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Abstract

This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite
systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for
the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures.
Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to
obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters.
Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a
study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.
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1. Introduction

Uncertainty and sensitivity analysis are important parts
of studying complex systems as composite laminated
structures. Specifically, uncertainty analysis refers to the
determination of the uncertainty in response results due to
uncertainties in input parameters, and sensitivity analysis
refers to the evaluation of the contributions of individual
uncertainties in input parameters to the uncertainties in
response results. The uncertainty under consideration can
be classified as epistemic or aleatory. The epistemic
uncertainty is often referred using alternative designations
including state of knowledge, subjective and reducible. The
epistemic uncertainty comes from a lack of knowledge of
the appropriate value to consider for a quantity that is
assumed to have a fixed value used in a particular analysis.
Epistemic uncertainty is generally taken to be distinct from
aleatory uncertainty under the conceptual and modeling
point of view. Aleatory uncertainty arises from inherent

randomness in the behavior of the system under study.
Designations as variability, stochastic and irreducible are
used for aleatory uncertainty. Several approaches to
uncertainty and sensitivity analysis have been developed,
including differential analysis, response surface methodol-
ogy, Monte Carlo analysis, and variance decomposition
procedures. Reviews of these methodologies are available
in bibliography [1-7].
A probabilistic structural integrity analysis is needed due
to deviations of the structural response of laminated
composite structures produced by existing uncertainties in
physical properties at the layer level. Nowadays the
definition of structural design criteria is based on ultimate
state theory rather than on service stress theory. The
application of such concepts to composite materials based
on reliability analysis creates new challenges to the
designer. A comprehensive review paper on this matter
previous to 2002 is presented by Frangopol and Maute [8].
Optimal design of composite structures under probabil-
istic constraints is a very interesting field due to uncertain-
ties associated with physical properties of fiber-reinforced
composites [9-12]. Manufacturing of composite materials
with fully specified profiles of materials is a complex
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process. Due to the large number of parameters involved,
dispersions in microstructure, local volume fraction, lack
of control quality, etc., the deviations may be inherent
under the constraints of current fabrication technology.
These fluctuations will reflect on the scattering of material
properties, structural stiffness and consequently on the
micro- and macro-mechanical behavior. Randomness of
external loads can often be expected as well and it must be
considered.

The problem of reliability-based design of laminated
composite structures can be formulated as an optimization
problem [8,9] or one can address the problem of alleviating
the effects of unavoidable parameter uncertainties. Oh and
Librescu [13] adopted this last strategy for free vibration of
composite cantilevers under uncertainties at layer thick-
ness, elastic constants and ply angle. The structural
tailoring technique was applied to design laminated
composite structures by searching the stacking sequence
that corresponds to the less sensitive performance proper-
ties relatively to uncertainties in the input parameters.

In the present work the adopted strategy is similar to
those proposed by Oh and Librescu [13] using different
input parameters and applying static loading on laminated
composite structures. Another objective of the proposed
methodology is to identify the most important input
parameters regarding the uncertainty propagation on
structural response. This way the large number of input
parameters involved in reliability analysis of laminated
composite structures may be reduced.

This paper studies structural responses of statically
loaded composite plate and shell structures with random-
ness in material properties. It is assumed that deviations of
random parameters are not large with respect to their mean
values. A first-order technique based on sensitivity analysis
is therefore adopted handling the random scattering in
multiple parameters system. A semi-analytical approach is
used to obtain mean values and variances of displacement
and the stress fields with known second-order statistics for
various system input variables. In particular, the study of
anisotropy influence on uncertainties propagation in angle-
ply composites is carried out based on the  proposed

approach.
2. Uncertainty analysis based on sensitivity

Sensitivity is a measure of the variation effect of a given

input parameter on a required response. Usually the
sensitivity is calculated as a first-order derivative of the
response with respect to an input parameter. However, for
certain nonlinear problems, higher order sensitivities are
required. Relative sensitivity is related with the importance
of the input parameter. The higher the relative sensitivity
is, the more important the input parameter in question.
Thus, one of the important aspects of sensitivity analysis is
to identify the most important input parameters.  Sensitiv-
ity analysis is also used for uncertainty analysis. The
ingredients of the uncertainty analysis based on sensitivity

methodology are the sensitivities and the covariance—var-
iance matrix of the input parameters. Once these elements
are available, uncertainty analysis based on sensitivity
methodology is the most effective, straightforward ap-
proach [14].

