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Abstract 
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating 
every software component in distributed embedded systems may not be a feasible approach. Not only the available 
resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The 
paper proposes heuristics to dynamically determine which components to replicate based on their significance to the 
system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The 
results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions 
when lower replication ratios are imposed due to resource or cost limitations. 

The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed 
environments. The proposed distributed coordination model reduces the complexity of the needed interactions among 
nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach. 
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Abstract

Replication is a proven concept for increasing the availability of distributed
systems. However, actively replicating every software component in distributed
embedded systems may not be a feasible approach. Not only theavailable re-
sources are often limited, but also the imposed overhead could significantly de-
grade the system’s performance. The paper proposes heuristics to dynamically
determine which components to replicate based on their significance to the system
as a whole, its consequent number of passive replicas, and where to place those
replicas in the network. The results show that the proposed heuristics achieve a
reasonably higher system’s availability than static offline decisions when lower
replication ratios are imposed due to resource or cost limitations.

The paper introduces a novel approach to coordinate the activation of passive
replicas in interdependent distributed environments. Theproposed distributed co-
ordination model reduces the complexity of the needed interactions among nodes
and is faster to converge to a globally acceptable solution than a traditional cen-
tralised approach.

1 Introduction

The highly dynamic and unpredictable nature of open distributed real-time embedded
systems can lead to a highly volatile environment where QoS provision needs to adapt
seamlessly to changing resource levels [2].Some of the difficulties arise from the fact
that the mix of independently developed applications and their aggregate resource and
timing requirements are unknown until runtime, but, still,a timely answer to events
must be provided in order to guarantee a desired level of performance.

Our previous work [23] applied concepts of cooperative QoS-aware computing to
address such challenges, emerging as a promising distributed computing paradigm to
face the stringent demands on resources and performance of new embedded real-time
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systems. Service-based approaches provide the needed flexibility, supporting dynamic
service composition, online QoS management, and load balancing. Available software
components can be shared among different coalitions of nodes and can be adapted at
runtime to varying operational conditions, enhancing the efficiency in the use of the
available resources.

Nevertheless, it is imperative to accept that failures can and will occur, even in
meticulously designed systems, and design proper measuresto counter those failures
[17]. As discussed in [16], software replication in distributed environments has some
advantages over other fault-tolerance solutions, providing the shortest recovery delays,
it is less intrusive with respect to execution time, it scales much better, and is relatively
generic and transparent to the application domain.

Traditionally, replication is decided offline and applied statically. This approach
is suitable for systems where the importance of the components is well defined and
remains stable during execution. However, the open and dynamic nature of service-
based distributed embedded systems makes it very difficult to identify in advance the
most critical software components. As a consequence, earlydesign decisions on where
and how to apply fault-tolerance techniques may turn out inadequate. At the same time,
actively replicating all software components independently of their significance to the
overall system may be infeasible in embedded systems due to the scale of their timing,
cost, and resource constraints [6].

This paper is then motivated by the need to develop a flexible and cost-effective
fault-tolerance solution with a significant lower overheadcompared to a strict active
redundancy-based approach. The term cost-effective implies that we want to achieve
high error coverage with the minimum amount of redundancy. The paper proposes low
runtime complexity heuristics to (i) dynamically determine which components to repli-
cate based on their significance to the system as a whole; (ii)determine a number of
replicas proportional to the components’ significance degree; and (iii) select the loca-
tion of those replicas based on collected information aboutthe nodes’ availability as the
system progresses. To quantitatively study the effectiveness of the proposed approach
an extensive number of simulation runs was analysed. The results show that even sim-
ple heuristics with low runtime complexity can achieve a reasonably higher system’s
availability than static offline decisions when lower replication ratios are imposed due
to resource or cost limitations.

