
  

 

 

 

 

 

 

Energy efficient scheduling for cluster-tree 
Wireless Sensor Networks with time-
bounded data flows: application to IEEE 
802.15.4/ZigBee 

 

 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-100501 

Version:  

Date: 05-05-2010 

Zdenek Hanzalek 

Petr Jurcik 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Technical Report HURRAY-TR-100501  Energy efficient scheduling for cluster-tree WSNs 

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 

Energy efficient scheduling for cluster-tree Wireless Sensor Networks with 
time-bounded data flows: application to IEEE 802.15.4/ZigBee 

Zdenek Hanzalek, Petr Jurcik 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 

Abstract 
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks 
(WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism 
based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) 
problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end 
deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by 
setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end 
delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling 
tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beacon-
enabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the 
problems with dozens of nodes can be solved while using optimal solvers. 
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Abstract

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs).
The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic
extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN,
assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded
data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Since each
cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are
the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters
of the IEEE 802.15.4/ZigBee beacon-enabled cluster-tree WSNs in the network design time. The performance evaluation of the
scheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
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I. INTRODUCTION

To improve the functionality and efficiency of industrial monitoring and control systems (e.g. visual surveillance for automatic
object detection [1]), the industries are looking toward Wireless Sensor Networks (WSNs) to provide sensing and actuating in
hazardous and previously hard-to-reach areas [2]–[4] where very specialized and costly procedures must be adhered. Timeliness
and energy efficiency are important requirements to be fulfilled in these systems. The use of WSNs in control applications
has many advantages compared to wired solutions, which are dominant at the moment. WSNs may be installed for a fraction
of the cost and time of an existing wired network. Since the wireless nodes are usually battery-powered, the network can be
effectively used in environments where electricity is not available or some level of mobility is required (e.g. rotating parts of
machines).

WSNs can be classified into two types, infrastructure-based and ad hoc (infrastructure-less) networks. The former is less
flexible since it relies on the pre-deployed and structured topology, but provides better support of predictable performance
guarantees. To ensure collision-free access to the shared wireless medium, the infrastructure-based networks employ the deter-
ministic routing protocols (e.g. ZigBee’s hierarchical routing [5]) and contention-free Medium Access Control (MAC) protocols.
On the other hand, ad hoc network provides good flexibility to adaptive network changes, but at the cost of unpredictable
performance. The non-deterministic routing protocols [6] and contention-based MAC protocols cause unpredictable performance
bounds. Hence, when high predictability of performance guarantees is the objective, it is suitable to rely on infrastructure-based
WSNs such as cluster-tree [7]. The cluster-tree network is supported by the IEEE 802.15.4/ZigBee [5], [8] standards which
are leading technologies for low-cost, low-power and low-rate WSNs.

In this paper, we assume that the cluster-tree network has already been set up, i.e. each node knows its parent and child
nodes (e.g using the ZigBee’s tree addressing scheme [5]). All nodes may have sensing or/and actuating capabilities, therefore
they can be sources or/and sinks of data flows. We consider periodic time-bounded flows (each given by parameters such as
sink node, source nodes and end-to-end deadlines) which must be known in network design time.

In cluster-tree WSNs, the flows traverse different clusters on their routing paths from the source nodes to the sink nodes.
The clusters may have collisions when they are in the neighborhood. Thus, the key problem solved in this paper is to find
a periodic schedule which specifies when the clusters are active while avoiding possible inter-cluster collisions and meeting
all flows’ end-to-end deadlines. The fact that the cluster is active only once during the schedule period [5] leads to so called
cyclic behavior of periodic schedule (i.e. time between the instant when a source sends the message and the instant when
the sink receives this message spans over several periods) when there are the flows with opposite direction in a WSN. Since
wireless nodes are usually battery-powered, the objective is also to minimize the energy consumption of nodes by maximizing
the schedule period (consequently maximizing time when the nodes stay in low-power mode).



A. Related work

Since the wireless nodes are usually energy-constrained, energy efficiency is a important requirement in order to maximize
the lifetime of the network. In [9], the authors have identified the major sources of energy waste in WSNs such as collisions,
overhearing and idle listening. Our work eliminates the above mentioned sources of the energy waste by using the collision-free
Time Division Cluster Schedule (TDCS) and dedicated Guaranteed Time Slots (GTS) mechanism.

There have been several research works dealing with the energy efficient routing protocols supporting QoS guarantees in
WSNs. Real-time Power-Aware Routing (RPAR) protocol [10] integrates transmission power control and real-time routing for
supporting energy efficient soft real-time communication in ad hoc WSNs. The protocol is based on the assumption that a
higher transmission power results in higher speed. The transmission power is increased if the required speed is not satisfied,
otherwise if the required speed is satisfied the transmission power is decreased (to improve energy efficiency). Another real-time
routing algorithm minimizing the energy consumption was proposed in [11]. The authors have assumed a collision-free MAC
protocol, and they have used multicommodity flow model to schedule the optimal flows’ paths in terms of energy consumption
while not exceeding links’ bandwidths and flows’ deadlines. The routing algorithm ensures polynomial-time complexity but
no scheduling is considered. On the contrary, our work assumes a scheduling of cluster-tree WSNs where the flows’ paths are
unique and the routing decisions are simple and time efficient.

The approach based on the combination of an energy efficient topology management protocol with a non energy-aware
real-time routing protocol has been proposed in [12]. The nodes, which must be location-aware, are divided into the clusters.
To reduce the energy consumption of the nodes while introducing a bounded delay, time-driven data transmissions within each
cluster are performed in a Time Division Multiple Access (TDMA) fashion. The relay nodes, which use the real-time routing
protocol to forward data between clusters towards the sink, are elected in rotation among the nodes belonging to each cluster.
The Frequency Division Multiple Access (FDMA) mechanism prevents the collisions between the nodes operating on different
clusters. In [13], this topology management protocol has been extended to support even-driven data transmissions and dynamic
cluster formation.

The probabilistic estimation of end-to-end path latency in ad hoc WSNs has been introduced in [14]. This approach
approximates the end-to-end delay distribution of a routing path by performing statistical analysis of local information gathered
at intermediate hops. It allows to estimate the probability that a sequence of messages is transmitted through a routing path
within a time interval with a given confidence level.

To the best of our knowledge, so far no previous research has directly addressed the problem of energy efficient TDMA
scheduling of time-bounded data flows in a cluster-tree WSN. Koubaa et al. [15] have proposed an algorithm for collision-free
beacon/superframe scheduling in IEEE 802.15.4/ZigBee cluster-tree networks, using the time division approach. Note that
the beacon frame scheduling problem comes back to a superframe scheduling problem, since each superframe starts with a
beacon frame. The authors have proposed an algorithm based on the ”pinwheel scheduling algorithm” [16], which performs
the schedulability analysis of a set of superframes with different durations and beacon intervals, and provides a schedule if the
set is schedulable. This problem becomes more complex and challenging when time-bounded data flows are assumed. Hence,
our work addresses the problem of finding a collision-free superframe schedule that meets all data flows’ end-to-end deadlines
while minimizing the energy consumption of nodes.

