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ABSTRACT 
 

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to 

enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted 
as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of 
required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based 
on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO 
parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The 
adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger 
scenario. 
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1. Introduction 

 
Mimicking phenomena observed in nature has been the key to 

the successful development of new approaches in computational 

sciences (e.g., optimization algorithms [1]) and robotics (e.g., bioin- 

spired robots [2]). Undeniably, the sciences of biomimetics and 

biomimicry are producing sustainable solutions by emulating na- 

ture’s time-tested patterns and strategies [1]. Some examples of 

behavior-based collective architectures, such as ants or bees, in- 
spire the design of novel machine-learning techniques and swarm 

robotics. This area of research, known as swarm intelligence [3,4], 

studies large collections of relatively simple agents that can col- 

lectively solve complex problems. These schemes display the ro- 

bustness and adaptability to environmental variations revealed by 

biological agents. 
One of the most well-known bioinspired algorithms from 

swarm intelligence is the Particle Swarm Optimization (PSO), 

which basically consists of a technique loosely inspired by birds 

flocking in search of food [5]. More specifically, it  encompasses 

a number of particles that collectively move on the search  space 

 

to find the optimal solution. A problem with the PSO algorithm 

is that of becoming trapped in sub-optimal solutions. Therefore, 

the PSO may work perfectly on one problem but may fail on 

another. In order to overcome this problem, many authors have 

suggested extended versions of the PSO, such as the Darwinian 

Particle Swarm Optimization (DPSO)  [6],  to  enhance  the ability 

to escape from sub-optimal solutions (cf.,  [7]).  An  extension  of 

the DPSO to multi-robot applications has been recently proposed 

and denoted as Robotic Darwinian PSO (RDPSO), benefiting from 

the dynamical partitioning of the whole population of robots [8]. 

Hence, the RDPSO allows decreasing the amount of required 

information exchange among robots and therefore is scalable to 

large populations of robots  [9]. 

Swarm algorithms such as the PSO and its extensions, including 

the RDPSO, present some drawbacks when facing dynamic and 

complex problems, i.e., problems with many sub-optimal solutions 

changing over time. The lack of the adaptability to contextual 

information usually observed in nature turns out to result in sub- 

optimal solutions that are usually overcome by using exhaustive 

methods (e.g., sweeping the whole scenario with robots) [10]. 

For instance, robots in search-and-rescue applications must be 

efficient in persistently searching for victims while there remains a 

chance of rescuing them. Although the RDPSO previously presented 

is endowed with punish–reward rules inspired on natural selection 

to avoid stagnation, robots may take too much time to realize 

that they are stuck in a sub-optimal solution or that the solution 

is changing over time. A good example of that may be found  on 
 



 

 

olfactory-based swarming wherein a plume is subject to diffusion 

and airflow, thus making it hard to find its source (e.g., detection 

of hazardous gases) [11]. 

There are two key contributions of this work. First, a set of 

context-based evaluation metrics, at both the micro- and macro- 

level, are proposed to assess the RDPSO behavior. For that purpose, 

several concepts inherent to particle swarm techniques (e.g., ex- 

ploration vs. exploitation) are further studied using two physical 

platforms with a phase space analysis of their motion (e.g., chaotic- 

ity). Secondly, those metrics are used as inputs of a fuzzy system 

so as to systematically adapt the RDPSO parameters (i.e., outputs of 

the fuzzy system), thus improving its convergence rate, suscepti- 

bility to obstacles and communication constraints. 

Bearing these ideas in mind, the next section presents some 

previously developed works to contextualize the approach pro- 

posed herein. A brief review of the RDPSO algorithm, which ben- 

efits from the dynamical partitioning of the whole population of 

robots into multiple swarms, is given in Section 2. A set of context- 

based evaluation metrics to measure the collective and individual 

performance of robots is proposed in Section 3. Subsequently, a 

novel fuzzy approach to assess the more suitable merging of the 

evaluation metrics to systematically improve the convergence and 

performance of the RDPSO is presented in Section 4. Populations of 

real and simulated robots to evaluate the performance of the al- 

gorithm are then used in Section 5. Finally, in Section 6 the main 

conclusions are outlined. 

 
2. Related work 

 
Regardless of PSO main variants, the difficulties in setting and 

adjusting the parameters, as well as in maintaining and improving 

the  search  capabilities  for  higher  dimensional  problems,  is  still 

a matter addressed in recent  works  [12–14].  Moreover,  it is 

proved that adaptive methods are likely to perform better than 

nonadaptive methods. For example, one of the most common 

strategies presented in the  literature  to  solve  issues  in  setting 

and adjusting PSO parameters is based on the stability analysis of 

the algorithm. In [12], the individual particle’s trajectory leading 

to a generalized model is analyzed, which contains a set of 

coefficients to control the system’s convergence. The resulting 

system is linear of second-order with stability and parameters 

depending on the poles, or on the eigenvalues of the state matrix. 

Kadirkamanathan et al. [13] proposed a stability analysis of a 

stochastic particle dynamics by representing it as a nonlinear 

feedback controlled system. The Lyapunov stability method was 

applied to the particle dynamics in determining sufficient and 

conservative conditions for asymptotic stability. However, the 

analysis provided by the  authors  has  addressed  only  the  issue 

of absolute stability, thus ignoring the optimization toward the 

optimal  solution.  More  recently,  Yasuda  et  al.  [14]  presented 

an activity-based numerical stability analysis  method,  involved 

the feedback of swarm activity to control diversification and 

intensification during the search. The authors showed that the 

swarm activity can be controlled by employing the stable and 

unstable regions of PSO. However, in a distributed approach such 

as the RDPSO, calculating the swarm activity implies that each 

robot from the swarm would need to share not only its current 

position, but also its current velocity with all other members. An 

alternative to these strategies was accomplished by merging PSO 

algorithms with fuzzy logic. Fuzzy logic was introduced in 1965 by 

Zadeh [15] at the University of California, Berkeley, to deal with and 

represent uncertainties. Despite the  several  possible  approaches 

to implement an online auto-tuning system, fuzzy logic seems to 

be more adequate to proceed as a multiple criteria analysis tool. 