This paper also tackles the challenging problem of activating backup replicas in
distributed interdependent environments. Consider the case where the quality of the
produced output of a particular component depends no only onthe amount and type of
used resources but also on the quality of the inputs being sent by other components in
the system [32]. If a primary replica is found to be faulty, a new primary must be elected
from the set of passive backup ones and the execution restarted from the last saved state.
However, it is not guaranteed that the new primary will be able to obtain the needed
resources to output the same QoS level that was being produced by the old primary. In
such cases, the need of coordination arises in order to preserve the correct functionality
of the distributed execution [1, 12]. This paper proposes a distributed coordination
protocol that rapidly converges to a new globally consistent service solution by (i)
reducing the needed interactions among nodes; and (ii) compensating for a decrease
in input quality by an increase in the amount of used resources in key components in
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interdependency graphs.

2 System model

We understand a serviceS = {c1, c2, . . . , cn} as a set of software componentsci being
cooperatively executed by a coalition of nodes. Each component ci is an entity that
is defined by its functionality, is able to send and receive messages, is available at a
certain point of the network, and has a set of QoS parameters that can be changed in
order to adapt service provisioning to a dynamically changing environment.

Each subset of QoS parameters that relates to a single aspectof service quality is
named as aQoS dimension. Each of these QoS dimensions has different resource re-
quirements for each possible level of service. We make the reasonable assumption that
services’ execution modes associated with higher QoS levels require higher resource
amounts.

There may exist QoS interdependencies among two or more of the multiple QoS
dimensions of a serviceS, both within a component and among components. Given
two QoS dimensions,Qa andQb, a QoS dimension,Qa, is said to be dependent on
another dimensionQb if a change along the dimensionQb will increase the needed
resource demand to achieve the quality level previously achieved alongQa [28]. Fur-
thermore, we consider the existence of feasible QoS regions[32]. A region of output
quality [q(o)1, q(o)2] is defined as the QoS level that can be provided by a component
when provided with sufficient input quality and resources. Within a QoS region, it may
be possible to keep the current output quality by compensating for a decrease in input
quality by an increase in the amount of used resources or viceversa.

Users provide a single specification of their own range of QoSpreferencesQ for a
complete serviceS, ranging from a desired QoS levelLdesired to the maximum toler-
able service degradation, specified by a minimum acceptableQoS levelLminimum,
without having to understand the individual components that make up the service.
Nodes dynamically group themselves into a new coalition, cooperatively allocating re-
sources to each new service and establishing an initial Service Level Agreement (SLA)
that maximises the satisfaction of the user’s QoS constraints associated with the new
service while minimises the impact on the global system’s QoS caused by the new ser-
vice’s arrival [23]. Within a coalition, each componentci ∈ S will then be executed at
a QoS levelLminimum ≤ Qi

val ≤ Ldesired at a nodeni. This relation is represented
by a triple(ni, ci, Q

i
val).

The set of QoS interdependencies among componentsci ∈ S is represented as a
connected graphGS = (VS , ES), on top of the service’s distribution graph, where each
vertexvi ∈ VS represents a componentci and a directed edgeei ∈ ES from cj to
ck indicates thatck is functionally dependent oncj. Within GS = (VS , ES), we call
cut-vertexto a componentci ∈ VS , if the removal of that component dividesGS in two
separate connected graphs.

Each componentci is only aware of the set of inputsIci
= {(cj, Q

j
val), . . . , (ck, Qk

val)},
describing the quality of all of its inputs coming from precedent components inGW and
the set of outputsOci

= {(cl, Q
l
val), . . . , (cp, Q

p
val)}, describing the quality of all of

its outputs sent to its successor components inGW . As such, no global knowledge is
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required.

3 Towards a flexible and adaptive replication control

The possibility of partial failures is a fundamental characteristic of distributed applica-
tions, even more so in open environments. A sub-domain of reliability, fault-tolerance
aims at allowing a system to survive in spite of faults,i.e. after a fault has occurred,
by means of redundancy. In this paper, we consider a failure to be when a component
stops producing output.

Replication is an effective way to achieve fault tolerance for such type of failure
[27]. In fault-tolerant real-time systems, using active replication schemes, where sev-
eral replicas run simultaneously, has been common [25]. Even if errors are detected
in some of the replicas, the non-erroneous replicas will still be able to produce results
within the deadlines. On the negative side, running severalreplicas simultaneously is
costly and can be infeasible in distributed embedded systems [6]. On the other hand,
passive replication [5] minimises resource consumption byonly activating redundant
replicas in case of failures, as typically providing and applying state updates is less re-
source demanding than requesting execution. As such, passive replication is appealing
for soft real-time systems that cannot afford the cost of maintaining active replicas and
tolerate an increased recovery time [3]. Nevertheless, it may still be possible to tolerate
faults within deadlines, thus improving the system’s reliability without using a more
resource consuming fault-tolerance mechanism [34].

