
Optimal virtual cluster-based multiprocessor
scheduling

Arvind Easwaran · Insik Shin · Insup Lee

Abstract Scheduling of constrained deadline sporadic task systems on multiproces-
sor platforms is an area which has received much attention in the recent past. It is
widely believed that finding an optimal scheduler is hard, and therefore most stud-
ies have focused on developing algorithms with good processor utilization bounds.
These algorithms can be broadly classified into two categories: partitioned
scheduling in which tasks are statically assigned to individual processors, and global
scheduling in which each task is allowed to execute on any processor in the
platform. In this paper we consider a third, more general, approach called cluster-
based scheduling. In this approach each task is statically assigned to a processor
cluster, tasks in each cluster are globally scheduled among themselves, and clusters
in turn are scheduled on the multiprocessor platform. We develop techniques to
support such cluster-based scheduling algorithms, and also consider properties that
minimize total processor uti-lization of individual clusters. In the last part of this
paper, we develop new virtual cluster-based scheduling algorithms. For implicit
deadline sporadic task systems, we develop an optimal scheduling algorithm that is
neither Pfair nor ERfair. We also show that the processor utilization bound of US-
EDF{m/(2m − 1)} can be improved by using virtual clustering. Since neither
partitioned nor global strategies dominate over the other, cluster-based scheduling is
a natural direction for research towards achieving improved processor utilization
bounds.

Keywords Multiprocessor scheduling · Virtual processor clustering · Hierarchical
scheduling · Compositional schedulability analysis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138800?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aen@isep.ipp.pt
mailto:insik.shin@cs.kaist.ac.kr
mailto:lee@cis.upenn.edu

1 Introduction

With rapid development in microprocessor technology, multiprocessor and multi-
core designs are becoming an attractive solution to fulfill increasing performance
demands. In the real-time systems community, there has been a growing interest in
multiprocessor scheduling theories. In general, existing approaches over m identical,
unit-capacity processors can fall into two categories: partitioned and global schedul-
ing. Under partitioned scheduling each task is statically assigned to a single
processor and is allowed to execute on that processor only. Under global scheduling
tasks are allowed to dynamically migrate across m processors and execute on any of
them.

In this paper we consider another approach using a notion of processor cluster. A
cluster is a set of m′ processors, where 1 ≤ m′ ≤ m. Under cluster-based schedul-ing,
tasks are statically assigned to a cluster and then globally scheduled within the
cluster. This scheduling strategy can be viewed as a generalization of partitioned and
global scheduling; it is equivalent to partitioned scheduling at one extreme end
where we assign tasks to m clusters each of size one, and global scheduling at the
other extreme end where we assign tasks to a single cluster of size m. Cluster-based
scheduling can be further classified into two types: physical and virtual depending
on how a cluster is mapped to processors in the platform. A physical cluster holds a
static one-to-one mapping between its m′ processors and some m′ out of m
processors in the platform (Calandrino et al. 2007). A virtual cluster allows a
dynamic one-to-many mapping between its m′ processors and the m processors in
the platform. Scheduling tasks in this virtual cluster can be viewed as scheduling
them globally on all the m processors in the platform with amount of concurrency at
most m′, i.e., at any time instant at most m′ of the m processors are used by the
cluster. A key difference is that physical clusters share no processors in the platform,
while virtual clusters can share some.

Motivating example We now illustrate the capabilities of cluster-based scheduling
using an example. Consider a sporadic task system comprised of 6 tasks as follows:
τ1 = τ2 = τ3 = τ4 = (3, 2, 3), τ5 = (6, 4, 6) and τ6 = (6, 3, 6). The notation followed

Fig. 1 Motivating example

here is (T,C,D), where T denotes the minimum release separation between succes-
sive instances of the task, C denotes the maximum required processor capacity for
each instance and D denotes the relative deadline. Let this task set be scheduled on a
multiprocessor platform comprised of 4 processors. It is easy to see that this task set
is not schedulable under any partitioned scheduling algorithm, because no processor
can be allocated more than one task. Figure 1 shows the schedule of this task set un-
der global Earliest Deadline First (gEDF) (Liu 1969), EDZL (Cho et al. 2002), Least
Laxity First (gLLF) (Leung 1989), FP-EDF (Baruah 2004) and US-EDF{m/(2m − 1)}
(Srinivasan and Baruah 2002) scheduling algorithms. As shown in the figure, the
task set is not schedulable under any of these algorithms. Now consider cluster-based
scheduling as follows: tasks τ1, τ2 and τ3 are executed under gLLF on a cluster C1

comprised of 2 processors, and tasks τ4, τ5 and τ6 are executed under gEDF on an-
other cluster C2 comprised of 2 processors. The resulting schedule is shown in Fig. 1,
and as can be seen all the task deadlines are met.

In addition to being more general than physical clustering, virtual clustering is also
less sensitive to task-processor mappings. This can be explained using the same ex-
ample as above with an additional task τ7 = (6,1,6). Just for comparison, suppose τ7

is assigned to the first cluster C1 along with tasks τ1, τ2 and τ3. Then physical cluster-
based scheduling cannot accommodate those two clusters on 4 processors. On the
other hand, virtual clustering has a potential to accommodate them on 4 processors
by dynamically re-allocating slack from cluster C2 to cluster C1 (time interval (5,6]).

Clustering can also be useful as a mechanism to place a restriction on the amount
of concurrency. Suppose m tasks can thrash a L2 cache in a multi-core platform, if
they run in parallel at the same time. Then one may consider allowing at most m′ of
these m tasks to run in parallel, in order to prevent them from thrashing the L2 cache.
This can be easily done if the m tasks are assigned to a cluster of m′ processors.
A similar idea was used in (Anderson et al. 2006).

Fig. 2 Example virtual
clustering framework

Hierarchical scheduling Physical clustering requires intra-cluster scheduling only.
This is because clusters are assigned disjoint physical processors, and hence tasks in
different clusters cannot interfere with each others executions. However, the notion of
virtual clustering inherently requires a two-level hierarchical scheduling framework;
inter- and intra-cluster scheduling. In inter-cluster scheduling physical processors are
dynamically assigned to virtual clusters. In intra-cluster scheduling processor alloca-
tions given to a virtual cluster are assigned to tasks in that cluster. Consider the exam-
ple shown in Fig. 2. Let a task set be divided into three clusters C1, C2 and C3, each
employing gEDF scheduling strategy. If we use physical clustering, then each cluster
can be separately analyzed using existing techniques for gEDF. On the other hand
if we use virtual clustering, then in addition to intra-cluster schedulability analysis,
there is a need to develop techniques for scheduling the clusters on the multiprocessor
platform. Therefore, supporting hierarchical multiprocessor scheduling is cardinal to
the successful development of virtual clustering.

There have been considerable studies on hierarchical uniprocessor scheduling. De-
noting a collection of tasks and a scheduler as a component, these studies employed
the notion of a component interface to specify resources required for scheduling the
component’s tasks (Mok et al. 2001; Shin and Lee 2003; Easwaran et al. 2007).
Analogously, we denote a cluster along with the tasks and scheduler assigned to it
as a component in hierarchical multiprocessor schedulers. To support inter-cluster
scheduling, this paper proposes a component interface that specifies resources re-
quired by the tasks in the component’s cluster. Inter-cluster scheduler can allocate
processor supply to the cluster based on its interface. Intra-cluster scheduler can then
use this processor supply to schedule the tasks in the cluster. Many new issues arise
to adopt the notion of a component interface from uniprocessor to multiprocessor
scheduling. One of them is how to enable a component interface to carry informa-
tion about concurrent execution of tasks in the component. For example, suppose
a single task cannot execute in parallel. Then multiple processors cannot be used
concurrently to satisfy the execution requirement of this single task. Such an issue
needs to be handled for the successful development of component interfaces. In this
paper we present one solution to this issue. Our approach is to capture in a com-
ponent’s interface, all the task-level concurrency constraints in that component. The
interface demands enough processor supply from inter-cluster scheduler so that the
intra-cluster scheduler can handle task-level concurrency constraints. As a result the
inter-cluster scheduler does not have to worry about this issue.

Contributions The contributions of this paper are five-fold. First, we introduce the
notion of general hierarchical multiprocessor schedulers to support virtual cluster-
based scheduling. Second, we present an approach to specify the task-level concur-
rency constraints in a component’s interface. In Sect. 2 we introduce a multiprocessor
resource model based interface that not only captures the task-level concurrency con-
straints, but also specifies the total resource requirements of the component. This
enables the inter-cluster scheduler to schedule clusters using their interfaces alone.
Third, since such interfaces represent partitioned resource supplies1 as opposed to
dedicated resource supplies,2 we also extend existing schedulability conditions for
gEDF in this direction3 (see Sect. 4). Such extensions to schedulability conditions
are essential for supporting development of component interfaces. Fourth, we con-
sider the optimization problem of minimizing the total resource requirements of the
component interface. In Sect. 5, we present an efficient solution to this problem
based on the following property of our gEDF schedulability condition: total proces-
sor utilization required by a component interface to schedule tasks in the component
increases, as number of processors allocated to the component’s cluster increases.
Thus an optimal solution is obtained when we find the smallest number of proces-
sors that guarantee schedulability of the component. Fifth, in Sect. 6 we develop an
overhead free inter-cluster scheduling framework based on McNaughton’s algorithm
(McNaughton 1959). Using this framework we present a new algorithm, called Vir-
tual Clustering-Implicit Deadline Tasks (VC-IDT), for scheduling implicit deadline
sporadic task systems on identical, unit-capacity multiprocessor platforms. We show
that VC-IDT is an optimal scheduling algorithm, that does not satisfy the property
of P-fairness (Baruah et al. 1996) or ER-fairness (Anderson and Srinivasan 2000).
The latter feature of our algorithm, as we will see in Sect. 6.2.1, translates into bet-
ter bounds on the number of preemptions. As an illustration of the capabilities of
general task-processor mappings supported by virtual clustering, we also show that
the processor utilization bound of US-EDF{m/(2m − 1)} can be improved by using
this framework. In our previous work (Shin et al. 2008) we presented the first four
contributions listed above. In this paper we elaborate on (and extend) those contri-
butions, and in the process develop new virtual cluster-based scheduling algorithms
(fifth contribution described above).

2 Task and resource models

In this section we describe our task model and the multiprocessor platform. We also
introduce multiprocessor resource models which we use as component interfaces.

1If a processor can be used by a cluster only in some time intervals and not all, then its supply is said to
be partitioned.
2If a processor can be used by a cluster at all times, then its supply is said to be dedicated.
3We have chosen to focus on one scheduling algorithm in this paper. However the issues are the same for
other schedulers, and hence techniques developed here are applicable to other schedulers as well.

2.1 Task and platform models

Task model We assume a constrained deadline sporadic task model (Baruah et al.
1990). In this model a sporadic task is specified as τi = (Ti ,Ci ,Di), where Ti is
the minimum release separation, Ci is the maximum processor capacity require-
ment and Di is the relative deadline. These task parameters satisfy the property
Ci ≤ Di ≤ Ti .4 Successive instances of τi are released with a minimum separation
of Ti time units. We refer to each such instance as a real-time job. Each job of τi

must receive Ci units of processor capacity within Di time units from its release.
These Ci units must be supplied sequentially to the job. This restriction is useful in
modeling many real-world systems, because in general, all portions of a software
program cannot be parallelized.