The strength of fuzzy logic is that uncertainty can be included into 

the decision process. Vagueness and imprecision associated with 

qualitative data can be represented in a logical way using linguistic 

variables and overlapping membership functions in the uncertain 

range. For instance, in the work of Shi and Eberhart [16], a fuzzy 

system is merged into the PSO to dynamically adapt the inertia 

weight of particles. Similarly, Liu et al. [17] presents a fuzzy logic 

controller to adaptively tune the minimum velocity of the PSO 

particles. Several other authors considered incorporating selection, 

mutation and crossover, as well as the differential evolution, into 

the PSO algorithm. The main goal is to increase the diversity of the 

population by either preventing the particles to move too close to 

each other and collide  [18,19]  or  to  self-adapt  parameters  such 

as the constriction factor, acceleration constants [20], or inertia 

weight  [21]. 

Contrary to the multi-robot foraging approach proposed herein, 

all previously presented works only consider PSO and its main 

variants applied to optimization problems. Robots are designed 

to act in the real world  where  both  the  dynamic  and the 

obstacles need to be taken into account. Furthermore, since in 

certain environments the communication infrastructure may be 

damaged or missing (e.g., search and rescue), the self-spreading of 

autonomous mobile nodes of a mobile ad-hoc network (MANET ) 

over a geographical area needs to be considered. Some similar 

works have been recently presented in the literature. For instance, 

the work of Saikishan and Prasanna [22] involved the path- 

planning and coordination of multiple robots in a static-obstacle 

environment based on the PSO and the Bacteria Foraging Algorithm 

(BFA). As the RDPSO uses natural selection to avoid getting 

trapped in sub-optimal solutions, the one proposed by the authors 

enhances the local search using the BFA.  Experimental  results 

were conducted in a simulation environment developed in Visual 

Studio where the pose and shape of obstacles were previously 

known. However, only one target and  two  robots  were  used, 

thus limiting the evaluation of the proposed algorithm. Hereford 

and  Siebold  [23]  proposed  an  embedded  version  of  the   PSO 

to swarm platforms. As in the  RDPSO,  there  are  no  central 

agents to coordinate robots’ movements or actions. Despite the 

potentialities of the physically-embedded PSO, the experimental 

results were carried out using a population of only three robots 

performing a distributed search in a scenario without sub-optimal 

solutions. Furthermore, collision avoidance and fulfillment of 

MANET  connectivity were not considered. 

Despite the accomplishment of other similar works, none of 

them introduced adaptive behaviors to overcome dynamic proper- 

ties of real world scenarios. However, the behavior of robots needs 

to change according to contextual information about the surround- 

ings. This concept of contextual knowledge needs to be taken into 

account to adapt swarms and robots’ behavior while considering 

agent-based, mission-related and environmental context [24]. For 

example, Calisi et al.’s work [25] presented a context-based archi- 

tecture to enhance the performance of a robotic system in search 

and rescue missions using a rule system based on first-order Horn 

clauses. The set of metrics used as inputs was obtained considering 

an ‘‘a priori’’ map about the difficulty levels concerning mobility 

and victim detection. Nevertheless, in real applications this would 

mean a previous knowledge about the scenario, which is not al- 

ways possible and can be difficult to achieve. 

The next section presents the main features of RDPSO to help 

the reader in understanding the introduction to the context-based 

evaluation  metrics  subsequently presented. 

 
3. Brief review of the RDPSO 

 
This section briefly presents the RDPSO algorithm proposed 

in [8] and further extended in [9]. Since the RDPSO approach 

is an adaptation of the DPSO to real mobile robots, five general 

features are developed: (i) an improved inertial influence based on 
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Table 1 

Punish–reward RDPSO rules. 
 

Punish Reward 

If a swarm does not improve during a specific threshold SC max, then the swarm 

is punished by excluding the worst performing robot. 

If the number of robots in a swarm falls below the minimum number of 

If a swarm improves and its current number of robots is inferior to Nmax, then it is 

rewarded with the best performing robot that was previously excluded. 

If a swarm has been more often rewarded than punished (N kill  counter), then it has 

accepted robots Nmin to form a swarm, then the swarm is punished by being 
dismantled. 

a small probability of spawning a new swarm. 

 
 

 

fractional calculus (FC ) concepts taking into account convergence 

dynamics; (ii) an obstacle avoidance behavior to avoid collisions; 

(iii) an algorithm to ensure that the MANET remains connected 

throughout the mission; (iv) a novel methodology to establish the 

initial planar deployment of robots preserving the connectivity of 

the MANET, while spreading out the robots as most as possible; and 

(v) a novel punish–reward mechanism to emulate the deletion and 

creation of robots. 

The behavior of robot n can then be described by the following 

discrete equations at each discrete time, or iteration, t ∈ N0 : 

other robots in the active swarms, they basically randomly wander 

in the scenario. This approach improves the algorithm, making it 

less susceptible of becoming trapped in a sub-optimal solution. 

However, they are always aware of their individual solution and 

the global solution of the socially excluded group. Also, having 

multiple swarms enables a distributed approach, because the 

network that was previously defined by the whole population of 

robots is now divided into multiple smaller networks (one for each 

swarm), thus decreasing the number of nodes (i.e., robots) and the 

information exchanged between robots of the same network. In 

other words, robots interaction with other robots is confined   to 1 1 
local interactions inside the same group (swarm), making RDPSO 

scalable to large populations of robots. 
In a previous work [26], applying Jury–Marden’s Theorem [27] 

to Eqs. (1) and (2) (cf., Appendix A), a convergence analysis of the 

RDPSO was carried out in such a way that the system’s convergence 
  is controlled taking into account obstacle avoidance and MANET 

connectivity, without resorting to the definition of any arbitrary or 

  

The parameters α, 0 < α ≤ 1 and ρi, ρi > 0 and i =  1, 
2, 3, 4, assign weights to the inertial influence, the local best 
(cognitive component), the global best (social component),     the 

obstacle avoidance component and the enforcing communication 
component when determining  the  new  velocity.  Coefficients 

ri, i = 1, 2, 3, 4, are random matrices where in each component 
is generally a uniform random number between 0 and 1. The 

variables vn [t ] and xn [t ] represent the velocity and position vector 

of robot n, respectively, and χi [t ] denotes the best position of the 
cognitive, social, obstacle and MANET matrix components. 

