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A BS T R A CT

 
 

 

Dragonflies show unique and superior flight performances than most of other insect  spe- cies and birds. They are equipped with two 

pairs of independently controlled wings grant- ing an unmatchable flying performance and robustness. 

In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a 

hybrid adaptive (HA) law for adjusting the param- eters analyzing the tracking error. At the current stage of the project it is considered 

essen- tial the development of computational simulation models based in the dynamics to test whether strategies or algorithms of 

control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis 

proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter 

convergence. 
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1. Introduction 

 
In the last few years, there were significant advances in robotics, artificial intelligence and other fields allowing the imple- 

mentation of biologically inspired robots [1,2] being one of the major challenges the controllability of those systems since 

they are nonlinear or even chaotic. Engineers have long been stymied in their attempts to build flying robots that can match 

the amazing flight capabilities of nature’s most advanced flying insects and birds. Such robots could be used for a variety of 

tasks, from spying, to mine detection or even search and rescue missions in collapsed buildings. 

The study of dynamic models based on insects is becoming a field of active research and shows results that can be con- 

sidered very close to the real systems [3,4]. The dragonfly has been one of the systems under study [5] because it is consid- 

ered one of the major challenges in the field of aerodynamics. Recent studies show that the aerodynamics of dragonflies is 

unstable because they use it to fly one way radically different from the steady flight of aircrafts and large birds [6]. Although 

the flight of insects has been an interesting subject of, at least, half academic century, the control of flying robots inspired in 

their design represents a high level of complexity since unsteady aerodynamics has not had proper attention. 

Fuzzy controllers (FC) are supposed to work in situations where there is a large uncertainty or unknown variation in plant 

parameters and structures [7]. Fuzzy logic systems (FLS) provide nonlinear mappings from an input data vector space into a 

scalar output space, that are general enough to perform any nonlinear control or identification actions [8], for the control and 

identification of linear and nonlinear systems. However, in order to maintain consistent performance, fuzzy controllers 

should be equipped with appropriate online adaptive algorithms to form adaptive fuzzy controllers. In [8] it was presented 

a ‘‘direct fuzzy controller’’ based on FC rules, and an ‘‘indirect fuzzy controller’’ based on fuzzy modeling rules. Generally, the 

basic objective of adaptive control is to maintain consistent performance of a system in the presence of uncertainties. 
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This paper presents an adaptive methodology to control a simulated model of a dragonfly-like robot. The controller con- 

sidered in this paper is constructed from fuzzy modeling rules based on [9]. For adjusting the parameters, it is proposed a 

hybrid adaptive scheme, combining adaptive fuzzy identification and adaptive fuzzy control. In the hybrid scheme, the adap- 

tive algorithm utilizes a combination of two types of error for adjustment. We will apply and compare the performance anal- 

ysis of the direct and the hybrid adaptive FC to control the nonlinear mathematical model based on the dragonfly kinematics 

and dynamics implemented in MatLab/Simulink [10]. 

The paper is organized as follows. In the Section 2 we present the implemented adaptive FC. Section 3 presents the robotic 

dragonfly mathematical modeling and control architecture. In Section 4 we compare the performance of both the direct 

adaptive and the hybrid adaptive FC. Finally, Section 5 outlines the main    conclusions. 

 
2. Adaptive fuzzy control 

 
The basic configuration of an adaptive fuzzy control system is shown in Fig. 1. The Reference Model is used to specify the 

ideal response that the FC system should follow. The Plant is assumed to contain unknown components. The fuzzy controller 

is contrasted from fuzzy systems whose parameters h are adjustable. The Adaptation Law adjusts the parameters h online 

such that the plant output y(t) tracks the reference model output ym(t). 
A common approach for constructing adaptive controllers is the self-tuning method [11,12]. In this strategy, first a design 

method (for known plants) is used to provide a controller structure and a relationship between plant and controller param- 

eters. The plant parameters are estimated using an online parameter identification algorithm. The controller parameters are 

then obtained from the estimates of the plant parameters as if these were the true plant parameters. This idea is often called 

the certainty equivalence  principle. 

