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ABSTRACT

This paper studies fractional variable structure controllers. Two cases are considered namely, the sliding reference model and the 

control action, that are generalized from integer into fractional orders. The test bed consists in a mechanical manipulator and the 
effect of the fractional approach upon the system performance is evaluated. The results show that fractional dynamics, both in the 
switching surface and the control law are important design algorithms in variable structure controllers. 
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1. Introduction 

 

Variable structure systems (VSS) were proposed during the seventies [1] revealing good feasibility and high robustness. 

Variable structure controllers (VSC) are particularly suited for plants exhibiting complex dynamics, where standard 

algorithms fail to control the system. Mechanical manipulators have non-linear dynamics that require sophisticated control 

algorithms. In the application of VSC for mechanical manipulators [2,3], the most frequently used strategy is to consider 

that each link mimics a first order linear decoupled law. The resulting trajectories reveal two distinct parts, namely the 

reaching phase and the sliding mode. During the reaching phase, the robot evolves towards the reference law, but there is 

no guarantee of convergence. On the other hand, during the sliding phase the system follows the reference dynamics, but 

considerable chattering may occur. The chattering is due to the switching of the control effort, that imposes a considerable 

stress over the actuator and may even excite resonant modes of the mechanical structure. Therefore, the chattering is a result 

of the high frequency switching control action that, in order to force the system to follow the reference dynamics, imposes 

high amplitude signals. To avoid that problem several schemes were proposed such as smoothing the VSC, by transforming 

the ‘on–off’ into a ‘saturation’, or by reducing the VSC component by including additional adaptive or feedforward control 

terms [4]. Realizing that first order reference laws may be not well adapted to the system dynamics, another proposed 

approach [5] consists in adopting a second order reference law. The performance is superior but the algorithm adopts second 

order derivatives which requires either adequate sensors, or real time signal differentiation. This paper revisits this problem 

by taking advantage of the generalization provided by fractional calculus (FC) [6–10]. 

The adoption of FC concepts in VSCs has been addresses during the last years [11–16]. Since we can have fractional 

derivatives of any order the question is to find how the continuous variation of the order either in the reference model, or     

in the control law, affect the intrinsic VSC switching   activity. 

Having these ideas in mind, this paper studies the application of fractional derivatives in VSC and is organized as follows. 

Section 2 introduces the fundamental concepts about manipulator dynamics, VSC and FC. Section 3 develops numerical 

experiments with a simple mechanical manipulator when varying the fractional order of the sliding surface. Section 4 repeats 

the analysis when varying the fractional order of the control law. Finally, Section 5 outlines the main conclusions. 
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2. Preliminaries 

Fig. 1.  Phase plane trajectories of the robot joints for α = 0.5 when δi  = 10−4 . 

 

We consider a mechanical manipulator with n degrees of freedom described by the dynamical equations [17]: 

  

where J (q) is the n × n inertial matrix, C (q, q̇) and G (q) represent the n × 1 vectors of Coriolis/centripetal and gravitational 

torques, and q, q̇ and q̈ are the n × 1 vectors of joint positions, velocities and accelerations, respectively. 

When adopting VSC each link is constrained to follow a first order reference law (i = 1, . . . , n): 

  

  

where qdi, qdi  and  qi, qi  denote the desired and actual positions and velocities for the ith joint of the robot, respectively, 

σi  is a switching variable and ei  is the position error. The characteristic equation   s     λi 0 has a real eigenvalue that 

determines the dynamics of the sliding phase. 

The controller implements a set of decision equations that produce a control action u (t), forcing the manipulator to 

match the reference model (2). Usually the VSC obeys a switching law of the type: 
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Fig. 2.  Phase plane trajectories of the robot joints for α = 1.0 when δi  = 10−4 . 

where sgn (·) represents the sign function. If the VSC satisfies the condition (i  = 1, . . . , n): 

  

 

then the asymptotic convergence is guaranteed. In [18], it was concluded that this algorithm imposes conflicting  

requirements because first order dynamics (2) has discontinuous trajectories in the phase plane, while robots have inertias 

that impose time continuity both in the positions and velocities. The first order discontinuous trajectories demand infinite 

joint torques during transients, that lead to actuator stress. Consequently, the actual reaching phase is not instantaneous 

and, due to its sensitivity to perturbations, convergence is not certain. In order to overcome this limitation, a second order 

reference law was proposed [5]: 

 

  

where ζi  is the damping coefficient and ωni  is the undamped natural frequency. If the model s2   + 2ζiωnis + ω2      = 
(s λi1) (s λi2) has two roots, then expression (6) implements an over-damped or a critically damped reference model. 