The fractional coefficient α allows describing the dynamic 
phenomena of the robot’s trajectory because of its inherent 

memory property. The cognitive χ1 [t ] and social components χ2 [t ] 
are common in the PSO algorithm, where χ1 [t ] represents the local 
best position and χ2 [t ] represents the global best position of robot 

n. The obstacle avoidance component χ3 [t ] is represented by the 
position of each robot that optimizes a monotonically decreasing 

or increasing function g(xn [t ]) that describes the distance     to 
a sensed obstacle. In a free-obstacle environment, the obstacle 

susceptibility weight ρ3 is set to zero. However, in real-world 
scenarios, obstacles need to be taken into account and the value of 

ρ3 depends on several conditions related with the main objective 
(i.e., minimize a cost function or maximize a fitness function) and 

the sensing information (i.e., monotonicity of g(xn [t ])). The MANET 
component χ4 [t ] is represented by the position of the     nearest 
neighbor increased by the maximum communication range dmax 

toward robot’s current position. A higher ρ4 may enhance the 
ability to maintain the network connected ensuring a specific range 
or signal quality between robots. 

Besides all these components, the RDPSO is represented by 

multiple swarms, i.e., several groups of robots that, together, form 

the population. Each swarm individually follows Eqs. (1) and (2) 

in the solution search and some punish–reward rules govern the 

whole population of robots based on the concept of social exclusion 

(for more details refer to [8]). The RDPSO punish–reward rules are 

summarized in Table 1. 

In what concerns the socially excluded robots, instead of 

searching for the objective function’s optimal solution like the 

problem-specific parameters. The attraction domain in which the 

RDPSO is stable was then defined by: 

  

  

 

 

This attraction domain assures the global asymptotic stability 

of the system (1) and (2) allowing, therefore, robots to find the op- 

timal solution, while avoiding obstacles and ensuring MANET con- 

nectivity [26]. However, the influence ρi and α in the performance 

of the algorithm needs to be further explored in order to system- 

atically adjust the collective behavior of the swarm. 

 
4. Context-based evaluation metrics 

 
To allow the RDPSO adaptive behavior, a set of evaluation 

metrics, at the macro (i.e., swarm) and micro (i.e., individual robot) 

levels, that measures the performance of collective movement 

of mobile robots, needs to be defined. This metrics will be used 

to systematically adjust the parameters of the algorithm, thus 

improving its convergence rate, susceptibility to obstacles and 

communication constraints. Hence, the set of evaluation indices 

herein proposed are computed, at each iteration, considering 

environmental and behavioral context. Those measures will then 

be used as inputs of the fuzzy system in order to control the RDPSO 

parameters (i.e., outputs of the fuzzy system). 

To evaluate the following proposed metrics within the RDPSO 

algorithm, a swarm of two  physical  robots  is  adopted  in  the 

next set of experiments. Robots consisted on differential ground 

platforms recently developed and presented in [28] for swarm 

robotics applications denoted as eSwarBot s (Educative Swarm 

Robots).   Solutions   were   defined   by   illuminated   spots   on    a 

2.55 m × 2.45 m scenario sensed using the overhead light  sensors 
(LDR)  of  eSwarBots  (cf.,  [29]  and  Section  6  for  more detailed 
description on the experimental setup). Although the platforms 

present a limited odometric resolution of 3.6°  while rotating 

and 2.76 mm when moving forward, their low cost and high 

autonomy allow performing experiments with large number   of 



 

 

 

 

Fig. 1.  Experimental setup to evaluate the exploration/exploitation capabilities   of 

a swarm of two robots. 

 

robots. Nevertheless, using only two robots allows easy retrieval 

of the evolution of each evaluation metric when facing specific 

extreme situations. For instance, the use of a larger swarm would 

not drastically affect how one robot behaves when detecting an 

obstacle within its sensing range. Also, as the scenario has a limited 

size and number of solutions, a smaller population results in a 

smaller stochastic effect, thus resulting in negligible differences 

between   different   trials   despite   the   existence   of   the random 

coefficients ri, i = 1, 2, 3, 4. 

 

4.1. Exploitation vs. exploration 

 

As described in [14,30], a swarm behavior can be divided into 

two activities: (i) exploitation; and (ii) exploration. The first one 

is related with the convergence of the algorithm, thus allowing a 

good short-term performance.  However,  if  the  exploitation level 

is too high, then the algorithm may be stuck on sub-optimal 

solutions. The second one is related with the diversification of the 

algorithm which allows exploring new solutions, thus improving 

the long-term performance. However, if the exploration level is too 

high, then the algorithm may take a long time to find the optimal 

solution. As first presented by  Shi  and  Eberhart  [16],  the trade- 

off between exploitation and exploration in the classical PSO has 

been commonly handled by systematically adjusting the inertia 

weight. A large inertia weight improves exploration activity while 

exploitation is improved using a small inertia   weight. 

Since the RDPSO presents a fractional calculus (FC )  strategy 

 

 

 

Fig. 2.    Center-of-mass trajectories in phase space of a swarm of 2  robots. 

 

despite the cyclical trajectory of the swarm toward the optimal so- 

lution, the swarm presents an oscillatory behavior. This results in a 

high exploration level being more unstable and sometimes unable 

to converge, i.e., it presents a difficult convergence. 

We observe that α needs to be adjusted depending on the con- 

textual knowledge for behavior specialization. Hence, the intro- 

spective knowledge about the swarm activity is used to obtain 

smooth transitions between behaviors. However, a method to eval- 

uate the current swarm activity needs to be considered. 

As previously described, the swarm activity in [14] is controlled 

by switching between the stable and unstable regions of the PSO. 

In our situation, the stable region is defined by the attraction 

domain presented in Section 3 and previously introduced in [26], 

wherein the swarm activity is, predominantly, of exploitation. 

Since the equilibrium between exploitation and exploration is at 

the boundary of the attraction domain (α  =  0.632), α   should 
always converge to this value. 

