

+

·

·

Provably good multiprocessor scheduling

with resource sharing

Björn Andersson · Arvind Easwaran

Abstract We present a 12(1 3R/(4m)) competitive algorithm for scheduling

implicit-deadline sporadic tasks on a platform comprising m processors, where a task

may request one of R shared resources.

Keywords Multiprocessor scheduling with resource sharing Competitive ratio for

multiprocessor resource sharing

1 Introduction

Consider scheduling of n sporadically arriving tasks on m identical processors. A task

generates a sequence of jobs whose arrival times cannot be controlled by the schedul-

ing algorithm and are a priori unknown. The time between two successive jobs by

the same task τi is at least Ti . Every job by τi requires at most Ci units of execution

over the next Ti time units after its arrival. If a task executes for L time units on a

processor p having speed s, then the task performs s L units of execution. A proces-

sor executes at most one job at a time and no job may execute on multiple processors

simultaneously.

There is a set of R shared resources that tasks need in addition to the m proces-

sors. We assume that each task may request at most one shared resource from R, and

further each job of that task may request the resource at most once during its execu-

tion; resource requests cannot be nested. The resource is granted to the job some time

instant at or after the request, and then at some future time instant the job voluntarily

releases the resource. We let Ci,k denote the maximum amount of execution of a job

of τi holding resource Rk . Jobs can access resources only in a mutually exclusive

manner, and further, a job whose request is not granted cannot execute; it must wait.

We however do not make any assumption on the placement of the resource request

within a job’s execution.

+

+

+
+ +

Our goal is to schedule all jobs to meet deadlines. In some scheduling problems,

the concept of utilization bound has been used to characterize the performance of

scheduling algorithms. But for characterizing scheduling algorithms for tasks that

share resources, the utilization bound is an inappropriate metric because there ex-

ists a task set for which the utilization approaches zero and a deadline is missed

regardless of algorithm used; this occurs when R contains just a single resource and

all jobs require this single resource during their entire execution. But the resource-

augmentation framework (Phillips et al. 1997) can be used in this context to charac-

terize the performance: We say that an algorithm A has competitive ratio CPTA if, for

every real-time task set for which it is possible to meet deadlines, it holds that if the

speed of each processor is multiplied by CPTA then A will meet deadlines as well.

Low competitive ratio is preferred; ideally it should be one. A scheduling algo-

rithm with a finite competitive ratio is desirable as well because it can ensure a

designer that deadlines will be met by using faster processors. Consequently, the

real-time systems community has embraced the development of scheduling algo-

rithms with finite competitive ratio (Baruah et al. 2009). Unfortunately, the com-

munity has not yet developed a multiprocessor scheduling algorithm with finite

competitive ratio for tasks that share resources, although many resource-sharing

schemes (Block et al. 2007; Rajkumar et al. 1988; López et al. 2004; Gai et al. 2001;

Easwaran and Andersson 2009) have been proposed.

In this paper, we present a new multiprocessor scheduling algorithm for tasks

which share resources and prove that it has a finite competitive ratio of 12(1

3R/(4m)). We call this algorithm gEDF-vpr, which stands for “global Earliest

Deadline First with virtual processor based resource sharing”.

2 Framework for gEDF-vpr algorithm

The main idea is to use m processors of speed 1 to emulate 2m R virtual proces-

sors using generalized processor sharing1 (Parekh and Gallager 1993). Specifically

the following virtual processors are used: (1) m type-1 virtual processors of speed

2m/(4m 3R) each, (2) R type-2 virtual processors of speed 3m/(4m 3R) each,

and (3) m type-3 virtual processors of speed 2m/(4m 3R) each.

A task τi with unfinished execution is at every instant assigned to exactly one

phase; see Fig. 1. When a job of τi arrives, τi is assigned phase-1. Ti/3 time units later

1Under generalized processor sharing, it is assumed that a virtual processor has access to some fraction of

a physical processor at all times, and hence processing capacity is not wasted in this emulation.

⇒

Fig. 1 Different execution phases of a job are scheduled on different sets of virtual processors

it is assigned phase-2, and an additional Ti/3 time units later it is assigned phase-3.