However, most of the existing solutions for fault-tolerance are usually designed
and configured at design time, explicitly and statically identifying the most critical
components and their number of replicas, lacking the neededflexibility to handle the
runtime dynamics of open distributed real-time embedded systems [30]. Distributed
real-time embedded systems often consist of several independently developed compo-
nents, shared across applications and whose critically mayevolve dynamically during
the course of computation. As such, offline decisions on the number and allocation
of replicas may be inadequate after the system has been executing for some time.
Moreover, the available resources are often limited, whichmeans that simultaneous
replication of all the components may not be feasible or desirable due to the excessive
overhead.

Consequently, the problem consists in finding a replicationscheme which min-
imises the probability of failure of the most important components without replicating
every software component. This involves the study of mechanisms to determine which
components should be replicated, the quantity of replicas to be made, and where to
deploy such replicas [19]. The benefits of replication in open, dynamic, resource-
constrained environments are a complex function of the number of replicas, the place-
ment of those replicas, the selected replica consistency protocol, and the availabil-
ity and performance characteristics of the nodes and networks composing the system.
Since replica consistency protocols are relatively well understood [18, 8, 30], we will
not consider them in the remainder of this paper.

Assuming that a mechanism exists for keeping passive replicas consistent, how can
we make use of passive replication for increasing the reliability of distributed resource-
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constrained embedded systems where it may not be possible toreplicate every available
component? Our approach is based on the concept of significance, a value associated
to each component which reflects the effects of its failure onthe overall system. In-
tuitively, the more a componentci ∈ S has other components depending on it, the
more it is significant to the system as a whole. Thus, the significance degreewi of
a componentci at a given timet is periodically computed as the aggregation of the
interdependencies of other components on it, determining the usefulness of its outputs
to all the components which depend on it to perform their tasks.

More formally, givenSG = {G1, . . . ,Gn}, the set of connected graphs of interde-
pendencies between components for a given system, andOGj

(ci), the out-degree of a
nodeci ∈ Gj , the significance ofci is given by Equation 1.

wi =
n

∑

k=1

OGk
(ci) (1)

Once the significance of each component to the system has beenestimated, the
decision on which components to replicate and the correspondent number of passive
replicas must be taken. We propose to compute, through Equation 2, the number of
replicas that should be generated for a componentci, which is directly proportional
to the component’s significance degreewi and to the maximum number of possible
replicasmaxci

and inversely proportional to the sum of the significance degree of all
components in the systemW . maxci

is given by the number of nodes in a heteroge-
neous environment which have the needed type of resources toexecute the component
ci.

nci =
∣

∣

∣

wi ∗ maxci

W

∣

∣

∣

(2)

Having determined the number of replicas for each component, a strategy for plac-
ing them in the network is needed. Consider the effects of placing replicas on unre-
liable nodes. The resulting unreliability of those replicas will usually require replica
consistency protocols to work harder [30], increasing network traffic and processing
overheads. Thus, not only will the system’s performance suffer but its availability may
actually decrease, despite the increased number of components [18]. Consequently,
several strategies for replicas’ placement have been investigated, independently of the
followed replication approach. In the context of distributed embedded systems, the
impact of different allocation heuristics has been studiedin [33] and a quantitative sur-
vey on a QoS-aware replica placement can be found in [13]. Nevertheless, we believe
that a dynamic allocation of replicas based on collected information about the nodes’
behaviour as the system progresses and evolves will achievea better performance than
would be possible with static allocation approaches.