B. Outline and contribution of this paper

The rest of the paper is organized as follows. First we provide a generic system model, encompassing the cluster-tree topology,
the data flow model, the cyclic behavior of periodic schedule and the collision domains (Section II). In Section III, some of
the most relevant aspects of the IEEE 802.15.4/ZigBee protocols are described. Then, in Section IV, a solution of scheduling
problem and application to a IEEE 802.15.4/ZigBee cluster-tree WSN are provided. The problem of finding a feasible schedule
is formulated as a cyclic extension of the Resource Constrained Project Scheduling with Temporal Constraints (RCPS/TC). A
performance evaluation of the cluster scheduling mechanism takes place in Section V.

In particular, the paper presents the following contributions:
1) A formulation of the scheduling problem by a cyclic extension of RCPS/TC (Sections IV-B and IV-C). Using this

formulation, the users are not restricted to a particular implementation but they can make a similar extension to any of
the algorithms solving this type of problem.

2) A solution of cyclic extension of RCPS/TC by an Integer Linear Programming (ILP) (Section IV-D), where a grouping
of Guaranteed Time Slots (GTS) leads to very efficient ILP model having a few decision variables.

3) An application of this methodology to a specific case of IEEE 802.15.4/ZigBee cluster-tree WSNs (Section IV-A).
4) A time complexity evaluation of the proposed TDCS algorithm implemented in Matlab while using the simplex-based

GLPK solver (Section V).

Using our scheduling tool (available on [17]), system designers are able to derive the configuration parameters of each
cluster (such as BO, SO and StartT ime) in IEEE 802.15.4/ZigBee beacon-enabled cluster-tree WSNs. Furthermore, for



Fig. 1. Cluster-tree topology with two time-bounded data flows.

every cluster’s superframe, the configuration parameters (GTS params) [8] of each allocated GTS (such as GTS device, GTS
direction, GTS length and GTS starting slot) can be obtained as well (Tab. II).

II. SYSTEM MODEL

We consider a static deployment of wireless nodes which defines the physical topology of WSN given by the bidirectional
wireless links between every pair of nodes that are within transmission range of each other. The logical topology, based on
a physical topology, defines a subset of wireless links to be used for data transmission. In the rest of the paper, we will use
notation topology while meaning logical topology.

A. Cluster-tree topology model

One of the WSN topologies suited for predictable and energy efficient behavior is a cluster-tree (Fig. 1) where the routing
decisions are unique and nodes can enter low-power mode to save their energy. From the hierarchy point of view, the cluster-
tree is directed tree (so called in-tree [18]) as depicted by solid arrows in Fig. 1. On the other hand, from the data transmission
point of view, the cluster-tree is undirected tree (i.e. the wireless links are bidirectional). The hierarchy of the cluster-tree
topology is defined by parent-child relationships, in the sense that each solid arrow in Fig. 1 leaves the child node and enters
the parent node. Note that the in-tree has the following property: one node, called root, has no parent and any other node has
exactly one parent.

The routers and end-nodes are two types of wireless nodes in cluster-tree WSNs. The nodes that can participate in multi-hop
routing are referred to as routers (circle labeled by Ri). The nodes that do not allow association of other nodes and do not
participate in routing are referred to as end-nodes (triangle labeled by Ni). In the cluster-tree topology, the nodes are organized
in logical groups, called clusters. Each router forms a cluster and is referred to as its cluster-head (e.g. router R2 is the
cluster-head of cluster 2). All of its child nodes (e.g. end-node N9 and routers R5 and R6 are child nodes of router R2) are
associated to the cluster, and the cluster-head handles all their transmissions.

This cluster-tree topology (Fig. 1) can be described by adjacency matrix A = (aij), where aij = 1 if router j is the parent
router of node i, otherwise aij = 0. Remind [18] that A is a square matrix with dimension equal to the total number of nodes
in a WSN (total nodes).

In the cluster-tree topology, the multi-hop communication is deterministic because each node only interacts with its pre-
defined parent router and child nodes. Messages are forwarded from cluster to cluster until reaching the sink. The time behavior
of each cluster is periodic and the period of each cluster is divided into two portions. Active portion, during which the cluster-
head enables the transmissions inside its cluster, and subsequent inactive portion. Each router (except the root) belongs to two
clusters, once as a child node and once as a cluster-head. Therefore, each router is awake whenever one of these two clusters
is active, otherwise it may enter the low-power mode to save energy (see the example in Fig. 5).

B. Data flow model

The traffic is organized in the data flows (see user-defined parameters of the flows from Fig. 1 summarized in Tab. I). Each
data flow has one or more sources and exactly one sink. In this paper, we assume that both routers and end-nodes can have
sensing or/and actuating capabilities, therefore, they can be sources or/and sinks of data flows. A node regularly measures a



flow ID sources sink
e2e deadline req period sample size

sample ack
[sec] [ptu] [sec] [bit]

1 {N12, N14} N10 {0.05, 0.61} {52, 635} 0.5 64 0
2 {R5, N11} R6 {0.01, 0.75} {10, 781} 1 16 0

TABLE I
THE USER-DEFINED PARAMETERS OF THE DATA FLOWS FROM FIGURE 1 (ptu = processing time unit).

(a) Minimized end-to-end delay of flow 1 (dashed line) (b) Minimized end-to-end delay of flow 2 (dotted line)

Fig. 2. Schedules for data flows in Fig. 1.

sensed value (e.g. temperature, pressure, humidity) with the required period, called the req period, and reports the acquired
sensory data of a given size, called the sample size, to a sink. Note that req period defines the minimal inter-arrival time
between two consecutive measurements, and a particular inter-arrival time has to be greater or equal to the req period.

End-to-end (e2e) delay dij , given as a time between the instant when a source i sends the message and the instant when
the sink j receives this message, is bounded by e2e deadlineij such that dij ≤ e2e deadlineij .

The communication errors such as message corruption or message loss come from unreliable and time-varying characteristics
of wireless channels [19]. A corrupted or lost message can be detected by the simple checksum or acknowledgment techniques,
respectively, and restored by the retransmission mechanism, for example. All of the above mentioned mechanisms are natively
supported by the IEEE 802.15.4 protocol [8]. The messages of a given data flow can be transmitted without acknowledgment, i.e.
parameter sample ack = 0, or with acknowledgment, i.e. sample ack = 1. Note that the maximum number of retransmissions
must be bounded, otherwise, the analysis will not be possible.