Multiprocessor platform and scheduling strategy In this paper we assume an iden-
tical, unit-capacity multiprocessor platform having m processors. Each processor
in this platform has a resource bandwidth of one, i.e., it can provide t units of
processor capacity in every time interval of length t . We also assume that a job
can be preempted on one processor and may resume execution on another proces-
sor with negligible preemption and migration overheads, as in the standard litera-
ture of global scheduling (Goossens et al. 2003; Baker 2005a; Bertogna et al. 2005a;
Baruah 2007). We assume such a global scheduling strategy within each cluster, and
in particular, we assume that the strategy is global EDF (denoted as gEDF). At each
time instant, if m′ denotes the number of physical processors allocated to the cluster,
then gEDF schedules unfinished jobs that have the m′ earliest relative deadlines.

2.2 Multiprocessor resource model

A resource model is a model for specifying the characteristics of processor supply.
When these models represent component interfaces, they specify total processor re-
quirements of the component. Periodic (Shin and Lee 2003), EDP (Easwaran et al.
2007), bounded-delay (Feng and Mok 2002), etc., are examples of resource models
that have been extensively used for analysis of hierarchical uniprocessor schedulers.
These resource models can also be used as component interfaces in hierarchical mul-
tiprocessor schedulers. One way to achieve this is to consider m′ identical resource
models as a component interface, where m′ is the number of processors allocated to
the component’s cluster. However, this interface is restrictive because each processor
contributes the same amount of resource to the component as any other processor in
the cluster. It is desirable to be more flexible in that interfaces should be able to repre-
sent the collective processor requirements of clusters, without fixing the contribution
of each processor a priori. Apart from increased flexibility, such interfaces can also
improve processor utilization in the system.

We now introduce a multiprocessor resource model that specifies the characteris-
tics of processor supply provided by an identical, unit-capacity multiprocessor plat-
form. This resource model does not fix the contribution of each processor a priori,
and hence is a suitable candidate for cluster interfaces.

4If Di = Ti then the task is called implicit deadline task.

Fig. 3 Schedule of μ w.r.t. sbfμ(t)

Definition 1 (Multiprocessor periodic resource model (MPR)) A multiprocessor pe-
riodic resource model μ = 〈�,�,m′〉 specifies that an identical, unit-capacity mul-
tiprocessor platform collectively provides � units of resource in every � time units,
where the � units are supplied with concurrency at most m′; at any time instant at
most m′ physical processors are allocated to this resource model. �

�
denotes the re-

source bandwidth of model μ.

It is easy to see from the above definition that a feasible MPR model must satisfy
the condition � ≤ m′�. The supply bound function of a resource model (sbf) lower
bounds the amount of processor supply that the model guarantees in a given time
interval. Specifically, sbfR(t) is equal to the minimum amount of processor capacity
that model R is guaranteed to provide in any time interval of duration t . In uniproces-
sor systems, sbf is used in schedulability conditions to generate resource model based
component interfaces. Extending this approach to multiprocessors, in this paper we
derive similar schedulability conditions to generate MPR model based component
interfaces. Hence we now present the sbf for a MPR model μ = 〈�,�,m′〉. Figure 3
shows the schedule for μ that generates this minimum supply in a time interval of
duration t , where α = � �

m′ � and β = � − m′α. As can be seen, length of the largest

time interval with no supply is equal to 2� − 2� �
m′ 	 (shown in the figures). sbfμ5 is

given by the following equation.

sbfμ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ′ < 0⌊
t ′
�

⌋
� + max{0,m′x − (m′� − �)}, t ′ ≥ 0 and x ∈ [1, y]

⌊
t ′
�

⌋
� + max{0,m′x − (m′� − �)}

− (m′ − β), t ′ ≥ 0 and x /∈ [1, y]

where t ′ = t −
(

� −
⌈

�

m′

⌉)

, x =
(

t ′ − �

⌊
t ′

�

⌋)

and y = � −
⌊

�

m′

⌋

(1)

There are two main cases to consider for sbfμ. If t ′ is as shown in Fig. 3(a), then
the interval that generates the minimum supply starts from time instant s1 shown in
the same figure. On the other hand, if t ′ is as shown in Fig. 3(b), then the interval
that generates the minimum supply starts from time instant s2 shown in the same
figure. In uniprocessor systems although schedulability conditions with sbf have been
derived, a linear approximation of sbf is often used to reduce the time-complexity of
the interface generation process. Hence, in anticipation, we present the following
linear lower bound for sbfμ.6 Functions sbfμ and lsbfμ are plotted in Fig. 4.

lsbfμ(t) = �

�

(

t −
[

2

(

� − �

m′

)

+ 2

])

(2)

The following lemma proves that lsbfμ is indeed a lower bound for sbfμ.

Lemma 1 lsbfμ(t) ≤ sbfμ(t) for all t ≥ 0.

Proof Consider Fig. 4. Observe that lsbfμ(t) = 0 for all t ≤ t4. Therefore it is suf-
ficient to show that lsbfμ(t) ≤ sbfμ(t) for all t > t4. Suppose sbfμ(t4) = 2β + ε for
some ε ≥ 0.

We now show that lsbfμ(t) ≤ sbfμ(t) for all t such that t4 < t ≤ t8, where t8 =
t4 + �. The following statements are true by definition: 1) sbfμ(t8) = � + 2β + ε,
and 2) lsbfμ(t8) = �. Further, because the slope of sbfμ in the interval (t4, t5] is at
least as much as the slope of lsbfμ (�

�
≤ m′), lsbfμ(t) ≤ sbfμ(t) for all t such that

t4 < t ≤ t5. From the figure, we can see that sbfμ(t6) = � = lsbfμ(t8) and t6 ≤ t8.
Therefore lsbfμ(t) ≤ sbfμ(t) for all t such that t6 ≤ t ≤ t8. The last statement follows
from the fact that sbfμ is a non-decreasing function. This combined with the facts
that t6 = t5 + 1 and lsbfμ is a linear function, implies lsbfμ(t) ≤ sbfμ(t) for all t such
that t4 < t ≤ t8.

Observe that in every successive time interval of length � starting from t4, the
following holds: 1) both sbfμ and lsbfμ increase by exactly �, and 2) they both have

5A correction has been made to sbfμ from its original publication in Shin et al. (2008).
6lsbfμ has also been modified from its original publication in Shin et al. (2008), in order to be consistent
with the new sbfμ.

Fig. 4 sbfμ and lsbfμ

slope characteristics identical to those in the interval (t4, t8]. Therefore the arguments
from the previous paragraph hold for each such time interval of length �. The result
of the lemma then follows. �

Uniprocessor resource models, such as periodic or EDP, allow a view that a com-
ponent executes over an exclusive share of a physical uniprocessor platform. Extend-
ing this notion, MPR models allow a view that a component, and hence the corre-
sponding cluster, executes over an exclusive share of a physical multiprocessor plat-
form. Although this view guarantees a minimum total processor share given by sbf,
it does not enforce any distribution of this share over the processors in the platform,
apart from the concurrency bound m′. In this regard MPR models are general and
hence our candidate for component interfaces.

3 Related work

Multiprocessor scheduling In general, studies on real-time multiprocessor schedul-
ing theory can fall into two categories: partitioned and global scheduling. Under
partitioned scheduling each task is statically assigned to a single processor and
uniprocessor scheduling algorithms are used to schedule tasks. Under global schedul-
ing tasks are allowed to migrate across processors and algorithms that simultane-
ously schedule on all the processors are used. Many partitioning algorithms and
their analysis (Oh and Baker 1998; López et al. 2001; Baruah and Fisher 2006;
Fisher et al. 2006), and global scheduling algorithms and their analysis (Baruah
et al. 1996; Andersson et al. 2001; Cho et al. 2002; Srinivasan and Baruah 2002;
Zhu et al. 2003; Goossens et al. 2003; Baker 2003; Baruah 2004; Baker 2005a; Baker
2006; Bertogna et al. 2005a; Cho et al. 2006; Baruah 2007; Cirinei and Baker 2007;

Bertogna and Cirinei 2007; Baruah and Fisher 2007; Baruah and Baker 2008a, 2008b;
Funaoka et al. 2008), have been proposed in the past.

For implicit deadline task systems, both Earliest Deadline First (EDF) (López et
al. 2001) and Rate Monotonic (RM) (Oh and Baker 1998) based partitioned schedul-
ing have been proposed along with processor utilization bounds. These studies have
since been extended for constrained deadline task systems, and EDF (Baruah and
Fisher 2006) and fixed-priority (Fisher et al. 2006) based scheduling have been de-
veloped for them. Under global scheduling of implicit deadline task systems, several
optimal algorithms such as Pfair (Baruah et al. 1996), BoundaryFair (Zhu et al. 2003),
LNREF (Cho et al. 2006), and NVNLF (Funaoka et al. 2008), have been proposed. To
reduce the relatively high preemptions in these algorithms and to support constrained
deadline task systems, processor utilization bounds and worst-case response time
analysis for EDF (Goossens et al. 2003; Baker 2003, 2005a; Bertogna et al. 2005a;
Baruah 2007; Bertogna and Cirinei 2007; Baruah and Baker 2008a, 2008b) and Dead-
line Monotonic (DM) (Baker 2003, 2006; Bertogna and Cirinei 2007; Baruah and
Fisher 2007) based global scheduling strategies have been developed. Towards better
processor utilization, new global algorithms such as dynamic-priority EDZL (Cho et
al. 2002; Cirinei and Baker 2007) and US-EDF{m/(2m − 1)} (Srinivasan and Baruah
2002), and fixed-priority RM-US{m/(3m − 2)} (Andersson et al. 2001) and FP-EDF

(Baruah 2004), have also been proposed. Partitioned scheduling suffers from an in-
herent performance limitation in that a task may fail to be assigned to any processor,
although the total available processor capacity across the platform is larger than the
task’s requirements. Global scheduling has been developed to overcome this limita-
tion. However global algorithms are either not known to utilize processors optimally
(like in the case of constrained deadline task systems), or if they are known to be opti-
mal, then they have high number of preemptions (like in the case of implicit deadline
task systems). Moreover, for constrained deadline tasks, simulations conducted by
Baker (2005b) have shown that partitioned scheduling performs much better than
global scheduling on an average. These simulations reflect the large pessimism in
current schedulability tests for global algorithms. To eliminate the performance lim-
itation of partitioned scheduling and to achieve high processor utilization without
incurring high preemption costs, we consider the more general task-processor map-
pings that virtual cluster-based scheduling proposes.