Two gross measures of the reliability of a node are its Mean Time To Failure
(MTTF) and its Mean Time To Recovery (MTTR) [19]. We propose to use those mea-
sures to allocate the set of replicas of a componentci based on the expected availability

of nodes in the system. The utility0 ≤ u
ri

j

k ≤ 1 of allocating a passive replicari
j of a

componentci to a nodenk is then defined by the probability of its availability during
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the system’s execution, given by Equation 3. Utilities range from zero, the value of a
completely unavailable node, to one, the value of a totally available node.

u
ri

j

k =
MTTFk

MTTFk + MMTRk

(3)

Having the utility of each possible allocation, the probability of failure of a given
set of replicasRi = ri

1
, ri

2
, . . . , ri

nci is determined by Equation 4.

F (Ri) = (1 − ui
1) ∗ (1 − ui

2) ∗ . . . ∗ (1 − ui
nci ) (4)

The system will then allocate the set of replicasRi = ri
1
, ri

2
, . . . , ri

nci such that
its probability of failureF (Ri) is minimal among all the possible allocation sets. In
order to keep this allocation as up-to-date as possible, nodes have to be monitored as
the system runs. If reliability of a replica set strays outside a predefined tolerance value
a reconfiguration of the set is required.

4 Coordinated activation of passive replicas

One of the advantages of passive replication is that it can beimplemented without the
use of complex replica consistency protocols [30, 8]. Sinceonly the primary replica
processes any requests, it propagates any state changes to all alive backups, trivially
ensuring order through message numbering [8]. In our system, it means that whenever
the primary replica of a componentci updates its QoS level in response to dynamical
environmental changes [22], such state changes are propagated to all backup replicas
in the system.

Nevertheless, one of the disadvantages of passive replication is the overhead taken
to elect a new primary among the set of backups after a failure. This is even more
challenging when activating replicas in interdependent cooperative coalitions where
the output produced by a component may depend not only on the amount and type
of used resources but also on the quality of the received inputs [22]. Ideally, when
a primary fails (a failure detector [7] is assumed) a backup which is able to obtain
the needed resources to output the same QoS level that was being produced by the
old primary replica is selected as the new primary. However,due to the heterogeneity
and dynamically varying workloads of nodes in the system, isnot guaranteed that at
least one of the backups will be able to output such quality level. Such feasibility is
determined by the anytime local QoS optimisation algorithmof [23], which aims to
minimise the impact of the activation of a new component on the currently provided
QoS level of other components at a particular node.

Whenever the required QoS level cannot be assured by the new primary replica
there is a need to ensure that individual substitutions of a component will produce a
globally acceptable solution for the entire distributed service [14]. While there has
been a great deal of research in several aspects of runtime coordination in embedded
real-time systems [10, 15, 9, 4, 11], to the best of our knowledge we are the first to
address the specific problem of coordinating the activationof passive replicas in inter-
depedent distributed environments with real-time constraints. Here, the termcoordi-
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nated activationrefers to the ability of a distributed system to invoke adaptive actions
on multiple nodes in a coordinated manner so as to achieve a common goal.

With the increasing size and complexity of open embedded systems the ability to
build self-managed distributed systems using centralisedcoordination models is reach-
ing its limits [21], as solutions they produce require too much global knowledge. With-
out a central coordination entity, the collective adaptation behaviour must emerge from
local interactions among components. This is typically accomplished through the ex-
change of multiple messages to ensure that all involved components make the same
decision about whether and how to adapt. One main challenge is controlling this ex-
change of information in order to achieve a convergence to a globally consistent so-
lution without overflowing components with messages. Furthermore, with some de-
centralised coordination models it becomes difficult to predict the exact behaviour of
the system taken as a whole because of the large number of possible non-deterministic
ways in which the system can behave [31].

Whenever real-time decision making is in order, a timely answer to events suggests
that after some finite and bounded time the global adaptationprocess converges to a
consistent solution. We propose to achieve a time-bounded convergence to a global so-
lution through a regulated decentralised coordination protocol defined by the following
phases:

1. New primary selection. Let Qi
val be the QoS level that was being outputted by

the primary replica of componentci that has failed. If no passive replica ofci is
able to output the same QoS level, select the one which is ableto output the QoS
level Qi

val′ < Qi
val closer toQi

val. A coordination message is sent to affected
partners in the coalition.

