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A B S T R A C T  
  

This paper studies the information content of the chromosomes of 24 species. In a first phase, a scheme 

inspired in dynamical system state space representation is developed. For each chromosome the state space 

dynamical evolution is shed into a two dimensional chart. The plots are then analyzed and characterized in the 

perspective of fractal dimen- sion. This information is integrated in two measures of the species’ complexity 

addressing its average and variability. The results are in close accordance with phylogenetics pointing quantitative 

aspects of the species’ genomic   complexity. 
 
 

Keywords: 

DNA, Chromosome Fractals Information Phylogenetics 

   
 

 

1. Introduction 

 
The genome sequencing produced considerable information that is presently available for analytical and 

computational processing [1–13]. This paper addresses the code information embedded in the 

deoxyribonucleic acid (DNA) of 24 species. During the last years several researcher have tackled the issue of 

genome complexity [14–16] but the fact is that many ques- tions remain open. Having in mind the tools adopted 

in system modeling and chaos analysis, in this paper several tools, namely state space graphical representation 

and fractal dimension are adopted. In fact, the state space charts reveal complex evolutions, having similarities 

with those depicted by chaotic systems, suggesting that the DNA information can by tackled by standard 

analytical and numerical methods. Given the large number of chromosomes, two synthesizing and comparison 

indices based on the average and variability of the fractal dimension and chromosome lengths are developed. 

These mea- sures lead to a clear map of species not only in accordance with known phylogenetics, but also with 

quantitative assessment of the complexity. 

Having these ideas in mind, this paper is organized as follows. Section 2 presents the DNA sequence decoding 

concepts, the mathematical tools, and formulates the indices that reflect the complexity content and variability of 

each species. Section 3 analyzes the DNA information content of 489 chromosomes corresponding to a set of 24 

species. Finally, Section 4 outlines the main conclusions. 

 

 
2. DNA and information analysis 

 
In the DNA double helix there are four distinct nitrogenous bases, namely thymine, cytosine, adenine and 

guanine, usually denoted by the symbols {T, C, A, G}. Each type of base on one strand connects with only one type 

of base on the other strand,



ed 

¼ -  

forming the base pairing A–C and T–G. Besides the four symbols {T, C, A, G}, the available chromosome data includes 

a fifth symbol ‘‘N’’ which is believed to have no practical meaning for the DNA decoding. 

The DNA information decoding constitutes a formidable challenge and this paper addresses this issue inspired in 

(i) dynamical systems modeling using state space representation, (ii) chaos analysis using fractal dimension 

concepts, and 
(iii) information measures. 

Dynamical systems are assertively described using the so-called state space modeling. For that purpose it is 

necessary to start by defining the type and number of state variables. They represent the systems’ fundamental 

ingredients and its dynamics can be evaluated based in time evolution of the state variables. Often two 

dimensional models that lead to the so-called state plane are adopted, allowing direct graphical    representations. 

Bearing these ideas in mind it was decided to have a two-dimensional state space representation of the DNA 

information based on a simple translation scheme. First the A–C and T–G pairs are represented in the horizontal 

and vertical Cartesian axes, respectively. Second, each base along the DNA strand is converted to a one-step 

increment d, being d > 0 (d < 0) for the first (second) base in each bonding pair. In the case of symbol ‘‘N’’ no action 

is taken. By other words, representing by x and y the horizontal and vertical coordinates, for each symbol read 

along the sequence it is adopted one iteration step of the type: hA, Ti:  x ? hx + d, x - di  or  hC, Gi:  y ? hy + d, y 

- di.  For  example,  with  d = 1  when  starting  from  (0, 0),  the  code  {ACA- CACACTTGTGTGG}  translates  to  the  

Cartesian  coordinates  (x, y) = (0, 0),  (1, 0),  (1, 1),  (2, 1),  (2, 2),  (2, 3),  (3, 3),  (4, 3),  (4, 4), 

(3, 4), (2, 4), (2, 3), (1, 3), (1, 2), (0, 2), (0, 1), (0, 0) in the state space. Therefore, the succession of bases is converted 

to a chart representative of the dynamical evolution that can be analyzed with mathematical tools usual in 

system theory. Further- more, the translation scheme preserves the based pairing  logic  and  does  not  introduce  

any  preconception  biasing  the DNA information. 

It should be noted that according with the second Chargaff’s rule the number of symbols A and T, and G and C 

are approx- imately identical, not only for each of the two DNA strands, but also for long sequences [17–19]. 