Algorithms that support slightly more general task-processor mappings than ei-
ther partitioned or global scheduling have been proposed in the past. Andersson
and Tovar (2006), Andersson and Bletsas (2008), Andersson et al. (2008) and Kato
and Yamasaki (2007) have developed algorithms that allow a task to be scheduled
on at most two processors in the platform. Virtual cluster-based scheduling frame-
work that we propose generalizes all these task-processor mappings and therefore
can lead to higher processor utilization. Baruah and Carpenter (2003) introduced an
approach that restricts processor migration of jobs, in order to alleviate the perfor-
mance limitation of partitioned scheduling and the processor migration overheads of
global scheduling. It has been shown that the worst-case processor utilization of this
approach is no better than partitioned scheduling (roughly 50%). Calandrino et al.
(2007) presented a physical clustering framework in which tasks are first assigned to
physical processor clusters and then scheduled globally within those clusters. They

experimentally evaluated this framework to show that cache-access related overheads
can be reduced in comparison to both partitioned and global scheduling strategies.
Virtual clustering is again a generalization of this framework, and moreover, unlike
their work, we develop efficient schedulability analysis techniques with a focus on
achieving high processor utilization. Recently, virtual clustering has also been con-
sidered in the context of tardiness guarantees for soft real-time systems (Leontyev
and Anderson 2008).

Moir and Ramamurthy (1999), Holman and Anderson (2001) and Anderson et
al. (2006) presented an approach that upper bounds the amount of concurrent ex-
ecution within a group of tasks. They developed their approach using a two-level
Pfair-based scheduling hierarchy. These studies are most related to our work on vir-
tual clustering, but they differ from our technique mainly in the following aspect.
We introduce a multiprocessor resource model that makes it possible to clearly sep-
arate intra- and inter-cluster scheduling. This allows development of schedulability
analysis techniques for virtual clustering that are easily extensible to many different
schedulers. However their approaches do not employ such a notion. Therefore their
analysis techniques are bound to Pfair scheduling, and do not generalize to other
algorithms and task models such as the one considered in this paper. This flexibility
provides a powerful tool for the development of various task-processor mappings and
intra- and inter-cluster scheduling algorithms.

Hierarchical scheduling For uniprocessor platforms there has been a growing atten-
tion to hierarchical scheduling frameworks. Since a two-level framework was intro-
duced (Deng and Liu 1997), its schedulability has been analyzed under fixed-priority
(Kuo and Li 1999) and EDF-based (Lipari et al. 2000) scheduling. For multi-level
frameworks many resource model based component interfaces such as bounded-delay
(Mok et al. 2001; Shin and Lee 2004), periodic (Lipari and Bini 2003; Sin and Lee
2003, 2008) and EDP (Easwaran et al. 2007), have been introduced, and schedulabil-
ity conditions have been derived under fixed-priority and EDF scheduling (Feng and
Mok 2002; Lipari and Bini 2003; Shin and Lee 2003; Almeida and Pedreiras 2004;
Davis and Burns 2005; Easwaran et al. 2007). As discussed in the introduction, these
studies do not provide any technique to capture task-level concurrency constraints in
interfaces, and therefore are not well suited for virtual clustering.

4 Component schedulability condition

In this section we develop a schedulability condition for components in hierarchi-
cal multiprocessor schedulers, such that this condition accommodates the notion of
a partitioned resource supply. Specifically, we extend existing gEDF schedulability
conditions for dedicated resource, with the supply bound function of a MPR model.
Any MPR model that satisfies this condition can be used as an interface for the com-
ponent.

We consider a component comprising of cluster C and sporadic tasks T = {τ1 =
(T1,C1,D1), . . . , τn = (Tn,Cn,Dn)} scheduled under gEDF. To keep the presenta-
tion simple, we use notation C to refer to the component as well. We now de-
velop a schedulability condition for C assuming it is scheduled using MPR model

Fig. 5 Workload of task τi in interval [a, b]

μ = 〈�,�,m′〉, where m′ denotes number of processors in the cluster. This condi-
tion uses the total processor demand of task set T for a given time interval. Existing
studies (Bertogna et al. 2005a) have developed an upper bound for this demand which
we can use. Only upper bounds are known for this demand, because unlike the syn-
chronous arrival sequence in uniprocessors, no notion of worst-case arrival sequence
is known for multiprocessors (Baruah 2007). Hence we first summarize this existing
demand upper bound and then present our schedulability condition.

4.1 Component demand

Workload The workload of a task τi in an interval [a, b] gives the cumulative length
of all intervals in which τi is executing, when task set T is scheduled under C ’s
scheduler. This workload consists of three parts (illustrated in Fig. 5): (1) the carry-
in demand generated by a job of τi that is released prior to a, but did not finish its
execution requirements until a, (2) the demand of a set of jobs of τi that are both
released and have their deadlines within the interval, and (3) the carry-out demand
generated by a job of τi that is released in the interval [a, b), but does not finish its
execution requirements until b.

Workload upper bound for τi under gEDF If workload in an interval [a, b] can be
efficiently computed for all a, b ≥ 0 and for all tasks τi , then we can obtain the exact
demand of task set T in all intervals. However, since no such efficient computation
technique is known (apart from task set simulation), we use an upper bound for this
workload obtained by Bertogna et al. (2005a). This bound is obtained under two as-
sumptions: (1) some job of some task τk has a deadline at time instant b, and (2) this
job of τk misses its deadline. In the schedulability conditions we develop, these as-
sumptions hold for all time instants b that are considered. Hence this is a useful bound
and we present it here. Figure 6 illustrates the dispatch pattern corresponding to this
bound. A job of task τi has a deadline that coincides with time instant b. Jobs of τi

that are released prior to time b are assumed to be released as late as possible. Also,
the job of τi that is released before a but has a deadline in the interval [a, b], is as-
sumed to execute as late as possible. This imposes maximum possible interference on
the job of τk with deadline at b. Let Wi (t) denote this workload bound for τi in a time

Fig. 6 Dispatch and execution pattern of task τi for Wi (b − a)

Fig. 7 Example time instant a under dedicated resource

interval of length t (= b − a). Also let CIi(t) denote the carry-in demand generated
by the execution pattern shown in Fig. 6. Then

Wi (t) =
⌊

t + (Ti − Di)

Ti

⌋

Ci + CIi(t),

where CIi(t) = min

{

Ci ,max

{

0, t −
⌊

t + (Ti − Di)

Ti

⌋

Ti

}}

(3)

It has been shown that the actual workload of τi can never exceed Wi (b−a) in the
interval [a, b], provided tasks are scheduled under gEDF and a deadline miss occurs
for that job of τk whose deadline is at b (Bertogna et al. 2005a). This follows from the
observation that no job of τi with deadline greater than b can execute in the interval
[a, b]. In the following section we develop a schedulability condition for C using this
workload bound.

4.2 Schedulability condition

We now present a schedulability condition for component C when it is scheduled
using MPR model μ = 〈�,�,m′〉. For this purpose we extend (with the notion of
sbfμ) an existing condition that checks the schedulability of C on a dedicated resource
comprised of m′ unit-capacity processors.

When task τk is scheduled on m′ unit-capacity processors under gEDF, existing
work identifies different time intervals that must be checked to guarantee schedula-
bility of τk (Baruah 2007). In particular, it assumes b denotes the missed deadline

Fig. 8 Example time instant tidle

of some job of task τk (henceforth denoted as job τb
k), and then specifies different

values of a, corresponding to the interval [a, b], that need to be considered. Figure 7
gives one such time instant a. It corresponds to a point in time such that: (1) at least
one of the m′ processors is idle at that instant, (2) it is prior to the release time of
job τb

k (r in the figure), and (3) no processor is idle in the interval (a, r]. Observe
that at each such time instant a there can be at most m′ − 1 tasks that contribute to-
wards carry-in demand. This is because at most m′ − 1 processors are executing jobs
at a. This observation is used to develop an efficient schedulability condition in the
dedicated resource case. Informally, the study derives a condition on the total higher
priority workload in the interval [a, b] that guarantees a deadline miss for τb

k . In the
following discussion we extend this notion of time instant a for the case when τk is
scheduled under the partitioned resource supply μ.

When task τk is scheduled using μ, we denote a time instant as tidle if at least one
of the m′ processors is idle at that instant, even though it is available for use as per
supply μ. Figure 8 illustrates one such time instant, where r denotes the release time
of job τb

k , Ak denotes the length of the interval (a, r] and Ak +Dk denotes the length
of the interval (a, b]. To check schedulability of task τk we consider all time instants
a such that: (1) a is tidle, (2) a ≤ r , and (3) no time instant in the interval (a, r] is
tidle. The time instant illustrated in Fig. 8 satisfies these properties.

To derive the schedulability condition for component C , we consider all intervals
[a, b] as explained above and derive conditions under which a deadline miss occurs
for job τb

k . If τb
k misses its deadline, then the total workload of jobs having priority

at least τb
k must be greater than the total processor supply available to C in [a, b].

Let Ii (1 ≤ i ≤ n) denote the total workload in interval [a, b] of jobs of τi that have
priority at least τb

k . Since sbfμ(b − a) denotes a lower bound on the processor supply

available to C in [a, b], whenever τb
k misses its deadline it must be true that

n∑

i=1

Ii > sbfμ(b − a) = sbfμ(Ak + Dk) (4)

This inequality can be derived from the following observations: (1) the actual proces-
sor supply available to component C in [a, b] is at least sbfμ(Ak + Dk) and (2) there
are no tidle time instants in the interval (a, b], i.e., all available processor supply is
used by C to schedule tasks from T . For C to be schedulable using μ, it then suffices
to show that for all tasks τk and for all values of Ak (4) is invalid.

We now derive an upper bound for each workload Ii . We separately consider the
workload of τi in the following two interval classes: (1) time intervals in [a, b] in
which τb

k executes (intervals [t1, t2], [t3, t4] and [t5, t6] in Fig. 8) and (2) the other
time intervals in [a, b]. Let Ii,1 denote the workload of τi in intervals of type (1)
and Ii,2 denote the workload of τi in intervals of type (2). We bound Ii using upper
bounds for Ii,1 and Ii,2. In the dedicated resource case, only intervals of type (2) were
considered when deriving the schedulability condition (Baruah 2007). We however
consider the contiguous interval [a, b], because sbf of MPR models are only defined
over such contiguous time intervals.

Since the cumulative length of intervals of type (1) is at most Ck and there are
at most m′ processors on which C executes, the total workload of all the tasks in
intervals of type (1) is clearly upper bounded by m′Ck . Therefore,

∑n
i=1 Ii,1 ≤ m′Ck .