2. Local adaptation. Affected partners, executing any interdependent component
cj ∈ S, become aware of the new output valuesQi

val′ of ci and recompute their
local set of SLAs using the anytime QoS optmisation approachof [23]. We
assume that coalition partners are willing to collaborate in order to achieve a
global coalition’s consistency, even if this might reduce the utility of their local
optimisations.

3. Coordinated adaptation.Affected partners by the decrease toQi
val′ in the path

to the next cut-vertexcc may be able to continue to output their current QoS level
despite the downgraded input by compensating with an increased resource usage
while others may not. If the next cut-vertexcc is unable maintain its current
QoS level then all the precedent componentscj which are compensating their
downgraded inputs with an increased resource usage can downgrade toQ

j
val′

since their effort is useless.

Note that, if a componentcj , despite the change in the current quality of some or
all of its inputs, is able to maintain its current QoS level there is no need to further
propagate the required coordination along the dependency graphGW . Thus, acut-
vertexis a key component in our approach.
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4.1 Properties of the coordination model

In this section we provide a global view of what is involved for the general case and
analyse some of the properties of the decentralised coordination model resulting from
replica activation. We start with some auxiliary definitions and proofs. For the sake of
simplicity, we present the following functions in a declarative notation with the same
operational model as a pattern matching-based functional language.

Definition 4.1 Given a connect graphGS = (VS , ES) and given two components
ci, cj ∈ VS , we obtain all the components in the possible paths betweenci and cj

as the result of the function:

m paths(ci, cj) = flatten(m paths(ci, cj , ∅))

m paths(ci, cj , T ) = ∅, if ci = cj

m paths(ci, cj , T ) = {{ci, ck1
}

∪ m paths(ck1
, wj , T ∪ {ck1

}),
. . .
{ci, ckn}
∪ m paths(ckn , cj , T ∪ {ckn})},
∀ckm ∈ VS , such that
(ci, ckm) ∈ ES andckm /∈ T

m paths(ci, cj , T ) = ⊥

Definition 4.2 Given a setA containing other sets, the functionflatten(A) is defined
as:

flatten(∅) = ∅
flatten(A) = a ∪ flatten(A \ a), if a ∈ A

Note that them pathsfunction is a breadth first approach with cycle checking to
find components in possible paths in graphs. It outputs all the components in the pos-
sible paths between two componentsci andcj , or returns⊥ if there is no path between
those two components. Nevertheless, for the sake of clarityof presentation, in the
remainder of this chapter, we assume that only well-formed dependency graphs are
considered in the proposed algorithms.

Proposition 4.1 Given a connected graphGS = (VS , ES) and two componentsci, cj ∈
VS , m paths(ci, cj , ∅) terminates and returns all the components in the possible paths
betweenci andcj , ∅ in caseci = cj , or ⊥ in case there is no path betweenci, cj ∈ VS .

Definition 4.3 Given a nodeni, a componentci , the set of local SLAsσ = {SLAw0
, . . . , SLAwp

}
for thep locally executed components,Qval′ as the new imposed QoS level forci, and
Ici

= {(nj, cj , Q
j
val), . . . , (nk, ck, Qk

val)} as the set of QoS levels given as input to
ci, then the value oftest feasibility(ni, wi, Q

i
val′ , Iwi

) is the return value of QoS
optimisation of [23] applied to nodeni.
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Lemma 4.1 (Correctness of the feasibility test)The functiontest feasibility always
terminates and returns true if the new required set of SLAs for outputting the QoS level
Q′

val at work unitwi is feasible or false otherwise.

Proof 4.1 Termination comes from the finite number of tasksτi being executed in node
ni and from the finite number of thek QoS dimensions andj attributes being tested.
The number of QoS attributes being manipulated decreases whenever a taskτi is con-
figured to be served at its lowest admissible QoS levelQkj [n], thus leading to termina-
tion.

Correctness comes from the heuristic selection of the QoS attribute to downgrade
at each iteration of the algorithm.

Thus, after a finite number of steps the algorithm either findsa new set of feasible
SLAs that complies with the coordination request or returnsfalse if the requested SLA
for the work unitwi cannot be supplied.