Contrarily to [14], in which the activity is defined as the root 
mean square velocity of particles, let us define the swarm activity 

of swarm s as the norm of the velocity of its center-of-mass vs [t ] at 
each iteration, i.e., group velocity: 

to control the convergence of the robotic team, the coefficient   α 
needs to be systematically adjusted in order to provide a high 

 

  
level of exploration while ensuring the optimal solution of the 
mission. In order to understand the relation between the fractional 

coefficient α and the RDPSO exploitation/exploration capabilities, 
the center-of-mass trajectory in phase space of a swarm of two 

physical robots, for various values of α, while fixing ρi = 0.5, will 
be analyzed. Both robots were randomly placed in the vicinity of 
the solution in (0, 0) with a fixed distance of 0.5 m between them 

wherein threshold vmax corresponds to the maximum step be- 

tween iterations. The redefinition of swarm activity was consid- 

ered in order to underline the collective activity (at the macro level) 

instead of the sum of activities performed by each robot. Consid- 

ering the definition presented in [14], robots may present a high 

activity but the swarm as a whole may present a small activity, i.e., 
−→ 

(Fig. 1). vs [t ] ≈ 0 . Therefore, a swarm activity of As [t ]  =  0 means   no 

As it may be perceived (Fig. 2), the swarm behavior is suscepti- 

ble to variations in the value of α. Fig. 2 depicts that when α is too 

small, i.e., α = 0.010, the exploitation level is too high, being likely 
to get stuck in a sub-optimal solution. However, the intensification 
of the algorithm convergence is improved—it presents a quick, al- 

most linear, convergence. When α is at the boundary of the attrac- 

tion domain (cf., Section 3), i.e., α = 0.632, the trajectory of the 
swarm is cyclical and presents a good balance between exploita- 
tion and exploration. In this case, robots exhibit a level of diversifi- 
cation adequate to avoid sub-optimal solutions and a considerable 

level of intensification to converge to the optimal solution, i.e., it 
presents a spiral convergence toward a nontrivial attractor. When 

α is too high and outside the attraction domain, i.e., α = 0.990, 

swarm activity at all and α should increase, while As [t ] = 1 corre- 
sponds to a highly chaotic behavior and α should decrease. 

It should be noted that this adapted behavior occurs at the 

collective level. However, the individual behavior of each robot 

also needs to be considered. By other words, the same swarm 

may have both exploring and exploiting robots and that state will 

depend on their cognition and socialization level. 

 
4.2. Cognition vs. socialization 

 

Despite the relation between the fractional coefficient α and 

swarms behavior, it is the combination of all RDPSO parameters 

that determines its convergence properties. The values of     both 



 

 

 

 

Fig. 3. Experimental setup to evaluate the cognition/socialization between two 

robots of the same swarm. 

 

cognitive and social factors ρ1 and ρ2 are not critical for the 

algorithm, but selection of proper values may result in better 

performance, both in terms of speed of convergence and alleviation 

of sub-optimal solutions. Furthermore, their values have to be 

taken into account when choosing the fractional coefficient α. 

The cognitive component ρ1 represents the personal ‘‘thinking’’ 
of each robot, thus encouraging robots to move toward their own 

best positions found so far. The social component ρ2 represents the 
collaborative effect of the swarm in finding the optimal solution, 
thus summoning robots toward the global best position found so 
far. Venter’s work [31] presented experimental results in which a 

small cognitive coefficient ρ1 and large social coefficient ρ2 could 
significantly improve the performance of the algorithm. However, 
it should be highlighted that, for problems with multiple sub- 

optimal solutions, a larger social coefficient ρ2 may prematurely 
mislead all robots toward a sub-optimal solution in which they will 
be unable to avoid since they are ‘‘blind’’ followers. On the other 

hand, a larger cognitive coefficient ρ1 may cause each robot to be 
attracted to its own personal best position to a very high extent, 
resulting in excessive wandering. 

To further understand the cognitive and social components 

of the RDPSO, let us then consider an experimental setup of a 

swarm of two robots. Each robot is initially placed near the sub- 

optimal and optimal solutions uniquely identifiable by controlling 

the brightness of the light. The brighter site (optimal solution) is 

considered better than the dimmer one (sub-optimal solution), and 

so the goal of the swarm is to collectively choose the brighter site 

(Fig. 3). It is noteworthy that using a large population of robots 

within such scenario would not yield much different results as the 

swarm global best would be collectively chosen as the same than 

using two robots. In other words, increasing the number of robots 
would not only increase the variability of the behavior before 

 

 

 

Fig. 4.    Distance between robots in phase space to evaluate the relation between ρ1 

and ρ2 . 

 

robots tended to only a few centimeters when using (ρ1 , ρ2 ) = 
(0.1, 0.9) and near 1 m using (ρ1 , ρ2 ) = (0.9, 0.1). However, 
the relation between the final inter-robot distance and (ρ1 , ρ2 ) 
weights is not linear. It can also be observed that, increasing the 

social weight ρ2 , the robot initially located at the sub-optimal 
solution converges in a more intensive way, that is, the radius of 

the spiral at robot’s convergence position is smaller for higher ρ2 

values. Hence, the exploitation behavior increases as the distance 
between robots decreases, thus compromising the performance of 
the swarm. Moreover, robots’ velocity does not directly depends on 

the relation between ρ1 and ρ2 , since the relative velocity between 
robots reaches a maximum velocity of approximately 0.45 m s−1

 

in the three (ρ1 , ρ2 ) combinations. 
A balance between cognitive and social weights needs to be 

established and adapted throughout the mission depending on 
contextual mission-related knowledge of the cognitive or social 

levels of robots, thus resulting in a different social weight ρ2 (and, 

therefore, cognitive weight ρ1 ), for each robot. 
Suresh et al.’s work [32] presented an inertia adaptive PSO in 

which the modification involved the modulation of the inertia 
factor according to distance of particles of a particular generation 
from the global best. Similarly, a micro level metric, defined as 
robot socialization, is then defined as the current Euclidean distance 
of robot n from its swarm global best: 

the collective agreement on the global best solution, as it  would     

significantly increase the complexity on analyzing the evolution of 

the group. 

At the beginning, robots are at a distance of 1.6 m from each 

other.  Also,  the  fractional  coefficient  α is  now  fixed  at 0.632 

  
The social level of a given robot will then be the relation 

between its distance to the global best and the distance to the 
global best of the farthest robot of the same swarm. Therefore,  a 
robot with a social level of Sn [t ] = 0 means that it is the farthest 

(threshold stability) and ρ3    = ρ4    = 0.1 for multiple (ρ1 , ρ2 ) 
combinations while keeping the same absolute value ρT  = 1 with robot of the swarm to the best robot and ρ2 should increase, thus 

ρT  = ρ1 + ρ2 . 

Fig. 4 presents the Euclidean distance in phase space between 
the two robots, thus depicting the evolution and convergence of 
the distance between them. Note that the inter-robot distance 

turns out to represent the distance between the robot located in the 
sub-optimal solution and the location of the optimal solution itself. 