For a given initial condition in the phase plane, while the first order model (2) leads to a single trajectory, the second 

order model (6) produces an infinite number of continuous trajectories. It was concluded that the reaching phase and the 

chattering phenomena were avoided but, on the other hand, emerged the necessity of a second order derivative with the 

associated problems of requiring extra sensors. 
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Fig. 3.  Switching control activity: variation of ηi  versus α for δi  = 10−4 , 10−3 , 10−2 , 10−1 . 

Later, in [19] the idea of introducing an integral action in the sliding reference law was explored, leading to the expression: 
 
 
 
 
 
 
In this paper, this problem is revisited by taking advantage of the continuous variation provided by FC. We recall that the 

α order fractional derivative Dαx (t) of the signal x (t) is no longer restricted to integer values. Therefore, in this paper, we 

reformulate the reference model (2) as: 

  

The model becomes (s    λi)  sα    λα   and the case of    1    α    1 is explored. The design of a fractional reference model 
and, consequently, of the switching law, is not trivial since we have now additional freedom, but a limited know-how     

about the resulting dynamics. Eq. (8) is an ‘‘interpolation’’ between models (6) and (7), for ζi 1.0, that proved  to lead 

to interesting results, but other reference models, namely with a different number of eigenvalues, can be explored in the 
future. Another aspect that deserves discussion is the tuning of the control algorithm versus the system stability. Often are  
adopted mathematical concepts, such as Lyapunov stability criteria, but the fact is that user gets a limited intuition into the 
overall performance. On the other hand, tools such as root locus, or frequency response, are no longer adequate since we are 
handling highly nonlinear systems. In spite of this limitation, for each link of the robot we can interpret heuristically, in  the 

root locus, reference model (8) as two zeros (α > 0), or two zeros and one pole (α < 0), the robot dynamics (between input 
torque and output position) as two poles, and the other coupling effects as perturbations. The position of the two robot poles 
vary significantly [17] and the VSC adjusts the gain in real-time so that the global dynamics is close to the reference model. 

 



 

· 

 
 

      
 

 

 

 

Fig. 4.  Control torques versus time for α = −0.5 when δi  = 10−4 . 

Therefore, the positioning and the number of the zeros and poles of the reference model must be compatible with the rest of 

the dynamical system, avoiding either an under-, or an over-, compensation, that would lead to poor results. In this line of 

thought, expression (8) together with the robot dynamics seem to establish a good balance between total number of poles 

and zeros providing, therefore, an intuitive prototype reference model and will be followed in the sequel. 

For the purpose of implementation the fractional derivatives and integrals is followed the Grünwald–Letnikov  definition: 

 

 

 

where Γ ( ) is Euler’s gamma function, [x] means the integer part of x, and h is the step time increment. 

For obtaining the discrete time algorithm, that is, for converting expressions from continuous to discrete time, the 

approximation is often considered: 

 
 

where z and Ts represent the Z -transform variable and controller sampling period, respectively. This expression corresponds 

to the generalization of the Euler backward operator with the infinitesimal time increment h replaced by Ts. 
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Fig. 5.  Control torques versus time for α = +0.5 when δi  = 10−4 . 

In order to obtain rational expressions, Taylor or Padé expansions of order r  are usually adopted, in the neighbourhood   

of z  = 0. In the present study, a simple Taylor series expansion is  adopted: 

 

  

3. Integer variable structure control and fractional sliding mode 

In this section, a simple manipulator with two rotational degrees of freedom (n 2) is adopted and numerical values 

identical to those adopted in [2,3] are considered. Therefore, the robot dynamics is given by: ) 



 

 

 
 

 

 

 
 

Fig. 6.  Phase plane trajectories of the robot joints for α = −0.1 when δi  = 10−1 . 

We start by considering that the VSC torque is given by a simple proportional and saturation function: 

 

 

 

 
 

 

 

 

where δi  defines the width of the proportional band and Di  and the maximum torque   amplitude. 

 

 

In the following experiments, a standard test consisting of moving the manipulator from the initial state [2,3] is 

considered: 

  

  

To the final state: 

  

 



 

  
proportional band δi = 
dynamics. 

10−4, 10−3, 10−2, 10−1
 , to evaluate their effect upon the system performance and the chattering 

 

 
 

 
 

 

 
 

Fig. 7.  Phase plane trajectories of the robot joints for α = 0.2 when δi  = 10−1 . 