In this work the quantification of response uncertainties
of composite structures due to uncertainty in the properties
and loads of the structural model is implemented based on
linear statistical analysis. This methodology uses a Taylor’s
series expansion to obtain a linear relationship between the
response random variables—displacements and stresses,
and the random structural input parameters. The adjoint
variable method is used to obtain the sensitivity matrix.
This method is appropriated for composite structures due
to the large number of random input parameters. No
assumption is necessary concerning the form of the
probability density function of the random input para-
meters. Knowledge of mean and covariance matrix for the
random structural parameters plus structural response
equations is all that is required to obtain the mean and
covariance matrix of the response functions.

3. Propagation of uncertainties

In this work the calculated system response o is
comsiderad to be a realvalued function of » svstem
parameters denoted as x = (xy,...,%,). The true values of
these parameters are not known and so, only the neminal
values x"=(x9,... &) and their uncertainties dx =
(dxy,...,dxg) are available. Assuming the system para-
meters as random variables, the nominal values are taken
to be the expected values and the associated uncertainties
are given by the corresponding standard deviations.
Commonly, the relative uncertainties dx;/x) are symme-
trically distributed in the neighborhood of x” and they are
smaller than unity. The true parameter value is defined in
vector form as

.
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The response is related to the parameters using the
equation of the computational model written in close form
as
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In the above functional relationship ¢ is used in both
senses as random function and as its numerical realization.
The expansion in Taylor's series of functional (2) around
the nominal value x" = (af,. .. x0) considering only the
terms up to the sth order is the following:
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Different moments as mean, variance, skewness and
kurtosis of the random wvarnable oix,, ....x,}) can be
obtained from Eq. (4) considering that the system
parameters are random variables with a joint probability
density function @{x, ..., x,).

The use of nonlinear terms in (4) is impracticable for
large complex systems with many parameters. Then, the

linear expansion of the response gixy, ..., x,) i5 uwsed as
foll ows
a E'I:p
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being ¢ = @(x") and &; = (8¢ /02, the response sensi-
tivity to parameter x,. The mean value and the variance of
the response is obtained respectively from (3) as

El(p) = ¢", (6)
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var(g) = El(p - ¢°F) =3 Sivar(x,)

1=
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The last equation can be written in matrix form as
var(p) = SC.S", (8)

where the superseript “T"" denotes the transposition, C, is
the covariance matrix for parameters (x),....x,) with

components defined as

covixg, Xj) = Py, i #j,
'f'E:L‘.- =4 p5 = correlation coefficient (%)
var(x;) = a2, i=j
and the column vector 8 =(%,...,5,) has components
& = (Dep D) .

If the system parameters {x;,... x,) are uncorrelated then
Eq. (7) can be reduced to

n a

van(g) = ZSf var( x) = ZS‘fnf (10)
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The previous concepts can be extended to the case of m
response functions all of them depending on parameters
(%), ...,x,). Firstly, considering vector notation the m
responses can be presented as

q;'={-rp]l---l‘pm} {II}

and the corresponding equivalent equations to Eq. (3) are
the following first-order Taylor expansion of @ = (x):

@lx" + ix) = @ix") + dep
= oix") + Six, (12)

where S is a rectangular matrix of order m x<n with
components representing the sensitivity of the jth response
to the ith system parameter such as

(S); = B9,/0x;. (13)

The expectation E{g) of ¢ is obtained using the same
procedure adapted to Eq. (6):

Elg) = 9. (14)

Finally the covariance matrix Cg, for ¢ is obtained by a
similar procedure applied to Eq. (8) and this is

Co = FSx(Six)") = S Eoxax" )87
= &5 8T (15)

Equations for the propagarion of higher order momenis
become very complex and are avoided in practice. From
Eq. (15) for the propagation of uncertainties dependence of
the covariance matrix Cy relatively to the sensitivity matrix
5 is observed. The components of this matrix are evaluated
wsing the adjoint sensitivity analysis procedure.