Consider the nth-order nonlinear system of the controllability canonical form    [13]: 

 

  

 
 

 

where f and g are unknown real continuous functions, u and y are the input and output of the system, respectively, and 
T 

-x ¼ ðx; x_ ; . . . ; xðn-1Þ Þ is the state vector of the system which is assumed to be available for measurement. The controllability 
of (1) requires that gð-xÞ – 0 for all -x in a certain controllability region Uc CRn  . The control objective is to find a feedback con- 
trol    law    u ¼ uð-x; tÞ   such    that    to    make    the    state    -xðtÞ   track    a    given    desired    bounded    reference    trajectory 

n-1Þ   T 

y-m ðtÞ ¼ ðym ; y_ ; . . .  ; y
ð 

Þ . 
We assume the following collection of If-Then rules that describe the input–output behaviour of f(x) and g(x): 

 

 

  

respectively, where Ar ’s and Bs ’s are fuzzy sets in R; Cr , and Ds  are fuzzy sets in R which achieve membership value one  at 
i i 

some point, r = 1, 2, .. ., Nf, and s = 1, 2, .. .,  Ng. 
If the plant model is not known, it is intuitively reasonable to replace it by an estimated model and use this model for 

designing the controller. This is the basic idea of a self-tuning adaptive controller, in which the controller is designed based 

on an estimated model of the plant (assuming this model is the true model of the plant) and the estimated model parameters 

are updated by an online  algorithm. 

Now consider the problem of controlling the system (1). If the plant dynamics is known, i.e., the functions f and g are 

known, we can solve the control problem stated above by the so-called feedback linearization method. In this method, 

the functions f and g are used to construct the following feedback control law: 
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Fig. 1.  Basic configuration  of the  adaptive  fuzzy control system. 
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where e = ym(t) - y(t) is tracking error,
(
-e ¼ e; e_ ; . . . ; eðn-1Þ

)
, and ðk- ¼ kn ; . . . ; k2 ; k1 Þ

T  is chosen such that all roots of the polyno- 

mial h(s) = sn  + k1sn-1  + . . . + kn  are in the open left-half of the complex plane. Applying the control law (2) to the system (1) 
results in the following error  dynamics: 

  

This implies that starting from any initial conditions, we have lim n ! 1j-eðtÞj ¼ 0, i.e., tracking of the reference trajectory is 

asymptotically achieved. However, since f and g are unknown, we cannot use them to build the control law (4). Therefore, we 

replace them by their estimates f̂       and ĝ       to construct a self-tuning controller: c  ¼ 
ĝ                     x h   

 

 

where -hf        and -hg     > d are parameters of the approximating systems f̂       and ĝ       ,   respectively. 

The following hybrid adaptive law was proposed by Hojati in [9] in order to adjust the parameters: 
  

   

 

 

where -nð-xÞ is the vector of fuzzy basis functions, c1, c2  and c are positive constants, e is the modeling error defined in (8), P is 
a  matrix that satisfies the Lyapunov equation [9]  and b-c  ¼ ð0; . . . ; 0; 1Þ

T . 

The modeling error can be written  as: 

 
 

3. Dragonfly 

 
The mathematical model of the dragonfly system is the same analyzed in [10] with the support of [14] and the MSc thesis 

[15]. Next subsection presents an overview of the mathematical modeling that will be used as the plant to be controlled fol- 

lowing the control architecture presented in sub Section   3.2. 

 
3.1. Mathematical modeling 

 
In this section it is analyzed the mathematical analysis of the biomechanical model and this can be made from two dif- 

ferent perspectives. The first is the kinematic perspective that considers the movement characteristics and studies the move- 

ment from a spatial and temporal perspective. The second perspective is the dynamics which analyzes the forces acting in 

the system defining the forces that origin the movements    [16]. 

Two types of flight can be considered: quasi-steady and unsteady states. For larger birds, the flights can be approximated 

by quasi-steady state assumptions because their wings flap at lower frequency during cruising. This means the wingtip 

speed is lower when compared to the flight speed. Thus larger birds, such as eagles and seagulls, tend to have a soaring flight. 

Their wings behave closely to fixed-wings. On the other hand, smaller birds and insects (e.g., dragonflies) fly in an unsteady 

state regime [17] as their wingtip speed is faster than their flight speed. 