To bound Ii,2 we use the workload upper bound Wi presented in Sect. 4.1. Recall that
Wi (b−a) (= Wi (Ak +Dk)) upper bounds the workload of all jobs of τi that execute
in the interval [a, b] and have priority higher than τb

k . Therefore Wi (Ak + Dk) also
upper bounds Ii,2. Further, there is no need for Ii,2 to be larger than Ak + Dk − Ck ,
because we have already considered a total length of Ck for intervals of type (1). Also
this bound can be further tightened for i = k, because in Ik,2 we do not consider the
executions of τb

k . These executions are already considered for intervals of type (1).
Thus we can subtract Ck from Wk(Ak + Dk) and Ik,2 cannot be greater than Ak :

Ii,2 ≤ Īi,2 = min{Wi (Ak + Dk),Ak + Dk − Ck} for all i �= k

Ik,2 ≤ Īk,2 = min{Wk(Ak + Dk) − Ck,Ak}
Now by definition of time instant a at most m′ − 1 tasks can be active, and hence
have carry-in demand, at a. This follows from the fact that at least one processor is
not being used by C at a even though that processor is available as per supply μ.
Hence we only need to consider m′ − 1 largest values of CIi when computing an
upper bound for

∑n
i=1 Ii,2 using the above equations, where CIi denotes the carry-in

demand in Wi . Let us now define the following two terms:

Îi,2 = min{Wi (Ak + Dk) − CIi(Ak + Dk),Ak + Dk − Ck} for all i �= k

Îk,2 = min{Wk(Ak + Dk) − Ck − CIk(Ak + Dk),Ak}
Let L(m′−1) denote a set of task indices such that if i ∈ L(m′−1), then (Īi,2 − Îi,2)

is one of the m′ − 1 largest values among all tasks. Then an upper bound on the
worst-case resource demand in the interval (a, b] can be defined as,

DEM(Ak + Dk,m
′) = m′Ck +

n∑

i=1

Îi,2 +
∑

i:i∈L(m′−1)

(Īi,2 − Îi,2)

The following theorem gives our schedulability condition and its proof follows from
the above discussions.

Theorem 1 A component comprising of cluster C with m′ processors and sporadic
tasks T = {τ1 = (T1,C1,D1), . . . , τn = (Tn,Cn,Dn)} is schedulable under gEDF us-
ing MPR model μ = 〈�,�,m′〉, if for all tasks τk ∈ T and all Ak ≥ 0,

DEM(Ak + Dk,m
′) ≤ sbfμ(Ak + Dk) (5)

In Theorem 1 if we set � = m′�, then we get the schedulability condition under
dedicated resource that was proposed earlier (Baruah 2007). This shows that our con-
dition is no more pessimistic than the one under dedicated resource. Although this
theorem gives a schedulability test for component C , it would be highly inefficient
if we were required to check for all values of Ak . The following theorem shows that
this is not the case.

Theorem 2 If (5) is violated for some Ak , then it must also be violated for a value
satisfying the condition

Ak <
C� + m′Ck − Dk(

�
�

− UT) + U + B

�
�

− UT

where C� denotes the sum of m′ − 1 largest Ci ’s,

UT =
n∑

i=1

Ci

Ti

, U =
n∑

i=1

(Ti − Di)
Ci

Ti

and B = �

�

[

2 + 2

(

� − �

m′

)]

Proof It is easy to see that Îi,2 ≤ dbfτi
(Ak + Dk) and Īi,2 ≤ dbfτi

(Ak + Dk) + Ci ,
where dbfτi

(t) = � t+Ti−Di

Ti
�Ci . Then the left-hand side of (5) is less than or equal to

C� + m′Ck + ∑n
i=1 dbfτi

(Ak + Dk). For this equation to be violated it must be true
that

C� + m′Ck +
n∑

i=1

dbfτi
(Ak + Dk) > sbfμ(Ak + Dk)

(using dbfτi
bound from Baruah et al. 1990)

⇒ C� + m′Ck + (Ak + Dk)UT + U > sbfμ(Ak + Dk) (from (2))

⇒ C� + m′Ck + (Ak + Dk)UT + U >
�

�
(Ak + Dk) − B (rearranging)

⇒ Ak <
C� + mCk − Dk(

�
�

− UT) + U + B

�
�

− UT �

It can also be observed that (5) only needs to be evaluated at those values of Ak for
which at least one of Îi,2, Īi,2 or sbfμ change. Therefore Theorem 1 gives a pseudo-
polynomial time schedulability condition whenever utilization UT is strictly less than
the resource bandwidth �

�
. In our techniques described later we compute minimum

possible � and minimum required concurrency m′ for a given value of �. Since �

appears inside floor and ceiling functions in sbfμ, these computations may be in-
tractable. We therefore replace sbfμ in Theorem 1 with lsbfμ from (2) before using it
to generate MPR interfaces.

Discussion We have only focused on one intra-cluster scheduling algorithm in this
paper. However our analysis technique can be easily extended to other intra-cluster
scheduling algorithms. Specifically, in the schedulability condition given in (5),
DEM(Ak + Dk,m

′) depends on gEDF and sbfμ(Ak + Dk) depends on MPR model μ.
Suppose there exists a function DEMDM(Ak + Dk,m

′) that can compute the work-
load upper bound for a task set scheduled under global DM. Then we can plug in
DEMDM(Ak + Dk,m

′) into (5) to derive a schedulability condition for global DM

intra-cluster scheduling. In fact, such a DEMDM can be obtained by extending cur-
rent results over dedicated resource (Bertogna et al. 2005b).

Bertogna and Cirinei (2007) have derived an upper bound for the worst-case re-
sponse time of tasks scheduled under gEDF or global DM. They have also used this
bound to improve the carry-in demand CIi that we use in our schedulability con-
dition. However this improvement to the carry-in demand cannot be applied in our
case. Since we schedule tasks using MPR model, any response time computation de-
pends on the processor supply in addition to task demand. Then to use the response
time bounds presented in Bertogna and Cirinei (2007), we must extend it with sbf of
MPR model. However, since we are computing the MPR model (capacity � and con-
currency m′), its sbf is unknown and therefore the response time is not computable.
One way to resolve this issue is to compute � and m′ using binary search. However,
since � belongs to the domain of non-negative real numbers, binary search for the
minimum � can take a prohibitively long time.

5 Component interface generation

In this section we develop a technique to generate interface μ = 〈�,�,m′〉 for a clus-
ter C comprising of sporadic tasks T = {τ1 = (T1,C1,D1), . . . , τn = (Tn,Cn,Dn)}
scheduled under gEDF. For this purpose we use the schedulability condition given
by Theorem 1. We assume that period � of interface μ is specified a priori by the
system designer. For instance, one can specify this period taking into account preemp-
tion overheads in the system. We then compute values for capacity � and number of
processors m′ so that resource bandwidth of the interface is minimized. Finally, we
also develop a technique that transforms MPR interfaces to periodic tasks,7 in order
to schedule clusters on the multiprocessor platform (inter-cluster scheduling).

7A periodic task τ = (T,C,D) is a special case of the identically defined sporadic task; T in the periodic
case denotes the exact separation between successive job releases instead of minimum separation.

5.1 Minimum bandwidth interface

It is desirable to minimize the resource bandwidth of μ when generating an interface
for C , because C then consumes the minimum possible processor supply. We now
give a lemma which states that the resource bandwidth required to guarantee schedu-
lability of task set T monotonically increases as number of processors in the cluster
increases.

Lemma 2 Consider interfaces μ1 = 〈�1,�1,m
′
1〉 and μ2 = 〈�2,�2,m

′
2〉, such that

�1 = �2 and m′
2 = m′

1 +1. Suppose these two interfaces guarantee schedulability of
the same component C with their smallest possible resource bandwidth, respectively.
Then μ2 has a higher resource bandwidth than μ1 does, i.e., �1 < �2.

Proof We prove this lemma by contradiction. Consider μ′
2 = 〈�2,�

′
2,m

′
2〉 such that

�′
2 ≤ �1. Suppose μ′

2 guarantees schedulability of component C as per Theorem 1.
Let δd denote the difference in processor requirements of C on m′

1 and m′
2 proces-

sors for some interval length Ak + Dk , i.e., difference in function DEM used in The-
orem 1. Then

δd = DEM(Ak + Dk,m
′
2) − DEM(Ak + Dk,m

′
1)

=
∑

i:i∈L(m′
2−1)

(Īi,2 − Îi,2) −
∑

i:i∈L(m′
1−1)

(Īi,2 − Îi,2) + (m′
2 − m′

1)Ck

=
∑

i:i∈L(m′
2−1)

(Īi,2 − Îi,2) −
∑

i:i∈L(m′
1−1)

(Īi,2 − Îi,2) + Ck > 0. (6)

It is indicated by δd > 0 that the same component has a greater upper bound on
processor demand when it executes on more processors. Now let δs denote the dif-
ference in the linear supply bound function between μ1 and μ′

2 for interval length
Ak + Dk , i.e.,

δs = lsbfμ′
2
(Ak + Dk) − lsbfμ1(Ak + Dk)

= �′
2

�

(

t − 2

(

� + 1 − �′
2

m′
2

))

− �1

�

(

t − 2

(

� + 1 − �1

m′
1

))

≤ �1

�

(

t − 2

(

� + 1 − �1

m′
2

))

− �1

�

(

t − 2

(

� + 1 − �1

m′
1

))

≤ 2(�1)
2

�1

(
1

m′
2

− 1

m′
1

)

= − 2(�1)
2

m′
1m

′
2�1

< 0. (7)

It is indicated by δs < 0 that MPR models provide less processor supply with more
available processors, when values of period and capacity are fixed. Thus δd > 0 and
δs < 0 for all Ak + Dk . Since μ1 guarantees schedulability of component C using the

smallest possible resource bandwidth, DEM(Ak + Dk,m
′
1) = lsbfμ1(Ak + Dk) for

some Ak + Dk . Then DEM(Ak + Dk,m
′
2) > lsbfμ′

2
(Ak + Dk) for that Ak + Dk , and

therefore μ′
2 does not guarantee schedulability of C according to Theorem 1. This

contradicts the assumption �′
2 ≤ �1. �

Lemma 2 suggests that when we generate interface μ, we should use the smallest
number of processors to minimize resource bandwidth of μ. However an arbitrarily
small number for m′, say m′ = 1, may result in an infeasible μ. Recall that a MPR
model μ = 〈�,�,m′〉 is defined to be feasible if and only if � ≤ m′�. Therefore
we find a feasible interface μ for C that: (1) guarantees schedulability of C based on
Theorem 1 and (2) uses the smallest possible number of processors (m∗). We can find
such m∗ through search. Since bandwidth is monotonic with number of processors,
a binary search can be performed to determine m∗. For this search to terminate a
lower and upper bound on m∗ should be known. �UT 	 is clearly a lower bound on
the number of processors necessary to schedule C where UT = ∑

i
Ci

Ti
. If the number

of processors on the multiprocessor platform is known, then that number can be used
as an upper bound for m∗. Otherwise, the following lemma gives an upper bound for
m∗ as a function of task parameters.

Lemma 3 If m′ ≥
∑n

i=1 Ci

mini=1,...,n{Di−Ci } + n, then feasible MPR model μ = 〈�,m′�,m′〉
guarantees schedulability of C as per Theorem 1.

Proof

m′ ≥
∑n

i=1 Ci

mini=1,...,n{Di − Ci} + n (since ∀k,Ak ≥ 0 in Theorem 1)

⇒ m′ ≥
∑n

i=1 Ci

Ak + Dk − Ck

+ n ∀k and ∀Ak

⇒ m′(Ak + Dk − Ck) ≥
n∑

i=1

Ci + n(Ak + Dk − Ck) ∀k and ∀Ak (8)

Now consider the function DEM(Ak + Dk,m
′) from Theorem 1.