4. The adjoint sensitivity analysis procedure

The objective of sensitivity analysis is to analyze the
behavior of the response of the system and to evaluate
the sensitivities of the system response to variations in the
system input parameters around their nominal values. The
methodology presented here is based on the adjoint
variable method.

In this work the linear behavior of structural
systems with the equilibrium eguation set established is



considered as
K(xju=F, (16)

where K is the stiffness matrix. n is the displacement vector
and F are the applied external loads.

In the adjoint variable method, an angmented Lagran-
gian is defined in terms of adjoint variable fields in order to
eliminate the implicit dervatives. Following the method
proposed by Arom and Cardoso [13], considering a given
functional o = @{x;,...,x,) and writing the response
equation of the system in the following form

Wi x) = Kixju—F (17)

the augmented functional can be written as

Liux, ) = plu,x) — ¢ ¥iu,x). (18)
The vector of adjoint vanables ¢ is assumed as Lagrange
multipliers selected to make stationary the functional L

relatively to the displacement vector w. This condition can
be formulated as

E|_L g, X) 0%, x)

- - _ . (19)
[l ] o ou

Considering the independence of F to the displacements
o and Eq. (17), the adjoint set of equations is obtained
K(x)d = P (20)

o

being the tangent stiffness matrix defined for the eguili-
brium solution
Wi, x) = Kixm—F =1. (21}

On the other hand taking into account that im an
equilibAium situation the functional (17) is stationary, it
proofs [135] that

dp 0L (22
dx  Ox
Differentiating (18) to varables x it is obtaiped
oL Ol x)  Oglwm, x)On
ox  ox o Ox
& E"'I:'iu,x} : ETiu,x}?u] (23)
X fm  Ox
that can be simplified using equality (1Y) yielding to
ﬁ‘_L_Elm-[‘u,:{]l TE"'-I'fu,x]n. (24)
ox ox X

Considering the independence of F to variables x and
using Eq. (17) it gives
dep 0L Oplm, x) TEIK{x}“
dx  ox  Ox ox

(23}

The adopted methodology for sensitivity analysis is
twofold:

First: Solve the adjoint set of Eq. (20);
Second: Get the sensitivities from Eq. (25).

4. Applications to composite structures

The previously described uncertainty analysis based on
sensitivity has been applied to composite structures. The
type of structure studied in this work considers a laminate
shell structure commonly used in composite materials
applications. The structural analysis is carried out using a
displacement formulation of the Finite Element Method.
The adopted element is the three-dimensional degenerated
shell element with material anisotropy and stacking
sequence of layers developed by Ahmad [16]. It is an
isoparametric element with eight nodes and five freedom
degrees per node based on the Mindlin shell theory. A
structural application to angle-ply composite laminates is
carried out using this approach.

4.1. Problem definition

The cylindrical shell laminate structure considered in this
work is shown in Fig. 1. Considering material and
geometric symmetries half the structure is taken. The half
structure is divided into four macro-elements grouping all
elements. There is ome laminate per macro-element.
Balanced 468 angle-ply laminates with five layers are
considered. Each laminate has the same properties namely
thickness, number of layers and stacking sequence of ply
angles and materials. Thickness continuity is imposed on
the macro-elements boundaries.

The cylindrical shell is hinged on linear sides and free on
curvilinear ones. A set of discrete vertical loads varying
from P, to P, is applied along the edge defined by the
symmetry plane of the structure.