Definition 4.4 Given a connected graphG = (V , E), the componentci and I =
{(cj, Q

j
val), . . . , (ck, Qk

val)} as the current set of QoS inputs for a componentci, and
givenT as the set of changed QoS inputs in response to the coordination request, the
functionupdate(I, T ) updatesI with the elements fromT :

update(∅, T ) = ∅
update(I,T ) = {(ci, Q

i
val′)}

∪ update(I \ (ci, Q
i
val), T ), if

(ci, Q
i
val) ∈ I and(ci, Q

i
val′) ∈ T

update(I,T ) = {(ci, Q
i
val)}

∪ update(I \ (ci, Q
i
val), T ), if

(ci, Q
i
val) ∈ I and(ci, Q

i
val′) /∈ T

Proposition 4.2 Given two setsI and T , both with elements of the form(ci, Q
i
val),

update(I,T)terminates and returns a new set with the elements ofI such that whenever
(ci, Q

i
current) ∈ I and(ci, Q

i
new) ∈ T the pair stored in the returned set is(ci, Q

i
new).

Definition 4.5 Given a componentci, we define the functionget input qos(ci) as re-
turning the set of elements(cj , Q

j
val), where each of these elements represents a com-

ponent with an output QoS level ofQ
j
val used as an input of the componentci.

Definition 4.6 Given a noden and a componentci and QoS levelQi
val, we define

the functionset qos level(n, ci, Qval) as setting the QoS level currently being used to
process the compoenentci by noden to Qi

val.

Given these, the next section details how the proposed coordination model operates
on updates of the currently supplied QoS level after an activation of a passive replica
of an interdependent componentci ∈ S.
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4.2 Coordination of replica activation

Given the connected graphG = (V , E) with a set of cut-verticesC and an end-user
componentcu receiving the final outcome of the coalition’s processing ofserviceS,
whenever a componentci ∈ V is replaced by a replicari

k which needs to decrease the
quality of the output from its current QoS level ofQval to a lower QoS levelQ′

val due
to limitations of the selected replica, the other nodes in the coalition respond to this
request according to Algorithm 1. Note that the setC′ is the set of cut-vertices between
ci andcu.

Algorithm 1 Coordinating Replica Activation

1: temp := ri
k

2: for eachcc ∈ C′ ∪ {cu} do
3: if service stabilization(temp, cc,G, Q′

val) = FALSE then
4: temp := cc

5: else
6: Replica activation keeps the previous global outputQval

7: return
8: end if
9: end for

Definition 4.7 Given the connected graphG = (V , E) with a set of cut-verticesC
and the subgraph that connects componentci to next cut-vertexcc ∈ C, the function
service stabilization(ci, cc,G, Q′

val) is defined by:

service stabilisation(ci, cc,G, Q′
val) =

T := {(ci, Q
′
val)}

for eachnj ∈ m paths(ci, cc) \ {ci} do
D := update(get input qos(cj), T )
if test feasibility(nj, cj , Qval, D) = TRUE then

T := T ∪ {(cj , Qval)}
else

set qos level(cj, Q
′
val)

end if
end for
D := update(get input qos(cc), T )
if test feasibility(nc, cc, Qval, D) = TRUE then

return TRUE
else

for eachcj ∈ m paths(ci, cc) \ {ci} do
set qos level(cj, Q

′
val)

end for
return FALSE

end if
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Lemma 4.2 Given the connected graphG = (V , E) such thatci ∈ V andcj ∈ V and
cj currently outputs a QoS levelQval, the call toservice stabilization(ci, cj ,G, Q′

val)
terminates and returns true ifcj is able to keep its current output levelQval or false
otherwise.

Proof 4.2 SinceV is a finite set and since, by Proposition 4.1,m paths terminates
and by Proposition 4.2update terminates, the number of iterations is finite due to the
finite number of elements in the paths. Thus,service stabilization terminates.

For any element in the paths betweenci andcj, it is tested if the component, given
its new set of inputs, can continue to output its current QoS levelQval. After consid-
ering all components in the paths, theservice stabilization function returns true, if
componentcj is able to continue to outputQval, or sets all the previous components
in the paths to the new QoS levelQ′

val and returns false. Again the result follows by
induction on the length of the set of elements in the paths betweenci andcj .