DEM(Ak + Dk,m
′) =

n∑

i=1

Îi,2 +
∑

i:i∈L(m′−1)

(Īi,2 − Îi,2) + m′Ck

(

since each Îi,2 ≤ Ak + Dk − Ck and
∑

i:i∈L(m′−1)

(Īi,2 − Îi,2) ≤
n∑

i=1

Ci

)

⇒ DEM(Ak + Dk,m
′) ≤ n(Ak + Dk − Ck) +

n∑

i=1

Ci + m′Ck (from (8))

⇒ DEM(Ak + Dk,m
′) ≤ m′(Ak + Dk − Ck) + m′Ck

⇒ DEM(Ak + Dk,m
′) ≤ sbfμ(Ak + Dk)

Table 1 Clusters C1, C2 and C3

Cluster Task set
∑

i
Ci
Ti

∑
i

Ci
Di

C1 {(60,5,60), (60,5,60), (60,5,60), (60,5,60), (70,5,70), (70,5,70), 1.304 1.304

(80,5,80), (80,5,80), (80,10,80), (90,5,90), (90,10,90),

(90,10,90), (100,10,100), (100,10,100), (100,10,100)}
C2 {(60,5,60), (100,5,100)} 0.1333 0.1333

C3 {(45,2,40), (45,2,45), (45,3,40), (45,3,45), (50,5,45), 1.1222 1.1930

(50,5,50), (50,5,50), (50,5,50), (70,5,60), (70,5,60),

(70,5,65), (70,5,65), (70,5,65), (70,5,65), (70,5,70)}

Since this inequality holds for all k and Ak , from Theorem 1 we get that μ is guaran-
teed to schedule C . �

Since μ in Lemma 3 is feasible and guarantees schedulability of C ,
∑n

i=1 Ci

minn
i=1{Di−Ci } +

n is an upper bound for m∗. Thus we generate an interface for C by doing a binary

search for m∗ in the range [�UT 	,
∑n

i=1 Ci

minn
i=1{Di−Ci } + n]. For each value of the number

of processors m′, we compute the smallest value of � that satisfies (5) in Theorem 1,
assuming sbfμ is replaced with lsbfμ. � (= �∗), corresponding to the smallest value
of m′ (= m∗) that guarantees schedulability of C and results in a feasible interface, is
then chosen as the capacity of μ. Also m∗ is chosen as the number of processors in
the cluster, i.e., μ = 〈�,�∗,m∗〉.
Algorithm complexity To bound Ak as in Theorem 2 we must know the value of �.
However, since � is being computed, we use its smallest (0) and largest (m′�) pos-
sible values to bound Ak . For each value of m′ > UT , � can then be computed in
pseudo-polynomial time using Theorem (1), assuming sbf is replaced with lsbf. This
follows from the fact that the denominator in the bound of Ak in Theorem 2 is non-
zero. The only problem case is when m′ = �UT 	 = UT . However in this case, we
now show that μ = 〈�,m′�,m′〉 can schedule C if and only if, m′ = 1 and Di ≥ Ti

for each task τi in T . Clearly, if some Di < Ti , then a resource bandwidth of UT is
not sufficient to guarantee schedulability. Now suppose m′ > 1. Then the left-hand
side of (5) is >

∑n
i=1 dbfτi

(Ak +Dk) ≥ (Ak +Dk)UT , because Îi,2 = dbfτi
(Ak +Dk),

Īi,2 ≥ dbfτi
(Ak +Dk), and m′Ck > 0. Hence in this case m′ > UT and this is a contra-

diction. Therefore computing the interface for m′ = UT can be done in constant time.
The number of different values of m′ to be considered is polynomial in the input size,
because the search interval is bounded by numbers that are polynomial in the input
parameters. Therefore the entire interface generation process has pseudo-polynomial
complexity.

Example 1 Consider the example virtual clustering framework shown in Fig. 2. Let
clusters C1, C2 and C3 be assigned tasks as shown in Table 1. Interfaces μ∗

1,μ
∗
2 and

μ∗
3, for clusters C1, C2 and C3, are shown in Figs. 9(a), 9(b) and 9(c) respectively. In

the figures we have plotted the resource bandwidth of these interfaces for varying
periods and m′ denotes the number of processors in the cluster.

Fig. 9 MPR model based interfaces

Figures 9(a) and 9(c) show that when m′ = 1 interfaces μ∗
1 and μ∗

3 are not fea-
sible; their resource bandwidths are greater than 1 for all period values. This shows
that clusters C1 and C3 are not schedulable on clusters having one processor. This is as
expected because the utilization of task sets in these clusters is also greater than one.
However when m′ = 2, μ∗

1 and μ∗
3 are feasible, i.e., their respective resource band-

widths are at most two. Therefore for clusters C1 and C3, we choose MPR interfaces
μ∗

1 and μ∗
3 with m′ = 2. Similarly, Fig. 9(b) shows that μ∗

2 is a feasible interface for
cluster C2 when m′ = 1. These plots also show that resource overheads8 incurred by
our interfaces are small for the non-trivial examples presented here.

5.2 Inter-cluster scheduling

As discussed in the introduction, virtual clustering involves two-level scheduling;
scheduling of tasks within each cluster (intra-cluster scheduling) and scheduling of
clusters on the multiprocessor platform (inter-cluster scheduling). MPR interfaces
generated in the previous section capture task-level concurrency constraints within a
cluster. Hence inter-cluster scheduling need not worry about these constraints when
it schedules cluster interfaces. However there is no known scheduling algorithm for
MPR interfaces. Therefore we now develop a technique to transform a MPR model
into periodic tasks such that processor requirements of these tasks are at least as much
as those of the resource model.

8Difference between maxk maxAk

DEM(Ak+Dk,m′)
Ak+Dk

and resource bandwidth of MPR interface.

Definition 2 Consider a MPR model μ = 〈�,�∗,m∗〉 and let α = �∗ − m∗��∗
m∗ �

and k = �α�. Define the transformation from μ to a periodic task set Tμ as Tμ =
{τ1 = (T1,C1,D1), . . . , τm∗ = (Tm∗ ,Cm∗ ,Dm∗)}, where

τ1 = · · · = τk =
(

�,

⌊
�∗

m∗

⌋

+ 1,�

)

τk+1 =
(

�,

⌊
�∗

m∗

⌋

+ α − k

⌊
α

k

⌋

,�

)

and

τk+2 = · · · = τm∗ =
(

�,

⌊
�∗

m∗

⌋

,�

)

In this definition it is easy to see that the total processor demand of Tμ is �∗ in
every period �. Further, we have assumed that whenever �∗ is not an integer, proces-
sor supply from μ fully utilizes one processor before using another. For example, if
�∗ = 2.5 and m∗ = 3, then μ will provide two units of resource from two processors
and the remaining 0.5 units from the third processor. The following theorem proves
correctness of this transformation.

Theorem 3 If all the deadlines of task set Tμ in Definition 2 are met by some proces-
sor supply with concurrency at most m∗ at any time instant, then its supply bound
function is lower bounded by sbfμ.

Proof Since Tμ has m∗ tasks, it can utilize at most m∗ processors at any time instant.
Therefore if some processor supply provides more than m∗ processors at any time
instant, then we can ignore these additional processor allocations. Hence we only
need to consider processor supplies with concurrency at most m∗.

Total processor demand of all the tasks in Tμ is �∗ in every period of � time units.
Then to meet all the deadlines of task set Tμ, any processor supply must provide at
least �∗ processor units in every period of � time units, with amount of concur-
rency at most m∗. But this is exactly the definition of MPR model μ = 〈�,�∗,m∗〉.
Therefore the supply bound function of this processor supply is lower bounded by
sbfμ. �

Thus MPR interfaces generated in the previous section can be transformed into
periodic tasks using Definition 2. Once such tasks are generated for each virtual clus-
ter, inter-cluster scheduling can be done using existing multiprocessor algorithms like
gEDF, Pfair (Baruah et al. 1996), etc.

Example 2 For MPR interfaces μ∗
1,μ

∗
2 and μ∗

3 generated in Example 1, we select pe-
riods 6, 8, and 5 respectively, i.e., interfaces 〈6,8.22,2〉, 〈8,2.34,1〉 and 〈5,5.83,2〉.
Using Definition 2 we get task sets Tμ∗

1
= {(6,5,6), (6,4,6)}, Tμ∗

2
= {(8,3,8)} and

Tμ∗
3

= {(5,3,5), (5,3,5)}. Suppose the three clusters C1, C2 and C3 (i.e., task set
{Tμ∗

1
, Tμ∗

2
, Tμ∗

3
}) are scheduled on a multiprocessor platform using gEDF. Then the

resulting MPR interface μ∗ is plotted in Fig. 9(d). As shown in the figure, μ∗ is not
feasible for m′ = 3; its resource bandwidth is greater than 3 for all period values.

However these three clusters are schedulable on a multiprocessor platform having 4
processors (in the figure μ∗ is feasible when m′ = 4).

The above example clearly illustrates the advantage of virtual clustering over phys-
ical clustering. The three components C1, C2 and C3, would require 5 processors under
physical clustering (2 each for C1 and C3 and 1 for C2). On the other hand, a gEDF

based virtual clustering technique can schedule these clusters using only 4 processors.
Although total utilization of tasks in the three clusters is 2.56, our analysis requires
4 processors to schedule the system. This overhead is as a result of the following
factors: (1) gEDF is not an optimal scheduling algorithm on multiprocessor platforms
(both for intra- and inter-cluster scheduling), (2) the schedulability conditions we use
are only sufficient conditions, and (3) capturing task-level concurrency constraints
in a component interface leads to some increase in processor requirements (resource
overhead of abstracting a cluster into MPR interface).

6 Virtual cluster-based scheduling algorithms

In this section we propose new virtual-cluster based scheduling algorithms for im-
plicit deadline sporadic task systems. Prior to presenting these algorithms, we elimi-
nate resource overheads from the virtual clustering framework proposed in Sect. 5.

6.1 Improved virtual-clustering framework

In this section we present an inter-cluster scheduling algorithm that is optimal when-
ever all the MPR interfaces being scheduled under it have identical periods. We also
present another transformation from MPR models to periodic tasks, which along with
the optimal inter-cluster scheduler, results in an improved sbf for MPR models. These
two together, eliminate the resource overheads described at the end of previous sec-
tion.

McNaughton (1959) presented an algorithm for scheduling real-time jobs in a
given time interval on a multiprocessor platform. This algorithm can be explained as
follows: Consider n jobs to be scheduled on m processors in a time interval (t1, t2]
of length t , such that no job is simultaneously scheduled on more than one proces-
sor. The job set need not be sorted in any particular order. McNaughton’s algorithm
schedules the ith job on the first non-empty processor, packing jobs from left to
right. Suppose the (i − 1)st job was scheduled on processor k up to time instant
t3 (t1 ≤ t3 ≤ t2). Then up to t2 − t3 time units of the ith job are scheduled on proces-
sor k and the remaining time units are scheduled on processor k + 1 starting from t1.
Figure 10 illustrates this schedule for a job set {J1, . . . , J5} on 4 processors. Note
that if the total resource demand of a job is at most t2 − t1, then (1) the job is sched-
uled on at most two processors by McNaughton’s algorithm, and (2) the job is never
scheduled simultaneously on both the processors. The following theorem establishes
conditions under which this algorithm can successfully schedule job sets.