The mean values of elastic and strength properties of the
ply materal uwsed in the laminate construction of the
composite structure are presented inm Table 1. The elastic
constants of orthotropic ply are the longitudinal elastic
modulus £, the transversal elastic modulus E. the in-
plane shear modulus &, 5, the out-of-plane shear modulus
(7 5 and & 5, the in-plane Poisson’s ratio v, 2 and the out-
of-plane Poisson’s ratios v 3 and vo5 The ply strength
properties are the longitudinal strength in tensile X and in
compression X', the transversal strength in tensile ¥ and in
compression ¥, and the shear strength 8. The ply material

Laminate
nr..

—r- 10.02m

I = P =

D

Fig. 1. Cylindrical shell and angle-ply composite laminates distribution
(ply angle y referred to x-axis).



Table 1

Mean values of mechanical properties of unidirectional composite layers

Elastic constants Values Mechanical strength Values
Elastic modulus (GPa) = 38.60 Longitudinal (MPa)

E, 8.27 Tensile X 1062

Compression X! 610

Shear modulus (GPa) Gy, 4,14 Transversal (MPa)

Gis 414 Tensile Y 31

Gas 4.14 Compression \4 118
Poisson’s coefficients N1z 0.26

nis 0.26 Shear (MPa) S 72

n23 0.26

i5 a composite system of epoxy resin reinforced by uni-
directional fibres of E Glass known as Scotchply 1002 with
specific weight p = 1.8 = 10° kg/m" [17].

The vector of input parameters considered as nonstatis-
tical correlated random variables of the structural system is
% having the following components: longitudinal Young's
modulus £, transversal modulus £, transversal tensile
strength ¥, and shear strength &, where the jth index
denotes the laminate number. These are the mechanical
properties with the most critical deviations on the laminate
strength randomness, according to the numerical simula-
tion performed by Antonio et al. [18]. Nevertheless, the
presented study can be extended to other random variables.
The number of physical properties considered as input
parameters in the present analysis is sixteen: £, , K, , ¥,
Sﬁj= I,....4.

5.2, System response functionals

The stress analysis is performed using the strength
parameter R; known as Tsai number and calculated as the
ratio between the failure (or maximum allowable) stress
and the actual stress at the jth point of the structure where
the stress vector is evaluated. The Tsai mumber R, is a
function of the actual stresses and it is obtained by solving
the interactive quadratic failure criterion of Tsai-Wu [17],

(Fasis)R} + (Fis)Ry =1 i,k =1,2,6, (26}

where 5,15 the ith component of the stress vector, Fig and F)
are strength parameters associated with unidirectional
reinforced laminate defined from the macro-mechanical
point of view [17].

In this work, two functionals are considered in the
sensitivity-uncertainty analysis as presented in Section 3,
one related with the maximum displacement on the
structure,

i = Max(u,.... 1), r=1... N (27)

and the second one related with the most critical Tsai
number,

R=Max(R,....R}), j=1,.. N (28)

Tahle 2
Composite laminate distribution on stroctume wed in sensitivity analysis

Laminate nr. Stacking sequenoe

I [-75/+75/—75/+75/—75]
2 [+ 2525/ + 2525+ 2]
3 [-75/+75/—75/+75/-75]
4 [+ 2525/ +25/-25/+ 2]

being Ny, the total number of displacements and N, the
total number of points where the stress vector is evaluated.
Then, Eq. (11) is rewritten as

@=(anR) (29)

that is the response wector of the structural system
considered in the present analvysis.

5.3, Sensitiviry analysiz validarion

The wvalidation of the sensitivity model presented in
Section 4 is implemented using the cylindrical shell shown
in Fig. 1. A set of discrete vertical loads varying from
Pray =30KN to Poip = 3.333kN is applied. The four
laminates have the stacking sequence presented in Table 2.
The results obtained using the Adjoint Variable Method
presented in Section 4 are compared with the ones obtained
from the Forward Finite Difference Method and they are
presented in Tables 3 and 4. A pood agreement is reached
using both approaches.