The model presented in this paper was based on a dragonfly which flight is considered unsteady with a flapping frequency 

near 20 Hz [18]. Tables 1 and 2 compares some of the most studied insect features [19,20]. Besides the tabled features, there 

are several unique characteristics of the dragonfly (e.g., two pair of wings, tail influence and flying styles) that are the main 

reasons the dragonfly was used as model. Those will be discussed later on this paper. 

In order to visualize the models’ behaviour, while in simulation, we developed a 3D model in AutoCAD inspired in a drag- 

onfly. The model is presented in Fig. 2 and 3, where each adjacent part represented with different colors correspond to indi- 

vidual elements connected through joints. The used axis system is also presented in Fig. 2, in order to make it easier to 

understand the equations and dynamic analysis that follows. This axis system is relative to the World Coordinate System 

in which the model is located, which means that the formulae obtained for the calculation of the forces are only valid if 

the model is in agreement with Fig. 2. The method used to calculate the forces depending on the rotations arising from 

the model are based on the kinematic   structures. 

 
Table 1 

Some features from different insects. 
 

 Weight [kg] Wing area [m2] Flapping  frequency [Hz] Maximum velocity [m/s] 

Bumblebee 0.32 X 10
-3

 0.19 X 10
-3

 130.0 3.0 

Dragonfly 1.00 X 10-3
 1.00 X 10-3

 20.0 12.5 

Butterfly 3.00 X 10-3
 2.80 X 10-3

 12.5 2.5 



 

 

Table 2 

Dragonfly’s kinematic transformation for each  link. 
 

 

Link Kinematic  transformation 

Body (A) T0 
 

0         1         2        3 

4  ¼ T1 . T2 . T3 .  T4 
Tail (B) T0 0         4        5 

6  ¼ T4  . T5  . T6 
Left  wing no1(C) T0 0         4         7        9 

10  ¼ T4 . T7 . T9 . T10 
Right wing no1  (D) T0 0         4         8        9 

11  ¼ T4 . T8 . T9 . T11 
Left  wing no2 (E) T0 0        4 12        14 

15  ¼ T4 . T12 . T14 . T15 
Right wing no2  (F) T0 0        4 13        14 

16  ¼ T4 . T13 . T14 . T16 
 

 

 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Chart obtained through the simulator SIRB & LIB SIM that shows the difference between the trajectory accomplished by a great skua (very large bird), 

a seagull (large bird) and a dragonfly. The stability of this last one when compared to the others is undeniable. 

 
In order to implement the dragonfly’s animation in MatLab, the Denavit–Hartenberg (DH) notation [21] was followed to 

represent frame (joint) coordinates for a kinematic chain of revolute and translational joints. Based on the DH tables and 

transformation matrices the dragonfly model presented in appendix A we obtained the following kinematic transformation 

for each link of the models Table   2. 

The dragonfly model is being studied by some researchers due to the unique juggling maneuvers of this creature. Jane 

Wang [22] developed a set of equations based on a real model of a dragonfly by watching its flight in laboratory.Based on 

research already developed in this field, and performing a geometric analysis of the dragonfly, it was possible to reach a sim- 

pler model with a high-quality response when comparing to what it is seen in nature Fig. 2. The major difference between 

the geometry of two-winged animals (e.g., birds) and the geometry of the dragonfly are reflected in two pairs of wings. Sim- 

ilarly to birds, the dragonfly also has several movements and flying styles. The flight capabilities of dragonflies are prodi- 

gious. In addition to the individual states of take-off, gliding and flapping, this last one is divided into four different styles 

due to the two pairs of wings: counter-stroking (where the front and rear wings beat with a delay of 180°), phased-stroking 

(in which the wings beat with a difference of 90°), synchronized-stroking (in which the four wings are synchronized as a 

Fig. 2.  Control  diagram  of  the  dragonfly  system. 



 

 

single pair of wings), and gliding such as occurs in large birds (e.g., seagull). We will give special attention to the most com- 

mon style in which the two pairs of wings of the dragonfly beat with a delay of 180° (i.e., counter-stroking). Also, the tail and 

each pair of wings have the same degrees of freedom (rotational) found in other flying models such as birds. The wings will 
be treated as a flexible link, similarly to what is seen in the nature, minimizing the area of the wing when on a downward 
movement. This structure will provide a good mobility, making it a total of ten controllable links. 