Additionally, each phase is given a relative deadline of Ti/3 time units. A task per-

forming no resource request is only in phase-1 and executes only on type-1 virtual

processors. For a task τi which makes resource requests, the following apply: (1) It is

ready for execution in phase-1 only if it has not yet made a resource request, (2) It is

ready for execution in phase-2 only if it has not yet been granted the shared resource

it requested,2 and (3) It is ready for execution in phase-3 only if it has unfinished

execution after releasing the shared resource.

Algorithm gEDF-vpr schedules (i) all phase-1 tasks onto type-1 processors using

gEDF, (ii) a phase-2 task that requests resource Rk onto the kth type-2 processor

using non-preemptive EDF, and (iii) all phase-3 tasks onto type-3 processors using

gEDF. Thus, the use of non-preemptive scheduling on type-2 processors ensures that

shared-resources are accessed in a mutually exclusive manner.

3 Competitive ratio of gEDF-vpr algorithm

In this section, we first present results on the competitive ratio of gEDF (multiproces-

sor) and non-preemptive EDF (single processor),3 and then derive the competitive

ratio for gEDF-vpr.

3.1 Fundamental results on competitive ratio

We let sched(A,τ, m,s) denote a predicate meaning that task set τ meets all dead-

lines when scheduled by algorithm A on m processors of speed s. The following

lemma re-states the gEDF result.

Lemma 1 (Theorem 2.2 in Phillips et al. 1997) sched(feasible,τ, m, 1)

sched(gEDF,τ, m, 2), where “feasible” implies that there exists some schedule

which meets all the deadlines; this schedule may use inserted idle time and it may be

generated using future arrival times and it may be different from EDF.

The following lemma presents a finite competitive ratio for non-preemptive EDF

scheduling on a single processor, assuming, as in this paper, tasks have implicit dead-

lines. That is, Ti for task τi denotes not only the minimum time between successive

job releases but also the relative deadline of jobs.

2Once the request is granted, execution occurs non-preemptively on the virtual processor in this phase.

3Although the gEDF result is known, we present the first competitive ratio for non-preemptive EDF.

⇒

≥

≥

= −

− ·
≥ + · − ·

Lemma 2 sched(non-preemptive-feasible,τ, 1, 1) sched(non-preemptive EDF,

τ, 1, 3), where “non-preemptive-feasible” implies that there exists some non-

preemptive schedule which meets all the deadlines; this schedule may use inserted

idle time and it may be generated using future arrival times and it may be different

from EDF.

Proof Suppose the lemma is incorrect. Let us consider the schedule where τ failed
under non-preemptive EDF; τ is assumed to be non-preemptive-feasible. Let t1 de-

note the time when a deadline miss occurred, and let t0 denote the earliest time,

before t1, when the processor transitioned from idle to busy. Let t t1 t0. Further,

let Jf denote a job of task τk which failed to meet a deadline at t1.

Lower-priority jobs which arrive after the arrival of Jf cannot block Jf . Therefore

any such job which blocked Jf must have arrived before Jf arrived. Further, since
this job has lower priority than Jf , its deadline must be at t1 or later (EDF schedul-

ing). Hence, any task τi which blocks Jf with lower-priority jobs, must satisfy the

condition Ti Tk . Therefore, Jf can experience lower-priority blocking for at most

maxTi Tk Ci/3 time units. Here the execution is divided by 3 because processors un-

der non-preemptive EDF are assumed to be 3 times as fast as the original ones. Since
Jf missed a deadline

Now for τ to be non-preemptive feasible, it holds that

·

Applying the two expressions in (2) and t Tk on (3) yields: t > t 2 Tk 2

(Tk Ck). Subtracting t on both sides and rewriting yields 0 > 2 Ck . This is a

contradiction and it proves the lemma. D

3.2 Competitive ratio of gEDF-vpr

We let T D1(τ) denote a function which takes task set τ as a parameter and outputs

a task set which differs from τ only in that for each task τi ∈ T D1(τ), the parameter

∈
=

∗

∀ ∈

+

Ti is one third of the parameter Ti of the corresponding task in τ and we also set

Ci,k 0 for every resource and task.