C. Cyclic nature

In cluster-tree WSNs, the flows traverse different clusters on their routing paths from the source nodes to the sink nodes.
One execution of the flow (i.e. complete data communication from the source node/nodes to the sink node) is called a wave,
and the notation fk

i is used to denote wave k of the flow i. The cluster is active only once during the period [5], therefore
all the flows in a given cluster are bound together. For example, the gray rectangles on the first line of Figure 2 show active
portions of cluster 1 during two consecutive periods accommodating flows 1 and 2 in each period. The key problem is to find
a periodic schedule which specifies when the clusters are active while avoiding possible inter-cluster collisions and meeting
all data flows’ e2e deadlines. The schedule is characterized not only by the moments when the clusters become active within
the period, but due to the cyclic nature of the problem it is also characterized by the index of the wave for each flow in a
given cluster.

Figure 2 shows two possible schedules of the example in Fig. 1. Even if we relax on the lengths of transmitted messages and
on resource constraints related to the cluster collisions, we have to deal with the precedence relations of the wave traversing
different clusters. Since the flows have opposite directions in this example, the e2e delay minimization of the first flow is
in contradiction with the the minimization of the second flow. Figure 2a shows the case, when e2e delay of the flow 1 is
minimized, i.e. the ordered sequence of clusters’ active portions is in line with the flow 1 (starting with clusters 4 and 6 and
following with clusters 2, 1 and 3), and therefore one wave of this flow fits into one period. On the other hand, the wave of
the flow 2 spans over 3 periods while going against the sequence of clusters. Figure 2b illustrates the opposite case, when
e2e delay of the flow 2 is minimized (starting with cluster 3 and following with clusters 1 and 2), and consequently flow 1



Fig. 3. The carrier-sense area and collision domain (set of bold routers) of cluster 31.

spans over 3 periods. It may happen that none of these schedules is feasible due to the deadline constraints (even if feasible
schedule exists - see Fig. 10). Hence, proper order of the active portions of clusters is a subject of optimization even if the
lengths of messages and collisions of clusters are not assumed.

The instances where the flows do not have opposite directions (please assume an instance containing one flow only, or try
to exchange orientation of flow 2 in Fig. 1) can be easily scheduled within one period as the ordered sequence (i.e. phasing)
of clusters’ active portions following a topological order of a directed acyclic graph representing the flows.

D. Collision domains

According to the strength of the radio signal, the transmission range and the carrier-sensing range [20] can be defined
around each transmitter. When a receiver is in the transmission range of a transmitter, it can receive and correctly decode
messages from the transmitter. On the other hand, a node in the carrier-sensing range (also called the hearing range), but not
in the transmission range, is able to sense the transmission (or even significant radio energy), but cannot decode the messages
correctly. The carrier-sensing range is always larger than the corresponding transmission range [20]. In what follows, the
topology is given by the transmission ranges while the collision domains depend on the carrier-sense ranges.

A carrier-sense area of a cluster is covered by the overlapping carrier-sense ranges of its cluster-head and associated child
nodes. A collision domain of a cluster is a set of clusters, which compete for the same radio channel and, therefore, their
active portions must be non-overlapping, i.e. only one cluster from a collision domain can be active at a given time instant.
The collision domain of cluster i comprises the cluster j if and only if the carrier-sense area of cluster i comprises cluster-head
or any of child nodes of cluster j. Hence the collision domain depends on the physical deployment of a WSN as well as on
the topology (i.e. parent-child relationships).

Let us consider the illustrative example in Fig. 3. The carrier-sense area of cluster 31 (gray region in Fig. 3) is covered by
the carrier-sense ranges of cluster-head R31 and its child nodes (i.e. routers R41, R42 and end-node N1). Hence, the collision
domain of cluster 31 comprises the clusters 31, 41, 42, 51, 52, 53, 61, 21 whose cluster-heads are inside the carrier-sense area
(i.e. R31, R41, R42, R51, R52, R53, R61, R21), and the clusters 11 and 32 whose child nodes are inside the carrier-sense area
(i.e. R21 and N2).

The collision domains of a WSN are defined by collision matrix C = (cij), where cij = 1 if cluster j is within the collision
domain of cluster i, otherwise cij = 0. Then, C is a square matrix with dimension equal to the total number of clusters in a
WSN (total routers). In the example of Fig. 1, we assume that the clusters 4, 6 and clusters 4, 5 can be active at the same
time (i.e. the collision domain of cluster 4 does not comprise clusters 5 and 6).

III. OVERVIEW OF IEEE 802.15.4/ZIGBEE

The IEEE 802.15.4 [8] standard specifies the physical and data link layers while the network and application layers are
defined by the ZigBee specification [5]. The MAC layer supports the beacon-enabled or non beacon-enabled modes that may
be selected by a central controller of the WSN, called PAN coordinator. This paper only considers the beacon-enabled mode,
since it supports cluster-tree topology and enables the provision of the collision-free access to the wireless medium through
the Guaranteed Time Slot (GTS) mechanism.

While IEEE 802.15.4 in the beacon-enabled mode supports only the star-based topology, the ZigBee specification has
proposed its extension to the cluster-tree topology. In the particular case of ZigBee cluster-tree WSNs, a PAN coordinator is



Fig. 4. Superframe structure.

identified as the root of the tree and forms the initial cluster. The other routers join the cluster-tree in turn by establishing
themselves as cluster-heads, starting to generate the beacon frames for their own clusters. Beacon frames are periodically sent
at Beacon Interval (BI) to synchronize the child nodes that are associated with a given cluster-head and to define a superframe
structure (Fig. 4).

Each cluster’s period, corresponding to BI, is divided into an active and an inactive portions. The active portion, corresponding
to Superframe Duration (SD), is divided into 16 equally-sized time slots, during which the data transmission is allowed. These
time slots are further grouped into a Contention Access Period (CAP) using slotted CSMA/CA for the best-effort data delivery,
and an optional Contention Free Period (CFP) supporting the time-bounded data delivery. Within the CFP, the cluster-head
can allocate Guaranteed Time Slots (GTSs) to its child nodes. The CFP supports up to 7 GTSs and each GTS may contain
one or more time slots. Each child node may request up to one GTS in the transmit direction, i.e. from the child node to the
parent router, and/or one GTS in the receive direction, i.e. from the parent router to the child node. Note that a node to which
a GTS has been allocated can still transmit the best-effort data within the CAP. During the inactive period, each associated
node may enter a low-power mode to save energy.

Durations of the cluster’s period (BI) and the cluster’s active portion (SD) are defined by two parameters, the Beacon Order
(BO) and the Superframe Order (SO) as follows:

BI = aBaseSuperframeDuration · 2BO

SD = aBaseSuperframeDuration · 2SO
(1)

where 0 ≤ SO ≤ BO ≤ 14 and aBaseSuperframeDuration = 15.36 ms (assuming the 2.4 GHz frequency band and 250 kbps
of bit rate) and denotes the minimum duration of active portion when SO = 0. Note that the ratio of the active portion (SD)
to the whole period (BI) is called the duty-cycle.