5.4 Imporiance of imput parameters using sensitivity
arralysis

The objective of this section is to analyze the influence of
input parameter deviations on the structural response. The
geometrical definition and the laminate distribution of the
example are the same used in sensitivity amalysis validation.

The concept of relative sensitivity referred in Section 2 is
defined as
D Ewp| x?

= i

ox; o |OXi] |97

(30)



and its analysis aims to compare the relative importance of
input parameters on the response. The results obtained
from the sensitivity analysis and using the concept of
relative sensitivity are shown in Table 5. The longitudinal
Young's modulus £, is the most important input para-
meter when the structural response is analyzed using the
maximum displacement & However, the transversal
modulus £; and the transversal tensile strength ¥ are
more outstanding if the response is evaluated using the
stress analysis through the Tsai number R.

Tahle 3

Semsitivity of maximum diplacement @ for mean wvalues of input
pammeters AVM—Adjoint Variable Method, FDOM—Finite Difference
Method (increment: (1% of mean vahe)

Sensitivity AVM FIM

ok, 2798w 10t 2296 10—
232 L7100 1T s 10
B/BE L 4.797 w« 10 4797« 1™
B4 /8E, 4 —5 BRI = 10 —SRA2x 107
/oK, , 276w 1 2760 1"
2ii/BE2z 5962w 107" 5962 107"
BiE,/8Es 13T = 107 1370 107
Bi/8E4 —2.360 ¢ 1 —236H = 10~H
Tahle 4

Semsitivity of most eritical Tsa number & for mean vahes of input
pammeters AVM—Adjoint Variable Method, FDOM—Finite Difference
Method {increment: |% of mean value)

Sensitivity AVM FIM

aRfAE 1,331 107" 1329 10—
aRaE 1261 = 10~ 1261 = 102
aRaE 6431 = 1072 6414 12
BRAE, 4 — 6. 148 = 10 — 6221 % 1™
ak BEL 2641w 1078 263 = 1
a8k — L6 10 — 1054 1™
ak/BEL 9667 1078 9564 % 10"
BR/AE14 2904 1077 2890 10~
akfava 1054 10~% 3052 % 10~
k2% 2375 % 107" 9247 107"
Tahle 5

Relative aenaitivities

Other important concept in the present analysis is the
coefficient of variarion of the response taking an indepen-
dent analysis for each input parameter. Using the sensi-
tivity-uncertainty analysis of Section 3, namely Eqgs. (6)and
(10}, the coefficient of variation is established as

{-1".! —_ W "‘-ﬂ.f{lfp} —_ |SJHJ| 3]
! (w{mn L Lg” | ©h

being " = o{x") and 5; = (D /Oxi) 0 the sensitivity of the
response o parameter xp, evaliated for mean values
¥ =(x... ., x"). Comsidering the coefficient of variation
of the input parameter x, defined as

le. |
oV, = = (32)

:,.

the relationship between the coefficient of variarion of the
response and the coefficient of variation of an  input
parameter is

T i 0 Am*
A
i o

where Op* /0, is the relarive sensitivity defined in Eq. (30).

Fig. 2 shows the maximum values for the coefficient of
variation of the response €V, considering CV,, = 6% for
the input parameters. The shape of the bar chart agrees
with the conclusions obtained from the relative sensitivities
presented in Table 5.

The above analysis was performed considering an
independent analysis for each input parameters in
the eguation of propagation of uncertainties (10). This
analysis is important in order to evaluate the individual
influence of each input parameter. However, the joint
effects of the propagation of uncertainties on the res-
ponse play an important role in structural reliability
analysis.

The equation of propagation of uncertainties (15) is

Cy = SC,ST.