Theorem 4 (Theorem 3.1 in McNaughton 1959) Let c1, . . . , cn denote the number
of processor units of the n jobs that must be scheduled in the interval (t1, t2] on m

Fig. 10 Schedule of job set
under McNaughton’s algorithm
in the interval (t1, t2]

identical, unit-capacity processors. If
∑n

i=1 ci ≤ m(t2 − t1), then a necessary and
sufficient condition to guarantee schedulability of this job set is that for all i, ci ≤
t2 − t1.

If ci > t2 − t1 then the ith job cannot be scheduled in the interval (t1, t2] by any
scheduling algorithm, unless the job is simultaneously scheduled on more than one
processor. Likewise, if

∑n
i=1 ci > m(t2 − t1), then also the job set cannot be sched-

uled by any scheduling algorithm, because the total processor demand in the interval
(t1, t2] is greater than the total available processing capacity. Hence Theorem 4 in
fact shows that McNaughton’s algorithm is optimal for scheduling job sets in a given
time interval.

Consider a periodic task set T = {(T,C1,T), . . . , (T,Cn,T)}. Tasks in T have
identical periods and implicit deadline. Suppose we use McNaughton’s algorithm in
the intervals (kT, (k +1)T], k ∈ I, to schedule jobs of T on m identical, unit-capacity
processors. Then for each interval (kT, (k + 1)T] (1) all jobs of T are released at the
beginning of the interval (kT) and (2) all jobs of T have deadline at the end of the
interval ((k +1)T). Therefore, from Theorem 4, we get that McNaughton’s algorithm
optimally schedules these jobs in each interval and this leads to the following direct
corollary.

Corollary 1 Let T = {τ1 = (T1,C1,D1), . . . , τn = (Tn,Cn,Dn)} denote a periodic
task set to be scheduled on m identical, unit-capacity processors. If T1 = · · · = Tn =
D1 = · · · = Dn (= T), then a necessary and sufficient condition for T to be schedu-
lable using McNaughton’s algorithm is that

∑n
i=1 Ci ≤ mT and Ci ≤ Ti for each i.

Consider the virtual clustering framework proposed in Sect. 5. Suppose all the
MPR interfaces in this framework have identical periods. Then all the periodic tasks
generated using Definition 2 also have identical periods. And from Corollary 1 we get
that McNaughton’s algorithm is optimal for scheduling these tasks on the physical
platform, i.e., the algorithm does not incur any resource overhead for inter-cluster
scheduling.

Another source of resource overhead is the abstraction of a cluster into MPR
interface and its transformation to a periodic task set. This overhead results from
the sub-optimality of sbf of MPR models which can be explained as follows. Con-
sider the two functions, sbfμ and usbfμ, shown in Fig. 11. The resource band-
width used by μ is equal to the slope of line usbfμ (�

�
). Suppose μ is used to ab-

stract the processor demand of cluster C in Theorem 1. Since sbfμ has a non-zero

Fig. 11 Bandwidth of sbfμ and schedulability load of cluster C

x-axis intercept, the bandwidth of μ is strictly larger than the schedulability load,
maxk maxAk

DEM(Ak + Dk,m
′)/(Ak + Dk), of cluster C . If not then, as shown in

Fig. 11, there exists some Ak + Dk for which Theorem 1 is not satisfied. This ex-
plains the resource overhead in the abstraction of clusters to MPR interfaces. Now
suppose μ is transformed into the periodic task set Tμ using Definition 2. Then from
Theorem 3 we get that the total processor demand of Tμ is at least as much as sbfμ.
However, since sbfμ does not guarantee � resource units in an interval of length
� (see Fig. 11), a processor supply with supply bound function exactly sbfμ can-
not schedule Tμ. This explains the resource overhead in the transformation of MPR
interfaces to periodic tasks.

To eliminate the aforementioned overheads, we must modify the transformation
presented in Definition 2. This is because the schedule of Tμ determines the processor
supply from the multiprocessor platform to μ, and this in turn determines sbfμ. We
now present a new transformation from MPR models to periodic tasks as follows.

Definition 3 Given a MPR model μ = 〈�,�∗,m∗〉, we define its transformation to
a periodic task set Tμ as

Tμ = {τ1 = (T1,C1,D1), . . . , τm∗ = (Tm∗ ,Cm∗ ,Dm∗)}, where

τ1 = · · · = τm∗−1 = (�,�,�) and τm∗ = (�,�∗ − (m∗ − 1)�,�)

In this definition it is easy to see that the total processor demand of Tμ is �∗ in
every � time units, with concurrency at most m∗. Therefore Theorem 3 holds in this
case as well, i.e., if all the deadlines of task set Tμ are met by some processor supply
with concurrency at most m∗ at any time instant, then its supply bound function is
lower bounded by sbfμ.

Now suppose a cluster is abstracted into MPR interface μ = 〈�,�,m′〉, which
is then transformed into task set Tμ using Definition 3. Let Tμ be scheduled on the
multiprocessor platform using McNaughton’s algorithm, along with periodic tasks

Fig. 12 McNaughton’s schedule of implicit deadline periodic tasks with identical periods

Fig. 13 Improved sbfμ and its linear upper bound usbfμ

that all have period and deadline � (implicit deadline task system with identical
periods). Figure 12 illustrates the McNaughton schedule for task set Tμ. As can be
seen in the figure, tasks τ1, . . . , τm′−1 completely utilize m′ − 1 processors on the
platform. Further, every job of task τm′ is scheduled in an identical manner within
its execution window (intervals (0, t1] and (t2, t3] relative to release time). Since this
schedule of Tμ is used as the processor supply for the underlying MPR interface, μ

guarantees � processor units in any time interval of length �, 2� processor units in
any time interval of length 2�, and so on. In other words, the blackout interval of
sbfμ (described in Sect. 2.2) reduces to zero. The resulting sbf is plotted in Fig. 13
and it is given by the following equation.

sbfμ(t) =
⌊

t

�

⌋

� +
(

t −
⌊

t

�

⌋

�

)

m′ − min

{

t −
⌊

t

�

⌋

�,m′� − �

}

(9)

sbfμ guarantees � resource units in any time interval of length �. Then a proces-
sor supply with supply bound function equal to sbfμ can successfully schedule task

set Tμ. Thus we have eliminated the resource overhead that was present in the previ-
ous transformation given in Definition 2.

Now consider the schedulability condition for cluster C given by (5) in Theo-
rem 1. This equation needs to be evaluated for all values of Ak up to the bound given
in Theorem 2 and for all tasks τk in cluster C . In this equation it is easy to see that
DEM(Ak + Dk,m

′) increases by at most m′ − 1 for every unit increase in Ak , as
long as Ak + 1 + Dk does not coincide with the release or deadline of some task in
cluster C . In other words, DEM(Ak + 1 + Dk,m

′) ≤ DEM(Ak + Dk,m
′) + m′ − 1,

whenever Ak + 1 + Dk is not equal to lTi or lTi + Di for any l and i (denoted as
property bounded increase). This is because over such unit increases in Ak , m′Ck and
each Îi,2 remain constant and

∑
i:i∈L(m′−1)

(Īi,2 − Îi,2) increases by at most m′ − 1.

However sbfμ increases by at least m′ − 1 over each unit time interval (see Fig. 13).
Therefore to generate interface μ, it is sufficient to evaluate (5) at only those values
of Ak for which Ak + Dk is equal to lTi or lTi + Di for some l and i. Now suppose
period � of μ is equal to the GCD (greatest common divisor) of the periods and
deadlines of all the tasks in cluster C . Then all the required evaluations of (5) will
occur at time instants t for which sbfμ(t) = usbfμ(t) = �

�
t (see Fig. 13). In other

words, the right-hand side of (5) can be replaced with �
�

t . This means that the re-
source bandwidth of the resulting interface μ (�

�
) will be equal to the schedulability

load, maxk maxAk

DEM(Ak+Dk,m
′)

Ak+Dk
, of cluster C . Thus we have eliminated the resource

overhead that was previously present in the cluster abstraction process.
We now summarize the contributions of this section. The following theorem,

which is a direct consequence of the above discussions, states the fundamental result
of this section. This theorem states that our improved virtual-clustering framework
does not incur any resource overheads in transforming MPR interfaces to periodic
tasks or in scheduling the transformed tasks on the multiprocessor platform.

Theorem 5 Consider MPR interfaces μ1 = 〈�,�1,m
′
1〉, . . . ,μp = 〈�,�p,m′

p〉.
Suppose they are transformed to periodic tasks using Definition 3. McNaughton’s al-
gorithm can successfully schedule the transformed tasks on m identical, unit-capacity
processors if and only if,

p∑

i=1

�i

�
≤ m

Suppose (1) we want to schedule a constrained deadline sporadic task set T using
virtual clusters on m identical, unit-capacity processors, (2) task-cluster mapping is
given, and (3) each intra-cluster scheduler is such that the corresponding schedula-
bility condition satisfies bounded increase property described above (e.g., gEDF). Let
(1) each virtual cluster be abstracted into an MPR interface whose period � is equal
to the GCD of the periods and deadlines of all the tasks in T , (2) these interfaces
be transformed into periodic tasks using Definition 3, and (3) these periodic tasks
be scheduled on the multiprocessor platform using McNaughton’s algorithm. Then,
in addition to the results stated in Theorem 5, the resource bandwidth of each MPR
interface will be equal to the schedulability load of the corresponding cluster.

6.2 Virtual clustering of implicit deadline task systems

In this section we propose two virtual cluster-based scheduling algorithms for im-
plicit deadline sporadic task sets. We consider the problem of scheduling an implicit
deadline sporadic task set T = {τ1 = (T1,C1,T1), . . . , τn = (Tn,Cn,Tn)} on m iden-
tical, unit-capacity processors. We first present a new virtual-clustering technique that
is optimal like the well known Pfair algorithm (Baruah et al. 1996), but unlike Pfair,
has a non-trivial bound on the number of preemptions. The second technique extends
the well known algorithm US-EDF{m/(2m − 1)} (Srinivasan and Baruah 2002) with
virtual clusters. We show that the presently known processor utilization bound of
US-EDF{m/(2m − 1)} can be improved by using virtual clusters.

6.2.1 VC-IDT scheduling algorithm

In VC-IDT (Virtual Clustering-Implicit Deadline Tasks) scheduling algorithm we
consider a trivial task-processor mapping that assigns each task τi ∈ T to its own
virtual cluster Ci having one processor. Since each cluster has only one processor,
we assume that each cluster uses EDF for intra-cluster scheduling.9 Each cluster Ci

is abstracted into a MPR interface μi = 〈�,�i,1〉, where � is equal to the GCD
of T1, . . . ,Tn and �i/� = Ci/Ti . Further, each interface μi is transformed into pe-
riodic tasks using Definition 3 and the resulting task set is scheduled on the mul-
tiprocessor platform using McNaughton’s algorithm. The following theorem proves
that VC-IDT is an optimal algorithm for scheduling implicit deadline sporadic task
systems on identical, unit-capacity multiprocessor platforms.