Note that due to the cluster-tree topology, each router (except the root) belongs to two clusters, once as a child node and
once as a cluster-head. Hence, router r has to maintain the timing between the active portion (SD) of its parent’s cluster (in
which a beacon and the data frames from the parent router are received, and the data frames to the parent router are sent) and
its own active portion (in which a beacon and the data frames are sent to the associated child nodes, and the data frames from
child nodes are received). Router r acts as a child node in the former active portion while in the latter active portion it acts as
a cluster-head. The relative timing of these active portions is defined by the StartTime parameter [8]. The illustrative example
is shown in Fig. 5, where the router R2 acts as child node in cluster 1 (shaded rectangle) and as cluster-head in cluster 2 (solid
rectangle), for example.

Fig. 5. Timing among clusters 1,2 and 6 from Figure 1.



IV. TIME DIVISION CLUSTER SCHEDULING AND ITS APPLICATION TO IEEE 802.15.4/ZIGBEE

The key idea of this paper is to formulate the problem of finding a feasible Time Division Cluster Schedule (TDCS) as
a cyclic extension of the RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem [21], so
that the users are not restricted to a particular implementation but they can make a similar extension to any of the algorithms
solving this problem.

The objective is to minimize the energy consumption of the nodes by maximizing the TDCS period, corresponding to BI,
while avoiding possible inter-cluster collisions (i.e. resource requirements) and meeting all flows’ end-to-end deadlines (i.e.
temporal requirements). All clusters have equal BI, defined by BO, but various SD (Section IV-A), defined by SO, (i.e.
various duty-cycle) to ensure efficient bandwidth utilization. The BI should be set as long as possible to minimize clusters’
duty-cycle and consequently to minimize the energy consumption of the nodes. Hence, the TDCS algorithm (see pseudo code
in Fig. 6 where the content of the init function is explained in Sections IV-A, IV-B, IV-C, the ilp_solve function is in
Section IV-D:1 and the config_params function is in Section IV-D:2) is iterating from the minimum BI up to the maximum
BI. The maximum BI, given by BOmax, is rounded down to the nearest BI (Eq.(1)) towards the shortest req period among
all of the flows. The minimum BI, given by BOmin, is rounded up to the nearest BI towards the duration of all clusters’
SDs when assuming that non-interfering clusters overlap. If a feasible TDCS is found for a given BI, BO is increased by 1
and next iteration is called with new BI. This procedure is repeated until BO = BOmax or a feasible TDCS is not found.
Then, the last feasible TDCS meets all the resource and temporal requirements while minimizing the energy consumption of
the nodes.

(BO,SO,StartT ime,GTS_params) = TDCS(C,A,flows)

01 begin

02 (BOmin,BOmax,p,SO,V ,W,GTS_params) = init(C,A,flows)

03 BO = BOmin

04 while BO ≤ BOmax

05 (ŝ,q̂,feasible) = ilp_solve(V ,W,BO,p)

06 if feasible

07 BO = BO + 1

08 else

09 break

10 end

11 end

12 /* calculate the StartT ime parameter of each cluster */

13 StartT ime = config_params(ŝ,BO)

14 end

Fig. 6. Pseudo code of the TDCS algorithm.

A. Duration of the cluster’s active portion in IEEE 802.15.4/ZigBee

The duration of the cluster’s active portion (SD) is given by the amount of data traffic traversed through a given cluster.
Each SD is divided into a CAP and CFP (Fig. 4). Within the CFP, a given router allocates the GTSs in transmit or receive
directions for the data received from or transmitted to associated child nodes, respectively. To reduce the resource requirements
of the routers and end-to-end delays, we introduce the following priority rule: ”When a cluster-head handles several GTSs in
opposite directions, the transmit GTSs (i.e. communication from child-node to cluster-head) are allocated before the receive
GTSs (i.e. communication from cluster-head to child-node)”. Using this rule, the end-to-end delay of a flow can be reduced
by one period of TDCS at a router which allocates both receive and transmit GTSs for a given flow. For example, in Fig. 1,
router R1 allocates one transmit GTSs and one receive GTS for flow 1. In order to reduce the computational complexity, the
GTSs inside the transmit or receive group are in an arbitrary order and are not the subject of the optimization.

The length of each GTS is given by the amount of transmitted data. Each GTS includes effective data transmission and
overheads (i.e. inter-frame spacing and eventual acknowledgment and retransmissions). Consecutive frames are separated by
inter-frame spacing (IFS). The IFS is equal to a SIFS (Short Inter-Frame Spacing) or a LIFS (Long Inter-Frame Spacing)
according to the length of MAC frame.

IEEE 802.15.4 protocol supports acknowledgment and retransmission mechanisms to minimize the communication errors
coming from the unreliable and time-varying characteristics of wireless channels. In the case of acknowledged transmissions
(i.e. sample ack = 1) the sender waits for the corresponding acknowledgment frame at most macAckWaitDuration [8]. If an



acknowledgment frame is received within macAckWaitDuration, the transmission is considered successful. Otherwise, the data
transmission and waiting for the acknowledgment are repeated up to a maximum of macMaxFrameRetries [8] times. If an
acknowledgment frame is not received after macMaxFrameRetries retransmissions, the transmission is considered failed. Note
that each retransmission decreases the effective throughput, increases the communication delay and energy consumption such
that a fair trade-off between reliability, energy consumption and timeliness must be found.

The whole data transmission, including the data frame, IFS and eventual acknowledgment and retransmissions, must be
completed before the end of the current GTS. Otherwise, it must wait until the GTS in the next superframe.

The duration of a GTS required for the whole data transmission is expressed as:

TGTS =
e∑

i=1

 (macMaxFrameRetries · sample acki + 1)·

(frm sizei/rate+macAckWaitDuration · sample acki) + ∆IFSi

 (2)

where frm size is the size of transmitted frame including the data payload, MAC and PHY headers; rate is the data rate
equal to 250 kbps; ∆IFS is equal to SIFS or LIFS depending on the length of MAC frame; and e is the number of flows in
the transmit or receive direction belonging to a given child node.

The number of allocated time slots for a given GTS is then equal to:

NGTS =
⌈
TGTS

TS

⌉
(3)

where TS is the duration of a time slot and is equal to SD/16. The number of time slots, NGTS , is calculated for each allocated
GTS in a given superframe. The remaining time slots of SD are utilized for the best-effort traffic within the CAP. The allocated
GTSs cannot reduce the length of the CAP to less than aMinCAPLength [8].

The superframe duration (SD) is then computed iteratively starting from SO = 0. If the number of time slots required for
all allocated GTSs in a given superframe is greater than 16 − daMinCAPLength/TSe, the SO is increased by 1 and the
length of each GTS (Eq. (3)) is recalculated. This procedure is repeated until all allocated GTSs fit into a given SD.