This phenomenon can be explained by how the other parameters 

are defined (more specifically the smaller values of ρ3 and ρ4 ) and 

the nonexistence of any other better solution within the swarm. 
Hence, the decision of the robot located in the optimal solution 

is not disturbed, thus staying still until a better solution is found 

(which never happens in such a situation). 

As expected, increasing the social weight ρ2  decreases the 
Euclidean  distance  between  robots,  i.e.,  the  distance between 

decreasing ρ1 . On the other hand, as robot social level increases, i.e., 
the distance of a robot to the optimal solution decreases, ρ2 should 
decrease (increasing ρ1 ). This modulation ensures that in case of 
robots that have moved away from the global best, the effect of 
attraction towards the global best will predominate. 

Depending on the social level, the fractional coefficient α 

should vary. As Sn [t ] decreases, α should also decrease so that 
whenever a robot moves far away from the globally best position 
found so  far  by  the  swarm,  the  effect  of  its  inertial  velocity 
will be minimal. The opposite situation can also be considered. 

As  Sn [t ] increases,  i.e.,  the  robot  gets  closer  to  the  global  best 
position, α should increase to present a higher diversification level, 
thus increasing the possibility to find an improved or alternative 

solution. Consequently, there may also be a different α for each 
robot depending on its social  level. 



 

 

 

 
Fig. 5.    Experimental setup to evaluate the obstacle susceptibility of a  robot. 

 
4.3. Obstacles susceptibility 

 

Using multiple mobile robots for hazardous target search appli- 

cations requires an efficient way for avoiding obstacles while com- 

pleting their main mission. The presence, or absence, of obstacles 

can affect the efficiency of the RDPSO since one set of parameters 

may result in fast convergence but fail in the presence of obstacles 

or it may increase obstacles susceptibility but swarms may be more 

resilient. 

As previously explained, a robot is able to avoid obstacles due to 
a repulsive force based on a monotonic and positive sensing func- 

tion g(xn) g(xn [t ]) that depends on the distance between the robot 
and the obstacle [8]. Its susceptibility is defined through the ob- 

stacle susceptibility weight ρ3 . Since the characteristics of the en- 
vironment are generally not known in advance, the robot itself 

should be able to intelligently change its own obstacle susceptibil- 

ity ρ3 based on the contextual information about the environment. 

By means of Eq. (1) one can perceive that, when a robot does 

not sense any obstacle within its sensing radius rs , the    position 

 

 

 

Fig. 6.    Distance from the worst performing robot to the obstacle in phase  space. 

 
Observing Fig. 6, we conclude that the worst performing robot 

gets stuck in the obstacle vicinities, and sometimes collides with 

them, for an obstacle susceptibility weight of ρ3   = 0.4 . For any 
of the other two situations (ρ3  = 0.8 and ρ3  = 1.2), the robot is 
able to circumvent the obstacle, thus reaching the optimal solution. 

However, notwithstanding the same final result for both ρ3 = 0.8 

and ρ3 = 1.2, as ρ3 increases the robot presents a more chaotic 

behavior, i.e., more oscillatory. For ρ3 = 1.2 the robot first moves 
1 m and a half away from its current location avoiding the obstacle 
in an inadequate way. 

In fact, as a robot avoids an obstacle, ρ3 should decrease allow- 

ing a wider range of possibilities for the other coefficients, such as 

ρ1 and ρ2 . For that reason, the following environmental contextual 

information about robot avoidance was defined: 

that optimizes the monotonically decreasing or increasing sensing 

function g(xn [t ]) is the same as the robot’s current position, i.e., 

   

xn [t ] = χ3 [t ]. This yields the following expression: 

  

 

One  may  consider  that,  when  a  robot  does  not  sense any 

obstacles within rs , then the obstacle coefficient should be ignored, 

i.e., ρ3 = 0. Also, it is easy to remark that its obstacle susceptibility 
weight should increase as the distance to the obstacle  decreases. 

However, as previously highlighted, it is not the absolute value  of 

a coefficient that matters but the relation between all coefficients. 

Therefore,  for  better  understanding  the  relation  between   ρ3 

and the rest of the RDPSO parameters, let us consider a new 

experimental setup of a swarm of two robots. One of the robots 

is placed in the optimal solution (i.e., the brighter site), and will 

summon the other robot towards it. The other robot is placed 1 m 

away from the best performing robot and an obstacle is placed 

halfway the path between both robots, i.e., 0.5 m in front of the 

robot that is being summon (Fig. 5). Also, robots are    programmed 

to detect obstacles at 0.5 m from them, i.e., rs = 0.5. 

To allow the manipulation of ρ3  within a considerable range, 
while respecting the attraction domain represented  by condition 

(4), let us suppose the following set of parameters ρ4 = 0.1 and 

ρT = 0.7, with (ρ1 , ρ2 ) = (0.2, 0.5). In other words, the social 
component influences more than the cognitive one, thus    allowing 

for the robot placed in the optimal solution to promptly lure the 
other one. As Fig. 6 depicts, the obstacle susceptibility of the robot 

was evaluated using the following parameters α =  0.632   and 

ρ2  = {0.4, 0.8, 1.2}. 

wherein the monotonic and positive sensing function (xn)g(xn [t ]) 
returns rs when the robot does not sense any obstacle within its 
sensing radius. As Eq. (8) shows, as an obstacle enters a robot’s 

sensing radius, On [t ] tends to 1, thus presenting the proximity to 
the obstacle. On the other hand, when On [t ] = 0, i.e., the robot is in 
an obstacle-free path, then the obstacle susceptibility weight can 

be neglected, i.e., ρ3 = 0. However, as On [t ] increases, the obsta- 
cle susceptibility weight ρ3 should also increase, thus decreasing 
ρT in order to respect the attraction domain defined by conditions 
(3) and (4). 

 
4.4. Connectivity susceptibility 

 

Wireless networks play a crucial role in MRS since robots need 

to share information to infer their individual locations and so- 

lutions, and control their position and orientation to maintain 

network connectivity. The requirement to ensure network connec- 

tivity often fails when robots move apart from their teammates. 
To improve the convergence rate of the RDPSO robots within 

the same swarm, robots should spread out as much as possible. 
However, they must keep a maximum communication distance, 
or minimum signal quality, between them. In this perspective, 
one needs to find a good compromise between the enforcing 

communication component ρ4 and the mission parameters (i.e., ρ1 

and ρ2 ) since each robot has to plan its moves while maintaining 
the MANET connectivity. 