The relative wind acting on a wing produces a certain amount of force which is called the total aerodynamic force. This 

force can be resolved into components, called Lift (9) and Drag   (10). 

  

  

 

The Lift L is the component of aerodynamic force perpendicular to the relative wind and the Drag D is the component of 
aerodynamic force parallel to the relative wind. Both forces depends on the wing area S, the density of air q, the freestream 

velocity v1 and the Lift and Drag coefficients named as Cl  and Cd  respectively, expressed as functions of the angle of attack a. 
The  Lift  and  Drag  coefficients  depend  on  the  shape  of  the  airfoil  and  will  alter  with  changes  in  the  angle  of  attack  and 

other wing trimmings. The characteristics of any particular airfoil section can conveniently be represented by graphs show- 

ing the amount of lift and drag obtained at various angles of attack, the lift-drag ratio, and the movement of the centre of 

pressure. 

Similarly to [23] we adopted the blade-element theory representing the Lift (11) and Drag (12) coefficients as functions of 

the angle of attack of the local   wind. 

  

 

Since we are not considering any particular wing aerodynamics at this point, the wing aerodynamics properties of maximum 
lift Clmax and drag Cdmax coefficients as well as zero drag Cd0 coefficient used in simulations for the dragonfly model are de- 

picted in Eqs. (13)–(15). 

  

  

  

The dragonfly’s aerodynamic characteristics presented above determine how far and for how long it can glide, and how 

successfully it can soar in moving air in order to reduce the flight energy. In the case of the dragonfly, and even many of the 

insects, gliding can be divided in three types: free flight, where the dragonfly simply stops flapping its wings in order to lose 

altitude for a few seconds; adjusting the shape of wings, where the dragonfly is adjusting the angle of attack of the wings to 

float in the air without the need to flap, in order to perform a specific operation; gliding with the help of another insect, in 

which the female usually performs the control direction without flapping their wings while the male provides the driving 

force. 

However, in order to create a positive global thrust force, flapping flight is required. As seen previously, the forces of Lift 

and Drag will depend on the angle of attack. However, which will be the behaviour of these forces when flapping wings? As 

[23] we considered the existence of an advance angle related with the flapping velocity and the freestream velocity (16). 
 

 

 

The advance angle will then be zero when the velocity of the wings is zero, falling in the previously analyzed situation in 

gliding flight. This means that through the angle of attack it is possible to control the amplitude of the forces of Lift and Drag. 

On the other hand, the angle that these forces have relatively to the air flow can be controlled through the flapping velocity. If 

the wing is placed into a flow velocity, v1, a thrust force will develop due to the horizontal component of the Lift that appears 
in the downstroke. So, in order to have a positive thrust, the wing will have to increase its velocity to overcome the opposing 

horizontal force generated in the aerodynamic Drag. The horizontal (x-axis) and vertical (z-axis) forces are related with the 

Lift, Drag and advance angle by the following equations   (17): 

 

 

 

The dragonfly dynamics is somehow similar to other flying creatures such as birds and, consequently, the same equations 

may be considered. Nevertheless, when it comes to the flapping flight, the dragonfly takes a great advantage over birds 

and other two-winged creatures. The following figure shows the result obtained using a previously developed simulator SIRB 

& LIB SIM performed using the standard features presented in [24] and Table 1 (i.e., weight, wing area and flapping fre- 
quency) of the great skua, the seagull and the    dragonfly. 



 

 

Recent studies reveal that dragonflies use a complex aerodynamics in order to fly, different from aircrafts and large birds. 

A dragonfly flaps its wings to create a whirlwind of air that is controlled and used to provide lift as aircrafts depend on good 

air flow over the top and bottom surfaces of their wings. For these machines the turbulence can be fatal. There are other 

creatures with a similar mechanism to the flight of the dragonfly, but with a higher level of complexity. Creatures such as 

the hummingbird, surprisingly can manipulate the feathers of the wings during the rapid flapping. The two pairs of wings 

of the dragonfly allow different independent flight techniques (as mentioned above) and the most common style is the coun- 

ter-stroking. This type of flight allows that, when a pair of wings beats down creating a vortex of air, the other pair, which is 

still down, captures the energy of that vortex. Therefore, the air flow over the surface of the wings of the dragonfly has a 

much higher rate along the bottom of the wing creating more lift. In other words, the different states of flight, downstroke 

and upstroke, are indistinguishable creating an almost steady force positive to the movement and opposite to the weight. 