Theorem 6 Consider sporadic tasks T = {τ1 = (T1,C1,T1), . . . , τn = (Tn,Cn,Tn)}.
A necessary and sufficient condition to guarantee that T is schedulable on m identi-
cal, unit-capacity processors using VC-IDT algorithm is

n∑

i=1

Ci

Ti

≤ m (10)

Proof In VC-IDT each virtual cluster Ci , comprising of task τi , is abstracted to in-
terface μi = 〈�,�i,1〉, where � is equal to the GCD of T1, . . . ,Tn and �i

�
= Ci

Ti
.

The interface set μ1, . . . ,μn, all having identical periods, are then transformed to pe-
riodic tasks using Definition 3 and scheduled on the platform using McNaughton’s
algorithm. Therefore, from Theorem 5, we get that this interface set is schedulable
on the multiprocessor platform if and only if,

n∑

i=1

�i

�
≤ m ⇒

n∑

i=1

Ci

Ti

≤ m

9Since each cluster also has only one task, any work conserving algorithm can be used for intra-cluster
scheduling.

To prove this theorem we then need to show that for each i, interface μi can sched-
ule cluster Ci . Ci comprises of sporadic task τi and uses EDF scheduler. Therefore any
processor supply that can guarantee Ci processor units in all time intervals of length
Ti can be used to schedule τi . But from the sbf of model μi (see (9)), it is easy to see
that μi guarantees Ci processor units in any time interval of length Ti . This proves
the theorem. �

Equation (10) is known to be a necessary and sufficient feasibility condition
for scheduling implicit deadline sporadic task systems on m identical, unit-capacity
processors (Srinivasan and Anderson 2006). Hence VC-IDT is an optimal schedul-
ing algorithm for this problem domain. The other known optimal schedulers for this
problem, to the best of our knowledge, are the PD2 Pfair/ERfair algorithm (Srinivasan
and Anderson 2006) and the task-splitting algorithm (Andersson and Bletsas 2008).

PD2 algorithm is known to incur a high number of preemptions in order to guar-
antee P-fairness/ER-fairness, because fairness is a stricter requirement than deadline
satisfaction. It can potentially incur m preemptions in every time unit, which is the
maximum possible on this multiprocessor platform. In contrast, the number of pre-
emptions incurred by VC-IDT has a non-trivial upper bound which can be explained
as follows. When interfaces μ1, . . . ,μn are scheduled using McNaughton’s algorithm
(after being transformed into periodic tasks), there are at most m− 1 of them that use
more than one processor. Each such interface μi is preempted once in every � time
units and this may result in a preemption in the execution of task τi . Each of the
other n − (m − 1) tasks may also experience preemption once in every � time units,
because the execution requirements of a job of this task cannot be entirely satisfied
by a single job of the corresponding interface. The entire sporadic task set will thus
incur at most n preemptions in every � time units. Therefore when �, the GCD
of task periods, is very small VC-IDT does not offer any advantage over PD2 algo-
rithm. This can happen for instance even if two task periods are co-prime (the GCD
in this case is one). However, in real-world systems, it has been observed that task
periods are typically harmonic to (multiples of) each other. For example, harmonic
task periods can be found in avionics real-time applications; see ARINC-653 stan-
dards (ARINC specification 2006) and sample avionics workloads in the appendix
of this technical report (Easwaran et al. 2009). In this case, the GCD of task periods
is equal to the smallest task period (typically a few milliseconds as indicated by the
workloads in Easwaran et al. 2009), and then VC-IDT incurs far fewer preemptions
than Pfair/ERfair algorithms. It is worth noting that although the BoundaryFair algo-
rithm (Zhu et al. 2003) incurs fewer preemptions than VC-IDT, it is only optimal for
scheduling periodic (not sporadic) task systems.

The task splitting algorithm proposed by Andersson and Bletsas (2008) has also
been shown to be optimal for implicit deadline sporadic task systems (see Theorem 3
in Andersson and Bletsas 2008). Suppose jobs(t) denotes the maximum number of
jobs that will be released by the task system in any time interval of length t . Then
this algorithm is known to incur at most 3mt

GCD + 2m + jobs(t) number of preemp-
tions, where GCD denotes the greatest common divisor of task periods (derived from
Theorems 2 and 3 in Andersson and Bletsas 2008). In contrast, VC-IDT algorithm
incurs at most nt

GCD number of preemptions. Clearly, our algorithm outperforms the

task splitting approach whenever n < 3m. When n > 3m, either algorithm can in-
cur fewer preemptions depending on the value of GCD and the relation between
task periods. The runtime complexity of the dispatcher under task splitting is the
same as that of partitioned EDF (roughly logarithmic in the number of tasks for every
scheduling decision). In contrast, under VC-IDT, the entire interface schedule based
on McNaughton’s algorithm can be generated and stored offline for intervals of length
GCD. Therefore at runtime the tasks can be scheduled in constant time. This vastly
improved runtime complexity at the expense of increased storage requirements is par-
ticularly useful in embedded systems, where cheaper ROM and Flash memory is still
preferred over the more expensive RAM (for instance, MICAz, the sensor node from
crossbow, has 512 k of Flash memory whereas only 4 k of RAM (MICAz 2009)).
Finally, a practical limitation of the task splitting approach is that they do not provide
any error isolation mechanism, i.e., a task that executes for more than its stated worst-
case execution time can cause other tasks in the system to miss deadlines. In contrast,
VC-IDT provides automatic error isolation, because a mis-behaving task will never
get more processor share than already provided by its MPR interface.

6.2.2 Virtual clustering for US-EDF{m/(2m − 1)}

US-EDF{m/(2m − 1)}, proposed by Srinivasan and Baruah (2002), is a global
scheduling algorithm for implicit deadline sporadic task systems. Under this algo-
rithm each task with utilization (C

T) greater than m
2m−1 is given the highest priority,

and the remaining tasks are scheduled based on gEDF. It has been shown that this

algorithm has a processor utilization bound of m2

2m−1 , i.e., any sporadic task set with

total utilization (
∑

i
Ci

Ti
) at most m2

2m−1 can be scheduled by US-EDF{m/(2m − 1)} on
m identical, unit-capacity processors (Srinivasan and Baruah 2002).

Now consider the following virtual cluster-based US-EDF{m/(2m − 1)} schedul-
ing algorithm. Let each task with utilization greater than m

2m−1 be assigned to its own
virtual cluster having one processor and using EDF (denoted as high utilization clus-
ter), and all the remaining tasks be assigned to a single cluster using gEDF (denoted as
low utilization cluster). Each cluster is abstracted to a MPR interface such that period
� of each interface is equal to the GCD of T1, . . . ,Tn. Each high utilization cluster
is abstracted to interface 〈�,�,1〉, where �

�
is equal to the utilization of task in the

cluster (Theorem 6 proves correctness of this abstraction). The low utilization cluster
is abstracted to interface μlow = 〈�,�′,m′〉, where �′ and m′ are generated using
techniques in Sects. 5 and 6.1. Finally, these interfaces are transformed to periodic
tasks using Definition 3 and the resulting task set is scheduled on the multiprocessor
platform using McNaughton’s algorithm.

We now derive a utilization bound for the virtual cluster-based US-EDF{m/

(2m − 1)} algorithm described above. Suppose α denotes the total utilization of all
the high utilization tasks, i.e., the total resource bandwidth of all the MPR interfaces
that represent high utilization clusters is α. Since all the interfaces that we generate
have identical periods, from Theorem 5 we get that the maximum resource bandwidth
available for μlow is m−α. This means that �′

�
≤ m−α and α ≤ m are necessary and

sufficient conditions to guarantee schedulability of task set T under virtual cluster-
based US-EDF{m/(2m − 1)}.

Suppose α > m − 1. Then m − α < 1 and m′ ≤ 1. The last inequality can be
explained as follows. m′ = ��′

�
	 because m′ is the smallest number of processors

upon which the low utilization cluster is schedulable. Then �′
�

≤ m − α < 1 implies
m′ ≤ 1. In this case the low utilization cluster is scheduled on a uniprocessor platform
and gEDF reduces to EDF, an optimal uniprocessor scheduler with utilization bound
m − α. Therefore virtual cluster-based US-EDF{m/(2m − 1)} is optimal whenever
α > m − 1, i.e., it can successfully schedule task set T if

∑n
i=1

Ci

Ti
≤ m.

Now suppose α ≤ m − 1. To derive the utilization bound in this case, we use a
utilization bound of gEDF that was developed by Goossens et al. (2003). As per this
bound μlow can support a low utilization cluster whose total task utilization is upper
bounded by (�′

�
− (�′

�
−1)Umax), where Umax is the maximum utilization of any task

in the cluster. Therefore, in this case, the utilization bound of virtual cluster-based
US-EDF{m/(2m − 1)} is

α +
(

�′

�
−

(
�′

�
− 1

)

Umax

)

= α + (m − α − (m − α − 1)Umax)

Since m − α ≥ 1, the bound in the above equation is minimized when Umax is maxi-
mized. Substituting Umax = m

2m−1 (largest utilization of any task in the low utilization
cluster), we get a utilization bound of

α +
(

m − α

(

1 − m

2m − 1

)

+ m

2m − 1

)

= α(2m − 1) + (m − α)(m − 1) + m

2m − 1

≥ α(2m − 1) + (m − α)(m − 1) + m

2m − 1

= m2 + αm

2m − 1

Thus the processor utilization bound of virtual cluster-based US-EDF{m/(2m − 1)}
is min{m, m2+αm

2m−1 }. It is easy to see that whenever α > 0, this bound is greater than

the presently known utilization bound of m2

2m−1 for US-EDF{m/(2m−1)}. This shows
that virtual clustering, unlike the earlier US-EDF{m/(2m − 1)} algorithm, allows one
to use the leftover processing capacity from high utilization clusters for scheduling
tasks in the low utilization cluster. It also shows that the improvement in utilization
bound is achievable even when clusters are scheduled on the platform using non-
trivial abstractions such as MPR models. This gain however comes at a cost; since �

is equal to the GCD of task periods, the resulting schedule can potentially incur more
preemptions when compared to the original algorithm.

7 Conclusions

In this paper we have considered the idea of cluster-based scheduling on multiproces-
sor platforms as an alternative to existing partitioned and global scheduling strategies.
Cluster-based scheduling can be viewed as a two-level scheduling strategy. Tasks

in a cluster are globally scheduled within the cluster (intra-cluster scheduling) and
clusters are then scheduled on the multiprocessor platform (inter-cluster scheduling).
We have further classified clustering into physical (one-to-one) and virtual (many-to-
many), depending on the mapping between clusters and processors on the platform.
Virtual clustering is more general and less sensitive to task-processor mappings than
physical clustering.