Nevertheless, in the present case we are capturing the order of the symbols along the sequence and, therefore, 

considerable deviations from the 45° line occur. Computation of the complexity for DNA representations is 

interesting and we can also mention the Z-curve [20]. 

The second phase consists of extracting information from the two dimensional state space charts. Since the 

results, to be analyzed in the next section, have close resemblances to those of chaotic systems it was chosen the 

box-counting method for characterizing  the  plots [21–23]. 
The box-counting dimension of a set S in a n-dimensional space is defined as follows: for any e > 0, let Ne(S) 

be the min- imum number of n-dimensional cubes of side-length e needed to cover S. If there is a number d so that 

NeðSÞ rv 1  as e ? 0 we 

say that the box-counting dimension of S is d. This reasoning leads to the expression: 
 
 
  

 

(1) 

 

which can be easily implemented with computational methods. 

 

Table 1 

Species, chromosome and main  characteristics. 
 

j Species Tag Group Nj 
1 Mosquito (Anopheles  

gambiae) 
Ag Insect 6 

2 Honeybee (Apis mellifera) Am Insect 16 
3 Caenorhabditis briggsae Cb Nematode 6 
4 Caenorhabditis elegans Ce Nematode 6 
5 Chimpanzee Ch Mammal 25 
6 Dog Dg Mammal 39 
7 Drosophila simulans Ds Insect 7 
8 Drosophila yakuba Dy Insect 11 



9 Horse Eq Mammal 32 
10 Chicken Ga Bird 30 
11 Human Ho Mammal 24 
12 Medaka Me Fish 25 
13 Mouse Mm Mammal 21 
14 Opossum Op Mammal 9 
15 Orangutan Or Mammal 24 
16 Cow Ox Mammal 30 
17 Pig Po Mammal 19 
18 Rat Rn Mammal 21 
19 Rhesus Rm Mammal 21 
20 Yeast  (Saccharomyces 

cerevisiae) 
Sc Fungus 16 

21 Stickleback St Fish 22 
22 Zebra Finch Tg Bird 31 
23 Tetraodon Tn Fish 21 
24 Zebrafish Zf Fish 25 



 

In our case S consists of the state plane monochrome images and small values of e are reached by accessing 

images at the pixel level. 

The third phase consists of integrating the fractal measures of the chromosome in order to establish an index 

represen- tative of the complexity of each species. On one hand, we should note that a high/low fractal 

dimension represents a rich/ poor dynamical behavior, where rich/poor can be interpreted as complex/simple. 

On the other hand, we verify that species exhibit distinct number of chromosomes and different chromosomes’ 

lengths that must reflect upon the total amount of information, but that those numbers vary significantly. 

Therefore, for the species j it is considered the complexity average cj  defined as: 

 

 

  

(2)           

where the index i represents the chromosome, Nj is the total number of chromosomes of species j and dji 
denotes the cor- responding fractal dimension. 

This expression is inspired in the generalized average formulae. In this line of thought, it is relevant to measure 
not only the average value, but also the complexity variability between the set of chromosomes using the index 
vj  defines as: 
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These analytical indices are applied to a set of 24 species having the main characteristics depicted in Table 1. 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

              Fig. 1. Phase plane portraits of chromosomes: (a) Ag2L: l1,1 = 49770995, d1,1 = 1.634, (b) Eq1: l9,1 = 

189554878, d9,1 = 1.529, (c) Ga1: l10,1 = 205013902, 

d10,1 = 1.281, (d) Sc1: l20,1 = 234819, d20,1 = 1.417. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  Amplitude of the Fourier content of the phase plane plot for chromosome 
Eq1. 

 

3. DNA information and species complexity 

 
The 24 species totalize 489 chromosomes. Each of these chromosomes is analyzed for extracting the 

corresponding fractal dimension of the state plane portrait. Therefore, in a first step the chromosome 

information is read and the maximum and minimum limits of the state plane trajectory, along both axes, are 

evaluated. This preliminary evaluation allows the calcu- lation of a scale factor so that the final chart and the 

corresponding bitmap file have identical dimension regardless of the chromosome length. Therefore, we have 

the guarantee that the calculation of the fractal dimension is only a result of the DNA information content. 

Having calculated the limits and scale factor, the chromosome is read a second time and the state plane trajectory 

is plotted. 

For example Fig. 1 shows the phase plane plots of the chromosomes Ag2L, Ga1, Eq1, and Sc1. The horizontal and 

vertical axes are not represented since they have no useful contribution for the calculations. 