�

Theorem 4.1 (Correctness of Coordinating Replica Activation) Given the connected
graphG = (V , E) representing the QoS inter-dependencies of a serviceS being exe-
cuted by a coalition of components such thatcu ∈ V is the end-user node receivingS
at the QoS levelQval, whenever a nodeci is replaced by a replicari

k which forces the
decrease of the quality of the output from its current QoS level of Qval to a degraded
QoS levelQ′

val, Algorithm 1 changes the set of SLAs at components inG such thatcu

continues to receiveS at its current QoS levelQval or sets all nodes to a degraded QoS
level ofQ′

val.

Proof 4.3 Termination comes from the finite number of elements inC ∪ {cu} and from
Lemma 4.2.

The correctness trivially follows by the correctness of Lemma 4.2 and by induction
on the number of elements inC ∪ {cu}.

4.3 Example

Let’s consider a simple coalition represented by a graph, where each component is la-
belled with letterC and the edges with a pair containing the outputted QoS level by
that component. The list of properties of each node and graphfollows:

Component Output Input
c1 Q3 ∅
c2 Q3 {(c1, Q3)}
c3 Q3 {(c1, Q3)}
c4 Q3 {(c2, Q3), (c3, Q3)}
c5 Q4 {(c4, Q3)}
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c1

c2

c3

c4 c5 cu

Q3

Q3

Q3

Q3

Q3 Q4

The component receiving the output here is componentcu. Now, suppose that
componentc3 becomes offline. This results inc1 sending its output to a selected replica
r3

k ∈ R3 whereR3 is the set of available replicas ofc3. Two different scenarios may
occur:

1. r3

k is able to output the same QoS level and thus the graph stays the same as
before withc3 replaced byr3

k.

2. r3

k is unable to output the same QoS level and now the coordination of replica
activation takes place in order to maintain the QoS level to its maximum output.

The first cut-vertex found isc4. And now, ifc4 is able to output the previous QoS
value ofQ3 even with a degraded input, the replica activation coordination stops
and the graph becomes:

Component Output Input
c1 Q3 ∅
c2 Q3 {(c1, Q3)}
r3

k Q2 {(c1, Q3)}
c4 Q3 {(c2, Q3), (r

3

k, Q2)}
c5 Q4 {(c4, Q4)}

c1

c2

r3

k

c4 c5 cu

c3

Q3

Q3

Q3

Q2

Q3 Q4

Q3
Q3

If on the other hand,c4 is unable to keep the same output, then all the previous
nodes decrease their output quality since it is unnecessaryto keep the same QoS
level with c4 acting like a bottleneck. The next step is seeing if the next cut-
vertex, in this casec5, is able to maintain the same QoS with the degraded input.
Suppose it can, the graph becomes:
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Component Output Input
c1 Q2 ∅
c2 Q2 {(c1, Q2)}
r3

k Q2 {(c1, Q2)}
c4 Q2 {(c2, Q2), (r

3

k, Q2)}
c5 Q4 {(c4, Q2)}

c1

c2

r3

k

c4 c5 cu

c3

Q2

Q2

Q2

Q2

Q2 Q4

Q3
Q3

5 Evaluation

An application that captures, compresses and transmits frames of video to end users,
which may use a diversity of end devices and have different sets of QoS preferences,
was used to evaluate the efficiency of the proposed passive replication mechanism, with
a special attention being devoted to introduce a high variability in the characteristics
of the considered scenarios. The application is composed bya set of components to
collect the data, a set of compression components to gather and compress the data
sent from multiple sources, a set of transmission components to transmit the data over
the network, a set of decompression components to convert the data into the user’s
specified format, and a set of components to display the data in the end device [23].

The number of simultaneous nodes in the system randomly varied, in each simula-
tion run, from 10 to 100. For each node, the type and amount of available resources,
creating a distributed heterogeneous environment. Nodes failed and recovered accord-
ing to their MMTF and MTTR reliability values, which were randomly assigned when
the nodes were created (it was ensured that each node had an availability between 60%
and 99%).