Towards supporting virtual cluster-based scheduling, we have developed tech-
niques for hierarchical scheduling in this paper. Resource requirements and concur-
rency constraints of tasks within each cluster are first abstracted into MPR interfaces.
These interfaces are then transformed into periodic tasks which are used for inter-
cluster scheduling. We have also developed an efficient technique to minimize proces-
sor utilization of individual clusters under gEDF. Finally, we developed a new optimal
scheduling algorithm for implicit deadline sporadic task systems, and also illustrated
the power of general task-processor mappings by virtualizing US-EDF{m/(2m − 1)}
algorithm.

We only focused on gEDF for intra-cluster and McNaughton’s for inter-cluster
scheduling. However, our approach of isolating the inter-cluster scheduler from task-
level concurrency constraints is general, and can be adopted to other scheduling al-
gorithms as well. Moreover, this generality also means that our technique enables
clusters with different intra-cluster schedulers to be scheduled on the same platform.
It would be interesting to generalize this framework by including other intra and
inter-cluster scheduling algorithms, with an aim to solve some open problems in mul-
tiprocessor scheduling.

Acknowledgements The authors are grateful to the various anonymous reviewers of this work. In par-
ticular, we would like to thank the reviewer who pointed out the mistake in our sbfμ formulation.

References

Almeida L, Pedreiras P (2004) Scheduling within temporal partitions: Response-time analysis and server
design. In: Proceedings of ACM & IEEE international conference on embedded software, pp 95–103

Andersson B, Bletsas K (2008) Sporadic multiprocessor scheduling with few preemptions. In: Proceedings
of Euromicro conference on real-time systems, pp 243–252

Anderson JH, Srinivasan A (2000) Early-release fair scheduling. In: Proceedings of Euromicro conference
on real-time systems, pp 35–43

Andersson B, Tovar E (2006) Multiprocessor scheduling with few preemptions. In: Proceedings of IEEE
international conference on embedded and real-time computing systems and applications, pp 322–
334

Andersson B, Baruah S, Jonsson J (2001) Static-priority scheduling on multiprocessors. In: Proceedings
of IEEE real-time systems symposium, pp 193–202

Anderson J, Calandrino J, Devi UM (2006) Real-time scheduling on multicore platforms. In: Proceedings
of IEEE real-time technology and applications symposium, pp 179–190

Andersson B, Bletsas K, Baruah SK (2008) Scheduling arbitrary-deadline sporadic tasks on multiproces-
sors. In: Proceedings of IEEE real-time systems symposium

ARINC specification 653-2 (2006) Part I. Engineering standards for avionics and cabin systems (AEEC)
Baker TP (2003) Multiprocessor EDF and deadline monotonic schedulability analysis. In: Proceedings of

IEEE real-time systems symposium, pp 120–129
Baker T (2005a) An analysis of EDF schedulability on a multiprocessor. IEEE Trans Parallel Distributed

Syst 16(8):760–768

Baker TP (2005b) Comparison of empirical success rates of global vs. partitioned fixed-priority EDF
scheduling for hard real-time. Technical report TR–050601, Department of Computer Science,
Florida State University, Tallahassee

Baker T (2006) An analysis of fixed-priority schedulability on a multiprocessor. Real-Time Syst. 32(1–
2):49–71

Baruah S (2004) Optimal utilization bounds for the fixed-priority scheduling of periodic task systems on
identical multiprocessors. IEEE Trans. Comput. 53(6):781–784

Baruah S (2007) Techniques for multiprocessor global schedulability analysis. In: Proceedings of IEEE
real-time systems symposium, pp 119–128

Baruah SK, Baker T (2008a) Schedulability analysis of global EDF. Real-Time Syst 38(3):223–235
Baruah SK, Baker T (2008b) Global EDF schedulability analysis of arbitrary sporadic task systems. In:

Proceedings of Euromicro conference on real-time syst., pp 3–12
Baruah SK, Carpenter J (2003) Multiprocessor fixed-priority scheduling with restricted interprocessor

migrations. In: Proceedings of Euromicro conference on real-time systems, pp 195–202
Baruah S, Fisher N (2006) The partitioned multiprocessor scheduling of deadline-constrained sporadic

task systems. IEEE Trans Comput 55(7):918–923
Baruah SK, Fisher N (2007) Global deadline-monotonic scheduling of arbitrary-deadline sporadic task

systems. In: International conference on principles of distributed systems, pp 204–216
Baruah S, Mok A, Rosier L (1990) Preemptively scheduling hard-real-time sporadic tasks on one proces-

sor. In: Proceedings of IEEE real-time systems symposium, pp 182–190
Baruah S, Cohen NK, Plaxton CG, Varvel DA (1996) Proportionate progress: a notion of fairness in re-

source allocation. Algorithmica 15(6):600–625
Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric multiprocessor

platforms. In: Proceedings of IEEE real-time systems symposium, pp 149–160
Bertogna M, Cirinei M, Lipari G (2005a) Improved schedulability analysis of EDF on multiprocessor

platforms. In: Proceedings of Euromicro conference on real-time systems, pp 209–218
Bertogna M, Cirinei M, Lipari G (2005b) New schedulability tests for real-time task sets scheduled by

deadline monotonic on multiprocessors. In: Proceedings of international conference on principles of
distributed systems, pp 306–321

Calandrino JM, Anderson JH, Baumberger DP (2007) A hybrid real-time scheduling approach for large-
scale multicore platforms. In: Proceedings of Euromicro conference on real-time systems, pp 247–
258

Cho S, Lee S-K, Ahn S, Lin K-J (2002) Efficient real-time scheduling algorithms for multiprocessor sys-
tems. IEICE Trans Commun E85–B(12):2859–2867

Cho H, Ravindran B, Jensen ED (2006) An optimal real-time scheduling algorithm for multiprocessors.
In: Proceedings of IEEE real-time systems symposium, pp 101–110

Cirinei M, Baker TP (2007) EDZL scheduling analysis. In: Proceedings of Euromicro conference on real-
time systems, pp 9–18

Davis R, Burns A (2005) Hierarchical fixed priority pre-emptive scheduling. In: Proceedings of IEEE
real-time systems symposium, pp 389–398

Deng Z, Liu J (1997) Scheduling real-time applications in an open environment. In: Proceedings of IEEE
real-time systems symposium, pp 308–319

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In:
Proceedings of IEEE real-time systems symposium, pp 129–138

Easwaran A, Lee I, Sokolsky O, Vestal S (2009) A compositional framework for avionics
(ARINC-653) systems. Technical report MS–CIS–09–04, University of Pennsylvania. Available at
http://repository.upenn.edu/cis_reports/898/

Feng X, Mok A (2002) A model of hierarchical real-time virtual resources. In: Proceedings of IEEE real-
time systems symposium, pp 26–35

Fisher N, Baruah S, Baker TP (2006) The partitioned scheduling of sporadic tasks according to static-
priorities. In: Proceedings of Euromicro conference on real-time systems, pp 118–127

Funaoka K, Kato S, Yamasaki N (2008) Work-conserving optimal real-time scheduling on multiprocessors.
In: Proceedings of Euromicro conference on real-time systems, pp 13–22

Goossens J, Funk S, Baruah S (2003) Priority-driven scheduling of periodic task systems on multiproces-
sors. Real-Time Syst 2–5(23):187–205

Holman P, Anderson JH (2001) Guaranteeing Pfair supertasks by reweighting. In: Proceedings of IEEE
real-time systems symposium, pp 203–212

http://repository.upenn.edu/cis_reports/898/

Kato S, Yamasaki N (2007) Real-time scheduling with task splitting on multiprocessors. In: Proceedings
of IEEE international conference on embedded and real-time computing systems and applications,
pp 441–450

Kuo T-W, Li C-H (1999) A fixed-priority-driven open environment for real-time applications. In: Proceed-
ings of IEEE real-time systems symposium, pp 256–267

Leontyev H, Anderson JH (2008) A hierarchical multiprocessor bandwidth reservation scheme with timing
guarantees. In: Proceedings of Euromicro conference on real-time systems, pp 191–200

Leung JY-T (1989) A new algorithm for scheduling periodic, real-time tasks. Algorithmica 4:209–219
Lipari G, Bini E (2003) Resource partitioning among real-time applications. In: Proceedings of Euromicro

conference on real-time systems, pp 151–158
Lipari G, Carpenter J, Baruah S (2000) A framework for achieving inter-application isolation in multipro-

grammed hard-real-time environments. In: Proceedings of IEEE real-time systems symposium, pp
217–226

Liu CL (1969) Scheduling algorithms for multiprocessors in a hard-real-time environment. Technical re-
port, JPL space programs summary 37–60, vol II, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA

López JM Díaz, JL García, DF (2001) Minimum and maximum utilization bounds for multiprocessor RM
scheduling. In: Proceedings of Euromicro conference on real-time systems, pp 67–75

McNaughton R (1959) Scheduling with deadlines and loss functions. Manag Sci 6(1):1–12
MICAz. (2009) http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
Moir M, Ramamurthy S (1999) Pfair scheduling of fixed and migrating periodic tasks on multiple re-

sources. In: Proceedings of IEEE real-time systems symposium, pp 294–303
Mok A, Feng X, Chen D (2001) Resource partition for real-time systems. In: Proceedings of IEEE real-

time technology and applications symposium, pp 75–84
Oh D-I, Baker T (1998) Utilization bounds for n-processor rate monotone scheduling with static processor

assignment. Real-Time Syst 15(2):183–192
Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of

IEEE real-time systems symposium, pp 2–13
Shin I, Lee I (2004) Compositional real-time scheduling framework. In: Proceedings of IEEE real-time

systems symposium, pp 57–67
Shin I, Lee I (2008) Compositional real-time scheduling framework with periodic model. ACM Trans

Embed Comput Syst, 7(3)
Shin I, Easwaran A, Lee I (2008) Hierarchical scheduling framework for virtual clustering of multiproces-

sors. In: Proceedings of Euromicro conference on real-time systems, pp 181–190
Srinivasan A, Anderson JH (2006) Optimal rate-based scheduling on multiprocessors. J Comput Syst Sci

72(6):1094–1117
Srinivasan A, Baruah S (2002) Deadline-based scheduling of periodic task systems on multiprocessors.

Inf Process Lett 84(2):93–98
Zhu D, Mossé D, Melhem R (2003) Multiple-resource periodic scheduling problem: how much fairness is

necessary? In: Proceedings of IEEE real-time systems symposium, pp 142–153

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

	Optimal virtual cluster-based multiprocessor scheduling
	Abstract
	Introduction
	Hierarchical scheduling
	Contributions

	Task and resource models
	Task and platform models
	Task model
	Multiprocessor platform and scheduling strategy

	Multiprocessor resource model

	Related work
	Multiprocessor scheduling
	Hierarchical scheduling

	Component schedulability condition
	Component demand
	Workload
	Workload upper bound for taui under gEDF

	Schedulability condition
	Discussion

	Component interface generation
	Minimum bandwidth interface
	Algorithm complexity

	Inter-cluster scheduling

	Virtual cluster-based scheduling algorithms
	Improved virtual-clustering framework
	Virtual clustering of implicit deadline task systems
	VC-IDT scheduling algorithm
	Virtual clustering for us-edf{m/(2m-1)}

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