The plots vary considerably suggesting that they are sensitive to the code and their characteristics. For the 

examples of Fig.  1  we  get  the  values  Ag2L:  l1,1 = 49770995,  d1,1 = 1.634,  Eq1:  l9,1 = 189554878,  d9,1 = 

1.529,  Ga1:  l10,1 = 205013902, 
d10,1 = 1.281, and Sc1: l20,1 = 234819, d20,1 = 1.417. Moreover, it was observed some consistency of plots for 
the types of spe- 
cies. While this approach leads only to a qualitative analysis, it was verified that the application of the fractal 

dimension (1) was consistent with the observation and lead to a quantitative measure. 

The charts have strong resemblances to those of random walks and Levy flights. Therefore, the Fourier 

transform was cal- culated for the x and y components of the image. For example, Fig. 2 depicts the amplitude of 

the Fourier content of the phase 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

Fig. 3.  Chromosome length versus fractal dimension of the state plane chart for the 24 
species. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Chromosome length versus fractal dimension of the state plane chart for the 
primates {Ch, Ho, Or}. 

 

plane plot of chromosome Eq. (1) of Fig. 1b. The results can be easily approximated by a power law expression 
of the type 
amplitude rv axb ; a; b 2 R, where x can loosely be denoted as ‘‘frequency’’ if we consider that each step d is 
a ‘‘time’’ incre- 
ment. It was observed that a varied from chart to chart, depending on the chromosome and the horizontal/vertical 

compo- nent, but b remained almost invariant namely as b � -1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Fig. 5.  Complexity average cj  versus variability vj  for the 24 species. 



  

 

Table 2 

Species’ complexity. 
 

j Tag cj vj 

1 Ag 14.698 6.751 
2 Am 15.272 3.958 
3 Cb 13.784 6.265 
4 Ce 13.783 6.266 
5 Ch 17.934 3.550 
6 Dg 17.419 2.887 
7 Ds 13.254 5.894 
8 Dy 13.605 4.757 
9 Eq 17.445 3.191 

10 Ga 15.554 3.670 
11 Ho 17.937 3.550 
12 Me 16.683 3.034 
13 Mm 17.900 3.765 
14 Op 17.794 6.032 
15 Or 17.829 3.686 
16 Ox 17.626 3.340 
17 Po 17.531 4.214 
18 Rn 17.762 4.074 
19 Rm 17.670 4.046 
20 Sc 12.499 3.425 
21 St 16.134 3.164 
22 Tg 15.887 3.369 
23 Tn 15.444 3.513 
24 Zf 17.052 3.577 

 

Fig. 3 shows the relationship between the fractal dimension and the length of the chromosomes. We observe 

the emer- gence of some grouping reflecting the qualitative analysis held initially for each separate plot. Parts 

of this map can bee zoomed and the relationship between individual chromosomes can be visualized. For 

example Fig. 4 depicts the map for the primates {Ch, Ho, Or}. Nevertheless, while these charts constitute a 

quantitative evaluation, the fact is that we have still a considerable amount of cases and the application of some 

sort of integration measure is advisable. 
The application of indices (2) and (3) upon the 24 species produces the map of complexity average cj  versus 

variability vj 
depicted in Fig. 5 and to the list the values of Table 2. 

We verify the emergence of patterns that are in accordance with phylogenetics, going from the less complex 

species Sc, at left, up to the most complex species Hu, at the right. The cluster of mammals is at right and, within 

it, the sub-cluster of primates {Ho, Ch, Or} with the Ch closer to Hu than the Or. In  the rest  of mammals it  is 

interesting to  note Mm close  to the primates and the position of the marsupial Op relatively distant from the 

placental mammals in terms of complexity var- iability of the chromosomes. In what concerns the rest of the points 

we verify Cb to be almost indistinguishable from Ce that, together with the group of insects, reveal a low average 

but a high variability of complexity. In a middle position, with med- ium complexity but low variability (similar to 

the mammals) we have the clusters of birds {Ga, Tg} and fishes {Tn, St, Me, Zf}. 

In conclusion, the proposed complexity measures lead to assertive quantitative  classification  of  chromosomes  

and species. 

 
4. Conclusions 

 
Chromosomes have a code based on a four symbol alphabet. This information can be analyzed with tools 

usually adopted in dynamical system signal modeling. In this paper it was proposed a conversion scheme 

translating the DNA sequence to a phase plane chart. The application to the chromosomes of 24 species revealed 

patterns typical in chaotic systems. Bearing these facts in mind, the images were processed and the resulting 

values were embedded into two complexity measures based on the chromosome length and state space fractal 

dimension. The resulting map revealed the emergence of clear pat- terns capable of being interpreted and 

compared. 
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