The RDPSO takes use of the adjacency matrix A that directly de- 

pends of link matrix L = {lij } to identify the minimum/maximum 



 

 

quality, qmin. In real situations, fulfilling the network connectivity 

by only taking into account the communication range dmax does 

not match reality since the propagation model is more complex— 

the signal depends not only on the distance but also on the multiple 

paths from walls and other obstacles. However, in simulation, the 

communication distance may be a good approach and it is easier 

to implement. 

Considering a dmax problem, one can define robot proximity as 

follows: 

 

 

 

 

Fig. 7. Experimental setup to evaluate the connectivity between two robots from 

the same swarm. 

  

 

 

where dnm [t ] is the distance between robot n and its nearest 
neighbor m. Similarly, considering a qmin problem, the metric will 
be defined as: 
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where qnm [t ] is the minimum signal quality between robot n and 
its nearest neighbor m. 

Using only inter-robot relations allows ensuring the MANET 

connectivity only locally. Therefore, besides the proposed micro 

level metric, a macro level metric needs to be  defined  to 

globally improve the MANET fault-tolerance within each swarm. 

As presented in Nathan et al.’s work [33], the connectivity of the 

network can be represented by the second smallest eigenvalue, 

also known as the Fiedler value, λ2 of the Laplacian matrix L defined 

by: 

  

wherein ∆ is the valency matrix (i.e., diagonal matrix). 

-0.025 
 

 

Fig. 8.    Distance between robots in phase space. 

 
  

distance/signal quality of each line, thus returning the position of 

the nearest neighbor in which a robot needs to ensure connectivity 

(cf., [9]). Similar to the above methodology, let us now consider an 

experimental setup of a swarm of two robots. Once again, one of 

the robots is placed in the optimal solution while the other robot 

is located 0.5 m away from it (Fig. 7). 

The distance between robots x12 will be evaluated manipulat- 

ing ρ4  within a larger range while respecting the attraction   do- 

 

It is noteworthy that the graph is connected when the Fiedler 

eigenvalue is greater than zero, i.e., λ2  > 0. Also, the value  of 

λ2 , depending on the number of robots within a swarm, allows 

evaluating its connectivity. Therefore, a new macro agent-based 

contextual metric that takes into account the swarm connectivity 

can be defined as: 

main represented by condition (4), ρ3   = 0.1 and ρT   = 0.7 with 

(ρ1 , ρ2 )  =  (0.2, 0.5), and α  =  0.632. The enforcing    commu- 

  

nication component ρ4  will be set as ρ4   = {0.4, 0.8, 1.2} and 
robots will try to maintain a distance of 1 m between them,   i.e., 

dmax = 1 m (Fig. 8). 

It may be observed in Fig. 8 that, for any value of ρ4 , the robot 
presents a spiral convergence in dmax vicinities. However, as ρ4 

increases, the convergence of the robot toward dmax also increases 

(the center of the spiral approximates dmax). For ρ4 = 0.4, the robot 
converges towards a distance superior to dmax with a larger spiral 

radius since it tries to get closer to the solution. For ρ4 = 1.2, 
the robot ignores the solution and hardly moves from its   initial 

position. 

Considering the previous results, the easiest way to ensure con- 

nectivity is to increase the enforcing communication component 

ρ4 when the distance between robots approximates the threshold 

value (i.e., maximum distance or minimum signal quality). There- 

fore, exploiting introspective knowledge allows defining an agent- 

based contextual metric denoted as robot proximity. Nevertheless, 

this metric will depend on either ensuring a maximum communi- 

cation distance between robots, dmax, or getting a minimum signal 

When all robots within a swarm can directly communicate (i.e., 

one hop) with all their teammates, then λ2 = NS , thus resulting 

in Cs [t ] = 1 which is representative of a fully connected swarm. 

Therefore, as Cs [t ] tends to 0, ρ4 should increase in order to ensure 
a more connected MANET. 

 

4.5. Summary 

 

The above presented context-based metrics can be used as 

benchmark to evaluate the RDPSO in terms of group behavior. 

However, the fact that  there  are  multiple  evaluation  metrics to 

determine the algorithm’s performance makes their selection 

process complex. Due to the RDPSO dynamics, it may not be 

sufficient to consider each evaluation metric independently. It is 

thus extremely important to find a way to evaluate its performance 

and ponder, simultaneously, the full set of  metrics. 

In this line of thought, it is based on the fuzzy approach, intro- 

duced in next section, that we will evaluate the performance and 

adaptively adjust the parameters of the RDPSO. 



 

 

 

 

Fig. 9.   Fuzzy logic system to control the behavior of the RDPSO. 

 

 

5. Fuzzified systematic parameter adjustment 
 

Robots’ perception can significantly benefit from the use of 

contextual knowledge. The previous section presented the acqui- 

sition of environmental knowledge based on the sensing capabili- 

ties and shared information between teammates. Fuzzy logic will 

now be incorporated into the RDPSO algorithm to handle contex- 

tual information represented by the previously defined metrics. 

Other proposals with different formalisms to represent contextual 

knowledge and reason such as Bayesian decision analysis could be 

adopted as well [24,34]. Nevertheless, fuzzy logic addresses such 

applications perfectly as it resembles human decision making with 

an ability to generate precise solutions from certain or   approxi- 

 

 

 

 

 

 
 

 
Fig. 10.    General membership function for each input. 

mate information. The successful development of a fuzzy model membership function µC s 

is a complex multi-step process, in which the designer is faced 
 

Connected the swarm is. 
s (C [t ]), it was defined to represent  how 

with a large number of alternative implementation strategies and 
attributes [35]. In sum, based on the information extracted from 

the inputs represented by the previously defined metrics, the fuzzy 

logic system can infer contextual knowledge which can be used to 

control the RDPSO behavior by adapting its parameters (Fig. 9). 

