm 1. Then, if it holds for &ll> 0

We know (from line 2 in Algorithm 1) that the the primed
and unprimed values df' and D differ by at most a factor
. 4 _pk,
of two. We also know that the prufne@ is larger than the v . O ZT;,eTk,maX(LLTff 1,0)-CFrcount <L
non-primedC. Therefore, we have: J

then all deadlines of are met.

k .
((logy TMAXk) +2) Proof: Follows from the fact that line 2 in Algorithm 1
((logy DMAXT) +2) - associates for each task in the component a task in the
((logy CMAX*) 4 1) (6) interface with higher demand-bound-function [3].]

C. Competitive ratio ratio (eight) and still retain the advantages of composilo

Lemma 1. Consider a system according to the model asScheduling theory. _ _
described in Section 1 and the interfaces are as described e left the following three important questions open:

in Section 3 and where for each compon€@MPX, 7/ is Q1. Can a competitive ratio lower than eight be
computed using Algorithm 1. Then, if it holds for &ll> 0 achieved with pseudo-medium-wide interface?
that Q2. Can a medium-wide interface (that is, not a
pseudo-medium-wide interface) be designed with
LDk . a competitive ratio that is finite?
J ..
2ovoompkecomp 2k erk MaX(L—pr+],0)-C7<L (8) Q3. How should policing be performed on the global
then it holds that for alll, > 0 that scheduling level when this approach is used?
ACKNOWLEDGMENT
Sy coMPkecOMP Sak ek, max(L ;k;’J,o),c]k,,coW;w This work was partially funded by the Portuguese Science
A ;

8 ! <L (9) and Technology Foundation (Fundagao para a Ciéncia e a
Proof: Follows from the fact that line 2 in Algorithm Tecnologia - FCT) and the European Commission through

1 causes the demand-bound-function [3] of a task in a thgrant ArtistDesign ICT-NoE- 214373.
interface of a component to be at most eight times as high REFERENCES
as the sum of the tasks that associates to this task in t

component. - l‘ﬁ] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Nfu

tiprogramming in a Hard-Real-Time Environment”, Journél o
Theorem 2. Consider a system according to the model as ~ the ACM, vol. 20, pp. 46 - 61, 1973.

.descrlb.ed in Section 1 and the interfaces are ?(s despnbe] 1. Shin and I. Lee, "Periodic resource model for compiosial

in Section 3 and where for each compon€@MP*, 7,/ is real-time guarantees”, In Proc.of Proceedings of IEEE Real
computed using Algorithm 1. This interface generation has Time Systems Symposium, 2003.

competitive ratio at most eight.) .
[3] S. K. Baruah, A. K. Mok, and L. E. Rosier, "Scheduling Hard
Proof: Follows from Lemma 1. [| Real-Time Sporadic Tasks on One Processor”, In Proc.of IEEE

Real-Time Systems Symposium, pp. 182-190, 1990.
VI. POLICING

Policing can either be performed by the local schedulef4] B- Andersson, "Synthetic utilization in online aperiod
inside each component or by the alobal scheduler sched.ullng", In Proc.of .IEEE Real-Time Systems Symposium,
- P y) 9 : Work-in-Progress Session, 2003.
Policing can be performed inside a component. For exam-
ple, the run-time scheduling algorithm inside the compdonen[5] I. Shin and |. Lee, "Compositional Real-Time Scheduling
can easily check that jobs are not released more frequently Framework”, In Proc.of IEEE Real-Time Systems Symposium,
than specified by’ or that jobs do not execute for longer pp. 57-67, 2004.

than as specified by'. [6] A. Mok, X. Feng, and D. Chen, "Resource partition for real
Policing by the global scheduler has the advantage that a" time systems”, In Proc. of IEEE Real-Time Technology and

systems integrator can allow non-trusted components to be Applications Symposium, 2001

added to a system; if this component would violate its spec- - .

ified behavior then the policing in the global scheduler will [71 A- Easwaran, M. Anand, and I. Lee, "Compositional Anagys

ensure that this does not jeopardize the timing requiresnent Framework using EDP Resource Models™. In Proc.of IEEE
J p_ . g req . Real-Time Systems Symposium (RTSS 2007), 2007.

of the other components. Policing tasks based on checking

their demand-bound function is currently an open questiofg] S. K. Baruah, "Component-based design of hard-reaé tays-

[8]. If this would be solved then it can be used for the tems on multiprocessor platforms: issues and ideas”. le.Bfo
solutions presented in this paper. 1st Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (Co-located with RTSS), 2008.

VII. CONCLUSION

We discussed how to specify interfaces of components
comprising constrained-deadline sporadic tasks. We satv th
a narrow interface based on bandwidth offers a competitive
ratio infinity. A wide interface can achieve a competitive ra
tio equal to one but this defeats the purpose of compositiona
design. An interesting "sweet-spot” is the medium-wide
interfaces. We designed a pseudo-medium-wide interface
and saw that it is possible to achieve a finite competitive