To ensure efficient bandwidth utilization, the SD of the clusters handling a higher amount of data traffic should be longer
than the ones handling less amount of data traffic. Thus, the adequate SD is computed for each cluster such that for each cluster
k, we get SOk and the configuration parameters (GTS params) [8] of each allocated GTS, i.e. GTS device, GTS direction,
GTS length and GTS starting slot. In case of the example in Fig. 1, we get SO1 = 1 and SO2 = SO3 = SO4 = SO6 = 0.
All clusters have the same BO equal to 5, which gives the longest possible BI minimizing the energy consumption of the
nodes (see Section V). Table II presents the output of TDCS tool [17], namely the configuration parameters of clusters from
the simulation scenario (Fig. 1) assuming unacknowledged transmission (i.e. macMaxFrameRetries = 0).

cluster BO SO StartTime [sec] GTS device GTS length GTS direction GTS starting slot

cluster 1 5 1 0.0

R2 1 transmit 10
R3 1 transmit 11
R4 1 transmit 12
R2 1 receive 13
R3 1 receive 14

cluster 2 5 0
0.04608

R5 2 transmit 8
R6 2 transmit 10
R6 4 receive 12

cluster 3 5 0 0.03072
N11 2 transmit 10
N10 4 receive 12

cluster 4 5 0 0.47616 N12 2 transmit 14
cluster 6 5 0 0.43008 N14 2 transmit 14

TABLE II
THE CONFIGURATION PARAMETERS OF CLUSTERS OBTAINED BY THE TDCS TOOL.

The above described algorithm for the calculation of the duration of clusters’ active portions, given by SO, is illustrated in
Fig. 7.



01 for each cluster i

02 SOi = −1

03 repeat

04 for each child node j of cluster i

05 calculate NT
GTS,j for all flows in transmit direction

06 calculate NR
GTS,j for all flows in receive direction

07 end

08 SOi = SOi + 1

09 until
∑

j
NT

GTS,j +
∑

j
NR

GTS,j ≤ 16− daMinCAPLength/TSe
10 /* processing time of cluster-task Ti */

11 pT
i =

∑
j
NT

GTS,j pR
i =

∑
j
NR

GTS,j pCAP
i = 16− (pT

i + pR
i )

12 end

Fig. 7. Pseudo code of the calculation of clusters’ SOs and the processing times of cluster-tasks.

B. TDCS formulated as a cyclic extension of RCPS/TC

The concept of (general) temporal constraints (also called minimum and maximum time lags) have been classified by Brucker
et al. [22]. The problem was studied by the operations research community, but similar principles have also appeared in the
optimization of compilers for multiprocessor machines [23] and in symbolic representation of states in timed automata [24].

1) General description of RCPS/TC: The set of n tasks T = {T1, . . . Ti, . . . Tn} with temporal constraints is given by a
graph of communication tasks G (see Fig. 8), where the vertices correspond to the tasks and the directed edges represent
the temporal constraints between the tasks. The scheduling problem is then defined as searching for such a feasible schedule
(s1, s2, . . . sn), which satisfies the temporal constraints and resource constraints while minimizing the objective criterion. Note
that in RCPS/TC terminology, si is the start time of task Ti related to the beginning of the schedule (i.e. time 0), but in IEEE
802.15.4/ZigBee terminology, the parameter StartT ime, is related to the moment, when the beacon frame from the parent
router was received (Fig. 5). Parameter StartT ime can be easily derived from start time s and matrix A, since parameter
StartT ime of the root is equal to 0 (see Eq. (13) for more details).

Each edge from vertex Ti to vertex Tj is labeled by a weight wi,j which constrains the start times of the tasks Ti and Tj

by the inequality sj − si ≥ wi,j . There are two kinds of edges: the edges with positive weights and the edges with negative
weights. The edge, from vertex Ti to vertex Tj with a positive weight wi,j (giving the minimum time lag), indicates that sj ,
the start time of Tj , must be at least wi,j time units after si, the start time of Ti (i.e. sj ≥ si + wi,j). We use the positive
weights wi,j to represent the precedence constraint, i.e. wi,j = pi and therefore Tj starts after completion of Ti, where pi is
processing time of Ti.

The edge, from vertex Tj to vertex Ti with a negative weight wj,i (giving the maximum time lag), indicates that sj must
be no more than |wj,i| time units after si (i.e. sj ≤ si + wj,i). Therefore, each negative weight wj,i represents the relative
deadline of task Tj in relation to task Ti. Consequently, when Tj is the last task of the flow and Ti is the first task of the
same flow, the edge with a negative weight may be conveniently applied for e2e deadline such that the value of e2e deadline
is equal to |wj,i|+ pj .

2) Problem complexity: Positive and negative edges may be used to represent many other time constraints that occur
frequently in practice [21], [25]. The necessary condition for finding a feasible schedule is a graph G without cycle of positive
length [18]. Moreover, the solving algorithms have to consider the resource constraints which ensure that two tasks with
a potential conflict are not executed at once. From the time complexity point of view, the problem is NP-hard, due to the
resource constraints leading to a non-convex representation of the set of feasible solutions. The ILP formulation of the problem
(shown in Section IV-D) gives exact answer to the schedulability problem (i.e. feasible time-triggered schedule is found for
each schedulable instance and no solution is found for each non-schedulable instance). There are several polynomial time
heuristics [21], [25], [26] that are able to handle RCPS/TC problems with up to one thousand of tasks in a few seconds. These
algorithms usually include lower/upper bound estimation on the length of the period. With respect to the schedulability problem,
heuristics may be pessimistic while evaluating an instance as non-schedulable even if there exist a feasible schedule (but we
do not know a polynomial-time algorithm able to solve this problem, since already decision problem upon schedulability of
non-preemptive tasks with fixed release dates and deadlines on monoprocessor is NP-complete).

3) Task model of clusters and flows: Any feasible TDCS has to respect the resource constraints related to the collision
domains of clusters and the temporal constraints of the flows. Hence, the set of tasks T will consist of two disjoint subsets:
a set of cluster-tasks and a set of dummy-tasks reflecting the temporal constraints only. The duration of a task Ti is given by
its processing time pi.