  

The chattering, visible in the sliding phase, is characteristic of VSC action. To measure this phenomenon, the index of 

control switching (i = 1, 2) is defined [20]: 

 

 

 

where  N
p  

and  Ns  are  the  number  of  samples  of  torque  Ti   that  fit  into  the  proportional  and  saturation  bands  of (15), 
i i 

respectively. Therefore, it is of relevance to analyse the variation of η with α and δ as a symptom of the VSC activity for 

compelling the non-linear system to follow the reference    dynamics. 

For the fractional derivative approximation, the Taylor series expansion (11) with r = 10 and Ts =  10−4  [21] is 

considered. In the reference model λi   =  1.0, (i  =  1, 2) is considered, and in the control action D1    =  200, D2    =  100    

is adopted. The experiments consist of varying the fractional order in the interval −1  ≤ α ≤ 1 and the width of the 
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Fig. 8.  Phase plane trajectories of the robot joints for α = 0.6 when δi  = 10−1 . 

Fig. 1 depicts the phase plane trajectories for α    0.5 when δi    10−4. Analysing the different combinations of values of 

the parameters, we verify a good match against the reference dynamics, with exception of the neighbourhood of α   1.0   
(Fig. 2) where unstable responses  occur. 

Fig. 3 shows the evolution of ηi, (i      1, 2), versus α for δi 10−4, 10−3, 10−2, 10−1     . For example, Figs. 4 and 5 show 

the torque time evolution for α      0.5 and α    0.5   when δi 10−4. As expected, we verify that the    chattering activity 
increases with the diminishing of the proportional band. Furthermore, we conclude that the occurrence of control switching 

is higher the larger the value of α. This is due to the higher dynamical requirements posed by faster reference dynamics   

(i.e., larger α) that required a larger control action. In fact, observing the phase plane portraits for all tested cases (i.e., 

combinations of values of α when δi) it is concluded that high values of η occur when the VSC has convergence difficulties. 

 
4. Fractional variable structure control and integer sliding mode 

 

In this section, the effect of having a fractional order control law is explored. Again, this possibility emerges from [5] 

where the substitution of the classical VSS proportional-like algorithm by a proportional and integral controller having a 

VSS action in the integral component was proposed in order to adapt its strength in real-time. Therefore, it is considered the 

effect of having a fractional derivative in series with the VSS switching algorithm. Therefore, the switching line is (2) and 
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Fig. 9.  Switching control activity: variation of ηi  versus α for δi  = 10−2 , 10−1 , 100 , 101 . 

the controller is given by: 

 

 

 

 

 

 

 

 
We analyse the variation of η with α and δ while the controller and robot parameters remain identical to the previous 

ones (i.e., r      10, Ts       10−4, λi       1.0, i      1, 2, and D1       200, D2        100) with exception of δi. For example, Figs. 6–8 depict  

the phase-plane trajectories for δi          10−1 and α       0.1, 0.2, 0.6 , respectively. We observe good results for α    0.2, but 
convergence difficulties and significant chartering phenomena for 0 1 and 0 6, respectively. 

Fig. 9 shows the evolution of ηi, (i   1, 2), versus α for δi 10−2, 10−1, 100, 101   , λi 1.0, (i      1, 2). We observe 
that the chattering activity increases with the diminishing of the proportional band. Furthermore, we conclude that the 

occurrence of control switching is smaller in the centre of the range of values of α, while near the extreme cases of integer 
order integral (at the left) or integer order derivative (at the right) the controller experiments difficulties. 

In conclusion, we demonstrated that FC is a tool that leads to an extra degree of freedom when tuning variable structure 

systems, both at the sliding surface and control law, that may lead to superior dynamical performances. 



 

 

5. Conclusions 

 

In this paper, the application of FC concepts was studied in the analysis of VSCs. These algorithms are a class of non-linear 

controllers that has been intensively studied during the past decades and, therefore, it is important to generalize the results 

for FC concepts. The test bed consisted in a two degrees of freedom manipulator under the action of two alternative control 

strategies, namely a fractional sliding surface, and a fractional control law. The dynamical performance was monitored 

via the phase plane and the control action was accessed by means of the switching activity during time. The experiments 

revealed that the variation of the fractional order represents an useful tool for the continuous tuning and adjustment of the 

closed loop system performance. The extra freedom of design constituted by the fractional order leads to new possibilities 

for the design of the reference model and the control law, that must be further explored before advancing to industrial 

cases. These results encourage further research on embedding FC into VSC structures and, by consequence, to the adoption 

of FC-VSCs in real-world applications. 
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