However, in order for the dragonfly to be able to accomplish some of the most amazing flight techniques, the use of the tail 

is inevitable. 

Although the majority of avian flight studies have focused on the wings, the tail also appears to be crucial to the evolu- 

tionary success of dragonflies as flying organisms. In addition to causing a significant drag force (as in the case of the birds) 

the weight factor provides a more efficient use of the tail. Fig. 4 depicts a simplified object diagram of masses (P) of the 

implemented dragonfly model. 

As it can be seen, when moving the tail, i.e., the object of mass m, the global center of mass of the dragonfly will suffer a 

strong variation. Consider, for example, Pbody equal to twice Ptail and Lbody equal to half Ltail, which seams accurate with real 

dragonfly anatomy [25]. The equilibrium is reached when the tail is stretched and the force from the resultant Fz forces of Lift 

and Drag is zero. When the dragonfly flaps its wings it causes a positive force in the z-axis and the center of mass is modified. 

In order for the dragonfly to remain parallel to its horizontal path it needs to change the rotation of the tail establishing the 
following relationship (18): 

  

To change the direction in the xy-plane something similar can be seen: to generate an imbalance in the overall mass of the 

system, the dragonfly will tend to rotate the tail in the x-axis. This is the principle of the pendulum and the tail of the drag- 

onfly can be considered as a bidimensional-pendulum (with two degrees of freedom – according to the xy-plane and xz- 

plane). 

 
3.2. Control architecture 

 
Nonlinear control is one of the biggest challenges in modern control theory. While linear control system theory has been 

well developed, it is the nonlinear control problems that present the most challenges. Nonlinear processes are difficult to 

control because there can be so many variations of the nonlinear    behaviour. 

The first attempt to control our system will be changing the flapping frequency, angle of attack and tail rotations accord- 

ingly to the position error. The following control diagram in Fig. 5 depicts the dragonfly system. 

In order to analyze the previous control diagram it is needed to understand the behaviour of our system for certain vari- 

ations of the error (in this case, the position error). As it can be seen the wing speed inevitably depends on the sum of the 

position errors in x, y and z-axis being limited to a minimum and maximum saturation which in turn is associated to the 

simulated model. Based on what we see in nature the dragonfly model the wing speed is limited between 0 cycles/s and 

10 cycles/s. The Left (wing) and Right (wing) Angle of Attack will allow the execution of different maneuvers (e.g., turn/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Approximate  decomposition of the  body of a dragonfly  in  objects. 
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Fig. 5.  Control diagram of the dragonfly   system. 

 
change direction, spin on its axis) and will depend on the position error in the xy-plane, i.e., the difference between the posi- 

tion error in x and the position error in y. In this perspective, we add two references: a reference value (AAref) being the value 

considered to be ideal for the model to follow a path without deviation from the xy-plane (straight path) and the position 

error in the z-axis error (elevation) to ensure that the model follows the desired trajectory (e.g., going up while changing 

direction). The Tail Azimuth angle will depend on a function f(errorX, errorY) which depends on the position error in x-axis 

and in the y-axis. This angle is only intended to assist the rotation maneuvers (regardless on the model in question, although 

the dynamics inherent to the use of the tail are different). The nonlinear function f(errorX, errorY) will systematically adjust 

the azimuth angle of the tail in order to adjust the actual position on the xy-plane. For example, if it is intended to turn left 

(i.e., if the xy-plane error starts to increase), it will result in an incremental azimuth angle of the tail to the left (negative spin 

along the z-axis) until the error decreases. The Tail Elevation angle depends only on the position error in the z-axis 

(elevation). 