The cluster-task Ti is created for each cluster i. Note that the clusters which do not route any data flow have pi = 0 (i.e.
cluster-task 5 is not shown in Fig. 8). In the case of an active cluster-task (i.e. the one routing at least one data flow) the
processing time is equal to the cluster’s SD (i.e. pi = SD computed in Section IV-A) and includes all the communications
handled by the given cluster. That means, for each cluster-task, we define the duration of the CAP as pCAP

i , the duration of
all GTSs in the transmit direction as pT

i and the duration of all GTSs in the receive direction as pR
i , i.e. the processing time

of cluster-task is given as pi = pCAP
i + pT

i + pR
i . The unit of processing time, called ptu, is equal to the length of a time slot

when SO = 0 (i.e. 1 ptu = aBaseSuperframeDuration/16 = 0.96 ms).
Each dummy-task has a processing time equal to 0 since they are used to handle temporal constraints of different flows.
Let us consider the illustrative example of cluster-tree WSN in Fig. 1, where periodic time-bounded traffic is sent using

two data flows. Within the first data flow, messages are sent from source nodes N12 and N14 to the sink node N10. In the
second case, nodes R5 and N11 send messages to the sink router R6. The user-defined parameters of the flows are summarized
in Tab. I. Thus, cluster-tasks T1, T2, T3, T4, T5, T6 are associated with clusters 1, 2, 3, 4, 5 and 6. The processing time
of each cluster-task is equal to its associated cluster’s SD as follows: pCAP = [20, 8, 10, 14, 0, 14], pT = [6, 4, 2, 2, 0, 2] and
pR = [6, 4, 4, 0, 0, 0]. Cluster 5 does not route any flow, thus its processing time is equal to 0. Note that since Superframe
Order of cluster 1 is equal to 1 (SO1 = 1), the processing time p1 was doubled.

The collisions among the routers are represented as conflicts among the cluster-tasks due to the shared resources. We define
M as a set of couples of the cluster-tasks having a potential conflict. Consider two cluster-tasks Ti and Tj . The potential
conflict between Ti and Tj is a couple {i, j} derived from the collision matrix C as follows: we say that {i, j} ∈ M if and
only if Ci,j = 1, pi > 0 and pj > 0.

Precedence constraints of each flow are represented by an in-tree of dummy-tasks connected by positive edges. The leaves
correspond to the source clusters, where the source nodes are associated, and the root to the sink cluster, where the sink is
associated. In our particular example in Fig. 8, the in-tree of dummy-tasks T11, T10, T9, T8, T7 corresponds to flow 1, and
the in-tree of dummy-tasks T14, T13, T12 corresponds to flow 2. Each dummy-task represents a given flow in a given cluster
(e.g. T11 represents flow 1 in cluster 6).

4) Cyclic extension: The messages transmitted periodically over the network can be considered as a periodic execution of
task-set T . As mentioned in Subsection II-C, one wave of a given flow may go over several periods and, therefore, we are
faced with a cyclic scheduling problem.

Let ŝi be the start time within the period, i.e. remainder after division of si by BI, and let q̂i be the index of the period, i.e.
the integer part of this division. Then start time si can be expressed as follows:

si = ŝi + q̂i · BI for ŝi ∈ 〈0,BI− 1〉 , q̂i ≥ 0. (4)

This notation divides si into segment q̂i and offset ŝi. Hence, two tasks Ti and Tj within one period may have a different q̂i and
q̂j , since the pieces of data related to these tasks correspond to the different waves (this notion used in cyclic scheduling [27],
[28] is identical to the modulo scheduling or SW pipelining in the parallel compiler community [29]).

The cyclic schedule has to follow several constraints:
• Precedence constraints and relative deadlines are given by inequality sj − si ≥ wi,j . As a result, by applying Eq. (4) we

obtain:
(ŝj + q̂j · BI)− (ŝi + q̂i · BI) ≥ wi,j . (5)

• Offset precedence constraints and offset relative deadlines are used to bind the flow-related dummy tasks with the cluster-
task. They represent the relation between two tasks that can be from different waves. Therefore, they do not contain the
segment values q̂ and can be expressed as:

ŝj − ŝi ≥ vi,j . (6)

The offset weights vi,j are used to distinguish the offset precedence constraints from ”normal” precedence constraints.
• Resource constraints given by M, the set of potential conflicts of the cluster-tasks. The conflicts have to be avoided in

order to obtain a feasible schedule (detailed explanation is given in Section IV-D).

C. Graph of the communication tasks

An important step of the scheduling algorithm is the construction of the graph of the communication tasks G (Fig. 8) using
the data flows in Tab. I and topology in Fig. 1 (i.e. adjacency matrix A and collision matrix C).

Each dummy-task is synchronized with the corresponding cluster-task. The synchronization is made by means of offset
precedence constraints represented by dashed edges in Fig. 8. All of them have the weight vi,j = 0, therefore, for example,
ŝ6 = ŝ11 is given by two inequalities (6), i.e. ŝ6 ≥ ŝ11 and ŝ6 ≤ ŝ11.

Positive edges are used to represent precedence constraints of the flows. For example of flow 1, dummy-task T9 starts after
dummy-task T11 is completed, which is represented by the positive edge with weight w11,9 equal to the processing time of
cluster-task T6, i.e. w11,9 = p6 = 16.



Fig. 8. Graph G of the tasks corresponding to example in Figure 1.

min
n∑

i=1

ŝi + q̂i · BI (8)

subject to:
ŝj + BI · q̂j − ŝi − BI · q̂i ≥ wij ∀(i, j); i 6= j, wij 6= −∞ (9)

ŝj − ŝi ≥ vij ∀(i, j); i 6= j, vij 6= −∞ (10)
ŝi − ŝj + BI · xij ≥ pj ∀ {i, j} ∈ M; i < j (11)
ŝi − ŝj + BI · xij ≤ BI− pi ∀ {i, j} ∈ M; i < j (12)

where: ŝi ∈ 〈0,BI− pi〉 ; q̂i ≥ 0; ŝi, q̂i ∈ Z; xi ∈ {0, 1}

Fig. 9. ILP formulation for cyclic extension of the scheduling problem.

Negative edges are used to represent the e2e deadlines of the flows. The e2e deadline of the flow spans from the beginning
of transmit or receive GTS’s groups to the end of transmit or receive GTS’s groups (see Fig. 11). On the other hand, the
relative deadline between corresponding tasks, given by the weight wi,j , starts and ends at the beginning of the tasks. Hence,
the e2e deadline must be aligned with the beginning of corresponding tasks. For example of a sub-flow of flow 1 from source
end-node N14 to sink end-node N10, the relative deadline between the corresponding dummy-tasks T7 and T11 is given by the
weight w7,11 as follows:

w7,11 = −
(
e2e deadlineN14N10 + (pCAP

6 + pT
6 · θ1,6)− (pCAP

3 + pT
3 + pR

3 · (1− θ1,3))
)

= −
(
635 + (14 + 2 · 0)− (10 + 2 + 4 · 1)

)
= −633 ptu

(7)

where θf,r is a binary constant, which is equal to 1 when router r is source/sink of flow f and is equal to 0 when a child
node of router r is source/sink of flow f . The resulting end-to-end delay (dN14N10 ) is constrained by e2e deadlineN14N10 (see
Fig. 11), and it spans from the beginning of transmit GTS’s group of cluster 6 (since the measured data has to be received
from the end-node N14 through a transmit GTS) to the end of receive GTS’s group of cluster 3 (since the received data has
to be dispatched to the end-node N10 through a receive GTS).