Each node was running a prototype implementation of the CooperatES framework
[26], with a fixed set of mappings between requested QoS levels and resource require-
ments. At randomly selected nodes, new service requests from 5 to 20 simultaneous
users were randomly generated, dynamically generating different amounts of load and
resource availability. Based on each user’s service request, coalitions of 4 to 20 com-
ponents were formed [23] and a randomly percentage of the connections among those
components was selected as a QoS interdependency.

In order to assess the efficiency of the proposed dynamic replication control as
opposed to an offline static replication in dynamic resource-constrained environments,
we considered the number of coalitions which where able to recover from failures and
conclude their cooperative executions as a function of the used replication ratio. The
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reported results were observed from multiple and independent simulation runs, with
initial conditions and parameters, but different seeds forthe random values1 used to
drive the simulations, obtaining independent and identically distributed variables. The
mean values of all generated samples were used to produce thecharts.

In the first study, we evaluated the achieved system’s availability with the proposed
dynamic replication control based on components’ significance and with a static offline
approach in which the components to replicate and their number of replicas is fixed by
the system’s designer at a coalition’s initialisation phase [19]. At each simulation run,
if the primary replica of a componentci failed during operation, a new primary was
selected among the set of passive backups. If this was not possible, all the coalitions
depending onci were aborted. In this study, replicas were also randomly allocated
among eligible nodes with the dynamic replication control policy.

Figure 1: Impact of the chosen replication control strategyon the system’s availability

Figure 1 clearly shows that our strategy is more accurate to determine and replicate
the most significant components than a static offline one, particularly with lower repli-
cation ratios. Thus, when lower replication ratios are imposed due to resource or cost
limitations, a higher availability can be achieved if the selection of which components
to replicate and their number of replicas depends on their significance to the system as a
whole. In open and dynamic environments, such significance can be determined online
as the aggregation of all the other components that depend ona particular component
to perform their tasks.

A second study evaluated the impact of the selected replicas’ placement strategy
on the achieved system’s availability for a given replication ratio. The study compared
the performance of the proposed allocation heuristic basedon collected information
about the nodes’ availability as the system evolves with a random policy in which
the placement of the generated replicas is fixed offline [24].The decision on which
components to replicate and their number of replicas followed the same dynamic and

1The random values were generated by the Mersenne Twister algorithm [20].
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static approaches of the first study.
For the dynamic allocation strategy, a tolerance value for the availability of each

replica set was randomly generated at each simulation run. If this tolerance was sur-
passed, a reassignment of replicas was performed. Figure 2 shows that an offline policy
always achieves a poorer performance than a dynamic allocation that takes into account
the nodes’ reliability along time.

Figure 2: Impact of the chosen replica allocation strategy on the system’s availability

It is then possible to conclude that the location of replicasis a relevant factor for
the system’s availability as a whole. A comparison of Figures 1 and 2 shows that even
though an improvement in availability can be achieved by increasing the replication
ratio, the impact of replicas’ placement is quite significant.

A third study evaluated the efficiency of the proposed coordinated activation of
interdependent passive replicas in comparison to a typicalcentralised coordination ap-
proach [29] in which a system-wide controller coordinates resource allocations among
multiple nodes. The average results of all simulation runs for the different coalition
sizes and percentages of interdependencies among components are plotted in Figure
3. As expected, both coordination approaches need more timeas the complexity of
the service’s topology increases. Nevertheless, the proposed decentralised coordina-
tion model is faster to determine the overall coordination result in all the evaluated
services’ topologies, needing approximately 75% of the time spent by the centralised
near-optimal model.

6 Conclusions

The availability and performance of open distributed embedded system is significantly
affected by the choice ofthe replication control strategy and placement of the generated
replicas. The proposed heuristics based on the components’significance to the overall
system and on nodes’ reliability history have a low runtime complexity and achieve a
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Figure 3: Time for a coordinated replica activation

reasonably higher system’s availability than static offline decisions, particularly when
lower replication ratios are imposed due to resource or costlimitations.

Since QoS interdependencies may exist among components of adistributed sys-
tem, activating passive replicas when a primary component is found to be faulty may
demand coordination. The proposed distributed coordination model enables a faster
convergence to a global service solution than a typical centralised approach.
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