This  control  architecture  is  executed  at  each  iteration   t , 
thus returning the fractional, social, obstacle and connectivity 

coefficients, α and ρi, i   =  2, 3, 4. Subsequently, the    cognitive 
coefficient ρ1 is then defined in order to respect condition (4), i.e., 

As for the consequent functions, based on the preliminary ex- 

perimental assessments presented in the previous section, one can 

define the following triangular membership relations represented 

in Fig. 11. These functions not only allow softening and verbaliz- 

ing the outputs, but also and more importantly, normalizing them 

within  the  attraction  domain  presented  in  [26].  It  is noteworthy 

that, as previously mentioned (cf., Section 3), the cognitive param- 

eter can then be defined as ρ1  = 2 − ρ2 − ρ3 − ρ4 . 
The Mamdani-Minimum was used to quantify the premise and 

  implication. The defuzzification was performed using the center- 
 
As Fig. 9 depicts, the overall organization of this architecture 

resembles the commonly used feedback controllers wherein 

contextual knowledge is extracted from data followed by a 

reasoning phase to control the robot. Hence, based on the metrics 

previously presented and their definition, one can assess the 

relation between the inputs and outputs of the fuzzy system. To 

soften the decision-making system, the membership functions will 

be defined by generalized bell-shaped functions. The generalized 

bell-shaped function has one more parameter than the typical 

Gaussian function used in membership functions being defined as: 

 

 

where parameters a, b and c correspond to the width, the slope and 

the center of the curve, respectively. Since metrics are all defined 

between 0 and 1, only half a curve is required to represent the 

status of the swarm and robots, i.e., c = 1. On the other hand, for 

a soften response, the width and slope may be defined as a = 0.5 

and b = 3 (Fig. 10). 
The swarm activity membership function µAS (As [t ]) represents 

how Active the swarm is. As for the robot socialization µSn (Sn [t ]), 
it represents how Social a robot is. The same analysis can be made 

for the obstacle avoidance membership function µOn (On [t ]), thus 
representing how Close a given robot is to obstacles. The robot 

proximity membership function µPn (Pn [t ]) represents how Far a 
robot is from its neighbor. Finally, as for the swarm connectivity 

of-gravity (CoG) method. The CoG is a continuous method and one 

of the most frequently used in control engineering and process 

modeling being represented by the centroid of the composite 

area of the output fuzzy term. By using the contextual knowledge 

represented in Fig. 11, one can define the contextual rules that 

affect the behavior of the system depending on the situation at 

hand. Therefore, the following diffuse IF-THEN-ELSE rules (cf., [36]) 

are considered (see Fig. 12): 

The rules turn out to prioritize some RDPSO parameters over 

others, in which ρ3 (i.e., avoiding obstacles) and ρ4 (i.e., main- 

taining MANET connectivity), are the most pertinent parameters. 

Although minor collisions are acceptable in swarm robotics, as this 

work focus on realistic applications such as search-and-rescue, it 

may be debatable to prioritize the mission over obstacle avoidance. 

The loss of multiple robots may jeopardize the mission objective 

(e.g., find victims). On the other hand, it is noteworthy that the ob- 

stacle avoidance parameter ρ3 only affects the behavior of a spe- 

cific robot when an obstacle is in its sensing range. 

In brief, the fuzzy system proposed herein systematically 

adjusts the behavior of the RDPSO in such a way that one can easily 

understand the contextual information regarding the robot and 

the swarm by simply observing the parameters’ evolution. Hence, 

the use of contextual knowledge  improves  robots’ perception 

by allowing fast detection of environmental or mission changes 

(e.g., detecting an obstacle) exploiting the information about the 

dynamics of real-world features. For example, Fig. 13 depicts the 

evolution of ρi, i = 1, 2, 3, 4, for a given robot facing the following 



 

 

 

 

 

 

 

 

Fig. 11.    Membership functions to quantify the consequents for each  coefficient. 

 
 

 

 

 
 

 

Fig. 12.  Set of IF-THEN-ELSE fuzzy rules do control robots’ behavior based on contextual information. 

 

 

 

 

 

 

Fig. 13.    Parameters’ evolution under a hypothetical situation. 

 

situations: (i) the robot is traveling until it first detects an obstacle 
(i.e., ρ3 increases); (ii) while still facing the obstacle, the robot 
moves too far away from its closest neighbor (i.e., ρ4   increases); 
(iii) the robot is able to circumvent the obstacle being still far from 
its closest neighbor (i.e., ρ3 decreases and ρ4 increases); and (iv) the 
robot is finally able to reduce the distance to its closest neighbor 
(i.e., ρ4 decreases). 

The next section presents experimental results obtained using 
physical and simulated robots wherein the adaptive version of the 
RDPSO was evaluated and compared to the nonadaptive one. 

 
6. Experimental results 

 
To demonstrate the utility of the proposed distributed adaptive 

search algorithm, a set of experimental results with multiple sim- 
ulated and real robots is presented. 

6.1. Hardware experiments 
 

In this sub-section, the effectiveness of using the RDPSO on 
swarms of eSwarBots [28] is explored, while performing a collective 
search task under communication constraints. Since the RDPSO 
is a stochastic algorithm, it may lead to a different trajectory 
convergence whenever it is executed. Therefore, test groups of 30 

trials of 180 s each were considered for N   = 12 eSwarBots    and 
an initial number of 2 swarms. The maximum traveled distance 

between iterations is set to 0.20 m, i.e., max |xn [t + 1] − xn [t ]| = 
0.20 while the maximum communication distance between robots 

is  set  to  dmax      =   1  m.  Inter-robot  communication  to  share 
positions  and  individual  solutions  is  carried  out  using     ZigBee 
802.15.4 wireless protocol. Since eSwarBots are equipped with 
XBee modules, that allow a maximum communication range larger 
than the whole scenario, robots are provided with a list of   their 
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Fig. 14.  Experimental setup. (a) Arena with 2 swarms (different colors) of 6 eSwarBots each; (b) Virtual representation of the target distribution. 
 

Table 2 

Parameters of the nonadaptive RDPSO. 
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teammates’ address in order to simulate an ad-hoc multi-hop 

network communication with limited range. At each trial, robots 

are manually deployed on the scenario in a spiral manner (cf., [9]) 

while preserving the maximum communication distance dmax. 

The experimental environment consists of a scenario with 

dimensions 2.55 m × 2.45 m, involving obstacles randomly 
deployed  at  each  trial  (Fig.  14(a)).  It  should  be  noted  that a 
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population of 15 robots corresponds to a density of more than 

2 robot.m−2 . As Fig. 14(b) depicts, the objective function is 

represented by a sub-optimal and an optimal solution (brighter 

site). The intensity values F(x, y) represented in Fig. 14(b) were 

obtained sweeping the whole scenario with a single robot in 

which the light sensor was connected to a 10-bit analog input, 

thus offering a resolution of approximately 5 mV. To improve 

the interpretation of the algorithm performance, results were 

normalized in a way that the objective of robotic teams is to find 

the optimal solution of f (x, y) = 1. 