Graph G in Fig. 8 is given by W , the adjacency matrix of the weights wi,j , and V , the adjacency matrix of the offset
weights vi,j . If there is no edge from Ti to Tj , then wi,j = vi,j = −∞.

D. Solution of the scheduling problem

1) Integer Linear Programming (ILP) formulation for cyclic extension of RCPS/TC: The ILP model is given in Fig. 9 where
xij is a binary decision variable such that xij = 1 if ŝi ≤ ŝj (i.e. Ti is followed by Tj or both Ti and Tj start at the same
time) and xij = 0 if ŝi > ŝj (i.e. Tj is followed by Ti).

Note that the period BI, vector p, matrices W , V and the set of potential conflictsM are input parameters of the declarative
program in Fig. 9.

Constraint (9) is a direct application of the precedence constraints and relative deadlines given by W . Constraint (10) relates
to the offset precedence constraints and offset relative deadlines given by V . Constraints (11) and (12) limit the number of



Fig. 10. Gantt chart of TDCS including flows 1 and 2.

tasks executed at a given time. The binary decision variable xij defines the mutual relation of tasks Ti and Tj (i 6= j) within
the period as follows:

• When xij = 0, constraint (12) is eliminated in effect (since ŝi− ŝj + BI ≥ pj is always true with respect to the definition
domain of variable s) and constraint (11) reduces to ŝj + pj ≤ ŝi, i.e. Tj is followed by Ti within the period.

• When xij = 1, constraint (11) is eliminated in effect and constraint (12) reduces to ŝi + pi ≤ ŝj , i.e. Ti is followed by
Tj within the period.

We have implemented the above mentioned scheduling algorithm in the Matlab [17] using GLPK solver. Figure 10 shows
the offsets of start times (ŝ) of cluster-tasks (namely ŝ1 = 16, ŝ2 = 64, ŝ3 = 48, ŝ4 = 0, ŝ6 = 0) in the form of a Gantt chart
for one whole period of a feasible TDCS of the cluster-tree WSN in Fig. 1 including flows 1 and 2 along the wave k. The
value of start times ŝ is in processing time units (ptu). Note that the cluster-tasks T4 and T6 can overlap because the collision
domain of cluster 4 does not include cluster 6 and vice versa. In addition, the output of algorithm contains the index (q̂) of
the TDCS period for each flow related to dummy-task as follows: q̂11 = 0, q̂10 = 1, q̂9 = 0, q̂8 = 1, q̂7 = 1 and q̂14 = 0,
q̂13 = 1, q̂12 = 1.

2) Calculation of configuration parameters: The StartT ime parameter of each cluster’s active portion (except the root) is
computed from the offset of start times as follows:

StartT imei = ŝi + γ · BI− ŝparent (13)

where ŝparent is the offset of start time of the parent cluster-task of cluster-task i, and γ = 1 if ŝi < ŝparent; otherwise
γ = 0. The StartT ime parameter of the active portion of the root is equal to 0. In case of the example in Fig. 1 in which
BO = 5 (BI = 512 ptu), the StartT ime parameter of the active portion of cluster 4 is then computed as: StartT ime4 =
ŝ4 + 1 · BI− ŝ1 = 0 + 512− 16 = 496 ptu.

Using Eq. (4), the e2e delay between each source and sink of a given flow is computed. For example of a sub-flow of flow
1 from source end-node N14 to sink end-node N10, the e2e delay is computed as follows:

dN14N10 =
(
s7 + pCAP

3 + pR
3 + pT

3 · (1− θ1,3)
)
−
(
s11 + pCAP

6 + pT
6 · θ1,6

)
=
(
(560 + 10 + 2 + 4 · (1− 0)

)
−
(
0 + 14 + 2 · 0

)
= 562 ptu

(14)

where binary constant θf,r has been defined in Eq. (7); s7 and s11 are start times of corresponding dummy-tasks T7 and T11;
p3 and p6 are processing times of cluster 3 and 6, respectively, where end-nodes N10 and N14 are associated.

The time line of clusters’ active portions including allocated GTSs is presented in Fig. 11. The StartT ime parameters and
e2e delays are based on the values of ŝ, q̂ and using of Egs. (14) and (13).

Using our methodology, system designers are able to configure the parameters of each cluster, such as BO, SO and
StartT ime, in IEEE 802.15.4/ZigBee cluster-tree WSNs. Furthermore, for every cluster’s superframe, the configuration
parameters (GTS params) [8] of each allocated GTS such as GTS device, GTS direction, GTS length and GTS starting slot
can be obtained as well.

V. PERFORMANCE EVALUATION

This section focuses on the time complexity of TDCS algorithm and the simulation study of energy consumption. The
proposed TDCS algorithm was implemented in Matlab while using the simplex-based GLPK solver (GNU Linear Programming



Fig. 11. Time line of TDCS corresponding to the example in Figure 1

Kit by A. Makhorin). To the best of our knowledge, so far no previous research has directly addressed the problem of energy
efficient TDMA scheduling of time-bounded data flows in a cluster-tree WSN.

A. Time complexity

The time complexity usually depends on the number of decision variables, which is in this case less than (n2
c −nc)/2 +nd,

where nc stands for the number of active cluster-tasks (xij is generated for each couple of potentially conflicting tasks) and
nd stands for the number of dummy-tasks (q̂i is generated for each of them).

In our experiment, the system model is configured as follows. The number of child routers is randomly generated for
each parent router and varies from 0 to 3. The routers are successively generated until the total number of routers in the
network reaches total routers. Each router has 3 child end-nodes. Note that the locations of child routers and end-nodes are
randomly generated within the transmission range of their parent router ensuring random collisions. The total number of nodes
(total nodes) in WSN is show in parentheses in the first column of Tab. III.

For each cluster-tree topology, we study effect of various number of data flows Nflow equal to 2 or 4 (or 8 for large
networks), and the number of sources Nsource of each data flow equal to 3 or 6. We fix the other parameters of data flows
such as req period = 1 sec, sample size = 120 bits and sample ack = 0. For each combination of Nflow and Nsource,
we randomly generate a set of 20 instances and run the scheduling algorithm for each of them. Median of the number of
tasks Ntask, which represents the complexity of the problem, and median of the solution times (using the GLPK solver) are
shown in Tab. III. The solution times, which exceed the time limit of 600 sec, are not encompassed in the median, and their
number is shown in parentheses. The column timecompact stands for the ILP formulation with objective function (8), which
gives feasible and compact schedule while minimizing the sum of the start times. The column timefeasible stands for the
ILP formulation with objective function equal to 0 giving the feasible schedule in a shorter time. The results show that the
complexity of the problem, given by Ntask, grows with the number of flows and with the size of the network. On the other
side, the number of sources of a given flow does not affect the complexity so much.