If the input parameters are uncorrelated then matrix C,
is diagonal and taking CV, = 6% for all parameters, the

Cv,. (33)

Semsitivity Macro-glement/composite laminate
i=1 i=1 I=3 I=4

a4 (BE) B2 s 107 1329 10—™ LTI8 = 107 2106 10~
al 2k 5.252 3 107 4975 107 287 = 107" 2426 107"
B (B E, 2009 x 107 45T 107" 2587 w107 LBIT s 107
aR [2Ey, 1183 107 8994 10~ 172 107 2455« 107
ol oy, [/ QETT ¢ 10-™ 0 0

ak fas; 0 6900 107" 0 0




above equation gives
var(f) covid, B)
Cy = - -
® covid, R)  var(K)
1846E =05 1.3ME -4
| LS0ME-04 T212E-03|

(34)

The coefficient of variation of the response for each
functional defined in (29) is as follows

cv, W var(@y ./ var(da)

c T E@] T

: (33)

6.5

6.0 - m C\Vu
5.5 O CVR

45 |
4.0
35
3.0
2.5

2.0
1.5 1

1.0 7
0.5 T
[ []

Maximum coefficient of variation (%)

00 T T T
El E2 Y S
Input parameters

Fig. 2. Maximum values of the coefficients of variation CVid%b and
CVx%pb for response functional. Independent analysis using CVyx% 6%

for the input parameters.
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In this example the mean values for structural response
are fi=01078m and R = 0978

Using the covariance matrix (34) and the definitions (35)

and (36) the following coefficients of vanation of the
response are obtained:

CVg=495% and CVj=H68%.

(36)

5.5, Propagation of uncertainties in angle-ply laminates

In this section the influence of anisotropy in uncertain-
ties propagation is studied. An example with balanced 48
angle-ply laminates with five layers as shown in Fig. 1 has
been implemented. The vertical loads vary linearly from
Frax = T500EN to P =0.833kN. The ply angle @ is
referred to x-axis as shown in Fig. 1.

Fig. 3 presents the behavior of critical displacement @
and critical Tsai mumber & when the ply angle varies from
07 to 90°.

The critical displacement increases from a minimum
walue at 0° reaching at M° a value comesponding to four
times that minimum. The crtical Tsai number increases six
times from a minimum vahe along the domain of . This
shows the important influence of anisotropy with con-
sequences On uncertainties propagation.

To study the influence of uncertainties propagation on
the response a coefficient of wvariation CV, =6% is
considered for the input parameters. The analysis is
implemented independently for each input parameter using
Egs. (31)-(33). Figs. 4 and 5 show this analysis results using
the maximum ceefficient of variation for the critical
displacement @ and the critical Tsai munber R presented
as functions of ply angle .

The maximum coefficient of variation of the critical
displacement, CVy(%) presents a quasi-symmetnc beha-

Critical Tsai number

10 20 30 40 50 60 70 80 90
ply angle, 6

o

Fig. 3. Influence of anisotropy (ply angle y) on response functional i and R.



vior comparing both input parameters the longitudinal
Young’s modulus E; and the transversal modulus E, as
shown in Fig. 4. The maximum coefficient of variation of

the critical Tsai number, CVgi%b presents the highest
valuesaty 1,551 for Ex andaty 1,751 for E; as shown in

Fig. 5. The same figure shows that uncertainties in

Critical displacement
5.0

4.5+

4.0

3.5

3.0

2.5+

2.0

1.5+

Maxim. coefficient of variation (%)

1.0

0.5+

rrrrrrrrrrrrrrrrrrrrrTroTrrT T T T T T T T I T T T T T T T T T T

0.0

ply angle, 0

Fig. 4. Maximum coefficient of variation of the critical displacement, CVy
0%b. Independent analysis using CVx % 6% for the input parameters E,
and Ezj,j % 1,3 4.

Critical Tsai number
6.0 T

50+
4.0 4
30 4

204

maxim. coefficient of variation (%)

1.0+

0.0 =t
0 10 20 30 40 50 60 70 80 90

ply angle, 6

transversal tensile strength Y have large influence on
uncertainties of the response for most of the values of the
domain of y. In opposite way uncertainties in shear
strength S propagates fairly on the response.