 

4. Controller performances 

 

We choosed = 0.4, c1 = 2, c2 = 1 and c = 4 for the hybrid adaptive fuzzy controller and defined ten fuzzy sets over each axis 

and the following membership functions for i = 1,   2: 
 

 

 

 

 

 

 

 

 

The  initial  conditions  -hf ð0Þ and  -hg ð0Þ were  chosen  randomly  in  the  intervals  [-30; 30]  and  [d; 30],  respectively.  The  signal 

x1(t) and x2(t) represents the velocity and the acceleration in the x-axis (horizontal axis), respectively and the initial condi- 
tions are x1(0) = 2  and  x2(0) = 0.  The reference trajectory  is: 

 

 

Figs. 6 and 7 depict the response of the system under the action of the direct and hybrid adaptive fuzzy control, respectively. 

As it is possible to conclude through the analysis of Figs. 6 and 7 the hybrid adaptive controller provides a faster tracking 

convergence with lower initial overshoots for both the velocity and acceleration of the dragonfly robot. While the direct 

adaptive law makes the system to become stable at a peak-to-peak velocity of 0.55 m/s (against a peak-to-peak velocity 

of 1 for the ideal situation) and a peak-to-peak acceleration of 0.33 m/s2(against a peak-to-peak acceleration of 0.5 for the 

ideal situation), the system under the action of the hybrid adaptive law stabilizes at a peak-to-peak velocity of 0.85 m/s 

and a peak-to-peak acceleration of 0.45  m/s2. 

ƒ{x,y} 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Time  response of the  dragonfly system  under the  action of the  direct  adaptive fuzzy controller: (a) x1  signal; (b) x2      signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Time  response of the dragonfly  system under  the  action of the  hybrid  adaptive fuzzy controller: (a) x1  signal; (b) x2      signal. 

 
 

Fig. 8 and 9 depicts the norm of the tracking error vector defined in (11) versus time in the logarithmic scale for the direct 

adaptive law and the hybrid adaptive law where it can be verified the supremacy of this last one. 



 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Norm of tracking error vector in controlling the dragonfly system using the direct adaptive fuzzy controller (dashed line), and the hybrid adaptive 

fuzzy  controller  (solid line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9.  Dragonfly’s kinematics. 

 
 

 
Table 3 

DH model of the dragonfly. 

 

 X   Z   
 a a [°]  d h [°]  

1 0 0  0 h1 - 90°  
2 0 -90°  0 h2  
3 0 90°  0 90°  
4 -L1 -90°  0 h3  
5 0 0  0 h4  
6 0 90°  0 h5  
7 L1 0  L2 h6  
8 L1 0  -L2 -h7  
9 0 90°  0 -90°  
10 0 90°  0 h8  
11 0 90°  0 -h9  
12 L1 - L3 0  L2 h10  
13 L1 - L3 0  -L2 -h11  
14 0 90°  0 -90°  
15 0 90°  0 h12  
16 0 90°  0 -h13  



 

  
 

 

As it can be seen, and emphasizing the previous conclusion, Fig. 8 shows that the tracking error analyzed in the hybrid adap- 

tive controller reaches a value lower than the one obtained using the direct adaptive controller. 

 

5. Conclusion 

 
In this paper we developed a hybrid combined direct and indirect adaptive fuzzy controller to control the nonlinear math- 

ematical model based on the dragonfly dynamics. In direct adaptive control, the controller parameters are directly adjusted 

and no effort is made for identifying the plant parameters while that in indirect adaptive control, the controller parameters 

are based on the estimated model  parameters. 

The obtained results appeared to be satisfactory, proving that the development of the kinematical and dynamic model can 

show the behaviour of different flying creatures. The information concerning the physical nature of the flapping flight in the 

dragonfly proved to be important to analyze solutions. Despite all simplifications, our model is still quite complex, and fur- 

ther research needs to be conducted to explore additional   abstractions. 

The simulation results confirm the superiority of the HA law (fast tracking error convergence, fast and improved param- 

eter convergence). They also show that the hybrid adaptive fuzzy controller could perform successful control without incor- 

porating any linguistic description into the   design. 

 

Appendix A 

 
The 3D animation of the dragonfly developed in MatLab was made following the Denavit–Hartenberg (DH) notation as it 

is depicted in Table 3 and consequently represented by the transformation matrices Eqs.   (22)–(27). 

 

 
 

   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

With the DH transformation matrices, the relationship between the links that compose the kinematic structure of the drag- 

onfly can be calculated Table  2. 
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