B. Simulation Study

This section demonstrates how the length of the TDCS period, given by the Beacon Order (BO), impacts the energy
consumption of the nodes, using the simulation study based on the IEEE 802.15.4/ZigBee Opnet simulation model [30] that
has been configured using the TDCS scheduling tool [17] presented in this paper. The simulation scenario consists of 14 TelosB
motes forming a cluster-tree WSN as depicted in Fig. 1, and two time-bounded data flows with parameters defined in Tab. I.
TelosB [31] is a battery-powered wireless device widely used in WSNs. The battery module of the simulation model estimates
the energy consumption using the formula U · I · t based on the execution time (t), the voltage (U ), and current draw (I). The
particular current draws were measured as follows: current draw in receive mode = 18.2 mA, transmit mode = 19.2 mA at 0
dBm, idle mode = 54.5 µA and sleep mode = 15 µA. New TDCS, which ensures that each data flow meets its e2e deadlines,
is generated for each BO in range of BOmin to BOmax. Since the simulation model does not support the definition of the
multiple collision domains, the non-overlapping TDCSs are assumed (i.e. a single collision domain). The simulation time of
one run is equal to 40 minutes involving generation of 9582 frames in case of flow 1 and 4791 frames in case of flow 2.

In case of unacknowledged transmission (macMaxFrameRetries = 0), there exists three feasible TDCSs with the periods
given by BO = 3, BO = 4 and BO = 5 (i.e. BOmin = 3 and BOmax = 5). Figure 12a confirms that all TDCSs are feasible,
because the maximum end-to-end delays are shorter than the end-to-end deadlines (e2e deadline). Note that the dashed line
at each column depicts the end-to-end deadline for a given sub-flow. Figure 12b shows the sum of energy consumption of all



total routers
Nflow Nsource Ntask

timecompact timefeasible

(total nodes) [sec] [sec]

11 2
3 19 0.126 0.105
6 19 0.137 0.1

(44) 4
3 31.5 0.408 0.19
6 33.5 0.605 0.184

16 2
3 26.5 0.428 0.2 (1)
6 27 2.75 (2) 0.22

(64) 4
3 40 8.94 (2) 0.63 (1)
6 40.5 19.38 (2) 0.407 (2)

20
2

3 25 3.74 (2) 0.21
6 24 9.54 (2) 0.21

(80) 4
3 44.43 – 0.63
6 43.75 – 0.54

8
3 97 – 6.14 (6)
6 88.5 – 18.11 (8)

40
2

3 36.65 – 0.55 (1)
6 34.90 – 0.51 (2)

(160) 4
3 66.30 – 29.75 (5)
6 68.95 – 19.72 (3)

8
3 111.5 – 56.38 (8)
6 114 – 61.26 (10)

60 2
3 40.9 – 1.61
6 40.15 – 1.33 (2)

(240) 4
3 73.75 – 7.68 (2)
6 75.4 – 25.62 (4)

8
3 154.5 – 61.1 (8)
6 153 – 67.7 (11)

TABLE III
TIME COMPLEXITY OF TDCS ALGORITHM.

nodes within the simulation run as a function of BO. It can be observed that the nodes consume the minimum energy when
the longest TDCS period (BO = 5) is applied. Hence, according to the required objectives, the TDCS scheduling tool returns
the longest TDCS that meets all e2e deadlines while minimizing the energy consumption (i.e. maximizing the lifetime of the
nodes).

VI. CONCLUSIONS

The paper shows how to minimize the energy consumption of the nodes by setting the beacon interval (TDCS period) as
long as possible while respecting e2e deadlines of the flows and avoiding possible inter-cluster collisions. Binding of flows
into one cluster-task is efficient with respect to the structure of superframe (dividing period BI into active portion and inactive
portion) but also with respect to the complexity of the scheduling problem (volume of decisions is related to the square of
potentially conflicting tasks). Note that grouping of GTSs in the transmit or receive direction leads to slightly pessimistic
results (length of pT

i or pR
i is relatively short with respect to e2e deadline), but scheduling of separate GTSs would lead to

dramatic increase of potentially conflicting tasks.
The solution is shown on iterative calls of the ILP algorithm, which gives precise mathematical formulation of the problem

and shows acceptable performance for static configuration of middle-sized WSNs. Opposite direction of flows leads to cyclic
formulation of the scheduling problem where one wave of a given data flow has to span over several periods. Thanks to the
problem structure based on cyclic extension of RCPS/TC, it is quite straightforward to make cyclic extension of heuristic
algorithms [26] that are able to handle RCPS/TC problems with up to one thousand of tasks in a few seconds.

An interesting issue to be investigated is the adaptive behavior of the scheduling problem when new tasks are added to the
original schedule. Such a problem should be solvable by fixing the start times of original tasks and using the same optimization
algorithm. The time complexity in such a case should be related to the number of new tasks, thus allowing one to use optimal
solvers.



(a) Maximum e2e delay (b) Energy consumption

Fig. 12. Maximum e2e delay and sum of energy consumption of all nodes as a function of BO assuming unacknowledged transmission.

APPENDIX

The following table reports the symbols that are used through the paper, along with their definition.

Symbol Definition

A = (aij) adjacency matrix describing parent-child tree
BI Beacon Interval
BO Beacon Order
C = (cij) collision matrix
dij delay
G graph of communication tasks
n number of tasks
pi processing time of task Ti

ptu processing time unit
q̂i segment of start time si

Ti task i
si start time of task Ti

ŝi offset of start time si

sample ack acknowledged or unacknowledged messages
e2e deadlineij bounded time between the instant when a source sends the message

and the instant when the sink receives this message
req period maximal inter-arrival time between two consecutive measurements
sample size size of sensing value
SD Superframe Duration
SO Superframe Order
vi,j offset weight
wi,j weight of the edge between tasks Ti and Tj

xij binary decision variable

TABLE IV
TABLE OF SYMBOLS.
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[26] Z. Hanzálek and P. Šůcha, “Time Symmetry of Project Scheduling with Time Windows and Take-give Resources,” in Proc. of the 4th Multidisciplinary

International Scheduling Conf.: Theory and Applications (MISTA), Aug. 2009.
[27] C. Hanen and A. Munier, “A study of the cyclic scheduling problem on parallel processors,” Discrete Applied Mathematics, vol. 57, pp. 167–192,

February 1995.
[28] A. M. Kordon, “A graph-based analysis of the cyclic scheduling problem with time constraints: schedulability and periodicity of the earliest schedule,”

Journal of Scheduling, Feb. 2010, DOI: 10.1007/s10951-009-0159-z (online).
[29] S.-A.-A. Touati and Z. Mathe, “Periodic register saturation in innermost loops,” Journal of Parallel Computing, vol. 35, no. 4, pp. 239–254, Apr. 2009.
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