Using the covariance matrix (15) and the definitions (35)
and (36) it is possible to analyze the joint effects of all input
parameters for the uncertainties propagation on the
response. Fig. 6 presents the behaviors of the coefficients
of variations CV %?b and CVzi%pP as functions of ply
angle y.

The behavior of displacement coefficient of response
CVu#®b6p is dominated by the maximum coefficient of
variation when comparing Figs. 4 and 6. In this case there
are no synergetic effects in uncertainties propagation on
response. However, the comparison of Figs. 5 and 6 shows
an important synergetic effect on the coefficient of
variation for Tsai number CVzi%b. Indeed, this coefficient
of variation of the response obtained from the joint
analysis established by Eq. (15) and presented in Fig. 6 is
always higher than the maximum coefficient of variation
obtained using an independent analysis as shown in Fig. 5.
The amplitude of the synergetic effect depends on ply angle
y of the composite laminate. Since the Tsai number is
related with the structural failure the referred synergetic
effect on uncertainties propagation assumes an important
role in structural reliability analysis.

Figs. 7 and 8 show the behavior of the coefficient of
variation of the response with variations in ply angle y for
different coefficients of variation of the input parameters.
Fig. 7 shows that the uncertainties propagation is mild for
critical displacement response functional. On other hand,
the synergetic effect on the coefficient of variation for Tsai
number is amplified when increasing the coefficients of
variation of the input parameters becoming very important
for high uncertainty amplitudes.

Critical Tsai number

70 4
5.0 f
a0l
30

20 '

maxim. coefficient of variation (%)

10§

0.0 :‘l' T T T T T T T
0 10 20 30 40 50 60 70 80 90
ply angle, 6

Fig. 5. Maximum coefficient of variation of the critical Tsai number, CVz%ob. Independent analysis using CVy % 6% for the input parameters E, j, Ez},

Yj, Sj, J Ya 1,y,4.
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Coefficient of variation (%)

1.0 4

00 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

ply angle, 6

Fig. 6. Coefficient of variation of response CV1%b and CVzi%?b using
Eq. (15), CV« % 6% for the input parameters.
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Fig. 7. Displacement coefficient of variation CVii%?b with variations in
ply angle yU Input parameters changing simultaneously as defined in
Eq. (15).

The methodology proposed by Oh and Librescu [13] can
be applied to structural tailoring of angle-ply composite
structures in the presence of input parameters uncertain-
ties. From Fig. 3 reporting the influence of ply angle y over
critical displacement and critical Tsai number, the most
favorable values for ply angle belong to the interval [751,
901]. From Fig. 6 showing the behavior of the coefficients
of variation of response CV%?b and CVzi%b with ply
angle y, the most favorable value aiming the mitigation of
uncertainty propagation on structural response is 4 801.
This is the value that will be considered in structural
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Fig. 8. Coefficient of variation of Tsai number CVz3%b with variations in

ply angle yU Input parameters changing simultaneously as defined in
Eq. (15).

tailoring of angle-ply composite structures according to the
combined analysis of Figs. 3 and 6.

5. Conclusions

The sensitivity-uncertainty analysis for composite struc-
tures presented here exhibits three major advantages: (1)
important input parameters are identified; (2) the evalua-
tion of the response uncertainty is done in a simple,
systematic way; and (3) any changes on the uncertainties of
the input parameters are easily incorporated in order to
obtain the new uncertainties propagation on response.

The case study presented for angle-ply laminate compo-
sites reveals an important synergetic effect in uncertainties
propagation for Tsai number associated with stress
response of the composite structures. This synergetic effect
must be considered as an important factor in reliability
based design of angle-ply composite structures.

The structural tailoring technique based on the proposed
sensitivity-uncertainty analysis is very useful in designing
laminated composite structures minimizing the unavoid-
able effects of the input parameter uncertainties on
structural reliability.
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