For each resource Rk R, we let T D2,k(τ) denote a function which takes task set

τ as a parameter and outputs a task set constructed as follows:

1. τi T D2,k(τ), the parameter Ti is one third of the parameter Ti of the corre-

sponding task in τ .

2. ∀τi ∈ T D2,k(τ), Ci,j = 0 for all j /= k.

3. ∀τi ∈ T D2,k(τ), Ci,k is equal to Ci,k of the corresponding task in τ .

4. ∀τi ∈ T D2,k(τ), Ci is equal to Ci,k of the corresponding task in τ .

That is, task τi in T D2,k(τ) accesses resource Rk throughout its execution and for

the same amount of time as τi in τ accesses Rk . It is easy to see that T D1(τ) models

tasks in phases 1 and 3, whereas T D2, (τ) models tasks in phase 2.

In these definitions, we can intuitively understand the meaning of “TD” as “one

ThirD”. The following theorem proves the competitive ratio of gEDF-vpr.

Theorem 1 Competitive ratio of gEDF-vpr is 12(1 + 3R/(4m)).

Proof Since processors that are 3 times as fast as the original ones make it feasible

to meet deadlines that are one third of the original deadlines, we have by definition

∃A : sched(A,τ, m, 1) ⇒ ∃A : sched(A, T D1(τ), m, 3) (4)

For each resource Rk , since Rk is accessed in a mutually exclusive manner, all the

task executions in τ that use Rk must be sequential. Then, a single dedicated proces-

sor is sufficient to guarantee feasibility of all such task executions. The following

equation is a consequence of this observation.

∀Rk ∈ R,(∃A : sched(A,τ, m, 1) ⇒ ∃A : sched(A, T D2,k(τ), 1, 3)) (5)

Now, using Lemma 1 for type-1 and type-3 virtual processors (one instance of (4)

for each type), and Lemma 2 for type-2 virtual processors (R instances of (5)), we

get

type 1: (∃A : sched(A,τ, m, 1)) ⇒ (sched(gEDF,T D1(τ), m, 6)), (6)

type 2: ∀Rk ∈ R,(∃A : sched(A,τ, m, 1))

⇒ (sched(non-preemptive EDF,T D2,k(τ), 1, 9)), (7)

type 3: (∃A : sched(A,τ, m, 1)) ⇒ (sched(gEDF,T D1(τ), m, 6)) (8)

Multiplying the processor speeds of (6)–(8) by m/(12m 9R) and using the em-

ulation with virtual processors as mentioned in Sect. 2 gives

(∃A : sched(A,τ, m, m/(12m + 9R)) ⇒ (sched(gEDF-vpr,τ, m, 1)) (9)

This proves the theorem. D

4 Conclusions

This paper presented the first provably good multiprocessor scheduling algorithm for

tasks that share resources. As stated in the introduction however, this initial result

required some simplifying assumptions on the task model. It would be interesting to

relax those assumptions; in particular, restrictions on deadlines and shared-resource

access pattern of tasks.

References

Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stiller S (2009) Implementation of a speedup-optimal

global EDF schedulability test. In: Proceedings of Euromicro conference on real-time systems,

pp 259–268

Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) A flexible real-time locking protocol for

multiprocessors. In: Proceedings of real-time and embedded computing systems and applications

conference, pp 47–56

Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority preemptive multiprocessor

scheduling. In: Proceedings of IEEE real-time systems symposium, pp 377–386

Gai P, Lipari G, Di Natale M (2001) Minimizing memory utilization of real-time task sets in single and

multi-processor systems-on-a-chip. In: Proceedings of IEEE real-time systems symposium, pp 73–

83

López JM, Díaz JL, García FD (2004) Utilization bounds for EDF scheduling on real-time multiprocessor

systems. J Real-Time Syst 28(1):39–68

Parekh A, Gallager R (1993) A generalized processor sharing approach to flow control—the single node

case. IEEE/ACM Trans Netw 1(3):344–357

Phillips CA, Stein C, Torng E, Wein J (1997) Optimal time-critical scheduling via resource augmentation.

In: Proceedings of the ACM symposium on theory of computing, pp. 140–149

Rajkumar R, Sha L, Lehoczky JP (1988) Real-time synchronization protocols for multiprocessors. In:

Proceedings of IEEE real-time systems symposium, pp 259–269

.