The adaptive RDPSO was compared with the nonadaptive RDPSO 
in which parameters presented in Table 2 were chosen in order to 

satisfy the conditions previously presented in (3) and (4). 

Fig. 15. Performance of the nonadaptive and adaptive RDPSO for a population of 

12 physical robots. 

 

6.2. Virtual environment 

 

The use of simulated robots instead of the physical ones was 

necessary to further evaluate the adaptive RDPSO within large pop- 

ulations of robots within larger scenarios. All of the experiments 

were carried out in a simulated scenario of 600 × 600 m with 
obstacles randomly deployed at each trial. The benchmark func- 

tion F(x, y) was defined as a common Gaussian function (Fig. 17(a)) 
normalized as: 

 

Since these experiments represent a search task, it is necessary 

to evaluate both the completeness of the mission and the time 

 
 

needed to conclude it. Fig. 15 depicts the convergence of both 

nonadaptive and adaptive RDPSO for the proposed conditions. The 

colored zones between the darker lines represent the interquartile 

range (i.e., midspread) of the best solution in the 30 trials that 

was taken as the final output for each different condition for N = 
12 robots. In other words, the lower line corresponds to the  first 
quartile (i.e., splits lowest 25% of data), the middle one to the 

second quartile (i.e., median value) and the upper line to the third 

quartile (i.e., splits highest 25% or lowest 75% of data). 

As one may observe, the adaptive version of the RDPSO 

improves the convergence rate of the algorithm also marginally 

improving the median value of the solution at the end of the 

mission,  i.e.,  time = 180  s.  On  the  other  hand,  the nonadaptive 
RDPSO presents a more inconsistent solution, i.e., the interquartile 
range represented by the stripped red area is larger than the 

one represented by the solid blue area. However, analyzing 

swarm algorithms within small populations of 12 robots may not 

represent the required collective performance (cf., [4]). Also, it may 

not be enough to assess the RDPSO performance within the small 

proposed scenario. Hence, next section presents computational 

experiments using a larger population of simulated robots within 

a larger scenario. 

where x and y-axis represent the planar coordinates in meters. 
Hence, the objective of robotic teams is to maximize f (x, y), that is, 
to minimize the original benchmark functions F(x, y), thus finding 

the optimal solution of f (x, y) = 1, while avoiding obstacles and 
ensuring the MANET connectivity. 

Test groups of 100 trials and 500 iterations each were consid- 

ered for N = {25, 50, 100} robots. Also, a minimum, initial and 
maximum number of 2, 5 and 8 swarms were used. The maxi- 
mum traveled distance between iterations was set as 0.750 m, i.e., 

max |xn [t + 1] − xn [t ]| = 0.750 while the maximum communica- 

tion distance between robots was set to dmax  = 15 m. 
Fig.  16  depicts  the  convergence  of  both  nonadaptive  and 

adaptive RDPSO in which the median, first and third quartiles of the 
best solution in the 100 experiments was taken as the final output 

in the set N = {25, 50, 100} robots. 
Analyzing Fig. 16, it is clear that the proposed mission can be 

accomplished by any number of robots greater or equal to 25. In 

fact, independently on the number of robots, both nonadaptive 

and adaptive RDPSO converge to the solution most of the time. 

Nevertheless, the nonadaptive algorithm presents a larger area 

(stripped red area) between the first quartile and the median 

value, especially for a larger number of robots. This means that 

the nonadaptive algorithm sometimes fails in finding the optimal 

S α ρ1 ρ2 ρ3 ρ4 

1 0.632 0.100 0.300 0.790 0.790 

 



 

 

 

 

 

 

 

 

 

 

Fig. 16.   Performance of the nonadaptive and adaptive RDPSO for: (a) N = 25 robots; (b) N = 50 robots; (c) N = 100  robots. 
 

solution getting near the vicinities of it. Also, one can easily observe 

that the success of the algorithm increases as the number of robots 

increase, i.e., median value near 1. It can also be observed that the 

adaptive strategy slightly improves the convergence of the RDPSO. 

Nevertheless, it is still not clear if such improvement is substantial. 

Hence, to further improve the comparison between nonadaptive 

and adaptive strategies, heat maps were used (Fig. 17). Heat maps 

can be designed to indicate how robots tend to be grouped together 

as well as reflecting the overall quality of the   teams. 

Fig. 17 presents  the  heat  map  of  evolutionary  trajectories 
over the 100 trials of 500  iterations  each  for  both  nonadaptive 

and adaptive RDPSO for each population of N   =  25, 50, 100. 
The hot (i.e., darkest) colors denote the regions in which   robots 
tend to focus their attention, i.e., the most visited regions. 

Notwithstanding on the nonadaptive or adaptive RDPSO nor the 

number of robots within the population, the most visited regions 

correspond to the sub-optimal and optimal solutions. Despite the 

RDPSO being able to find the optimal solution in most of the 

situations (cf., Fig. 15), it is still possible to observe that robots also 

converge to sub-optimal solutions before being able to ultimately 

converge to the optimal one (due to social exclusion behavior). It 

may also be observed that the adaptive RDPSO presents a larger 

diversity (i.e., higher exploration behavior), as the colored regions 

are larger than those of the nonadaptive case. This is a foreseeable 

influence of the systematic adjustment of the RDPSO parameters. 

On the other hand, the adaptive RDPSO is also able to combine 

this exploration  behavior  with  a  high  level  of  exploitation  as 

the hot colors are more concentrated into smaller circles when 

compared to the nonadaptive case. In summary, one can observe 

that both nonadaptive and adaptive algorithms present a high 

efficiency since the intrinsic features of the RDPSO (i.e., social 

exclusion and inclusion) allows avoiding sub-optimal solutions    in 

most situations. Therefore, to further compare both approaches, a 

dynamically changing environment is considered. 

Due to the continual changes of such environments, the optimal 

solution in the environment will also change over time. This de- 

mands that the RDPSO needs to be able not only find the solution 

in a short time, but also track the trajectory of the optimal solu- 

tion in the dynamic environment. Nonadaptive algorithms, such as 

the regular RDPSO, usually present several drawbacks in dynamic 

problems since they lack the ability to track the nonstationary 

optimal solution in the dynamically changing environment (e.g., 

[37,38]). 

Chaotic functions are the most common and well-studied way 

to generate nonstationary functions (e.g., logistic functions [39]). In 

this work, a general way to dynamically change the peaks location 

based on Forced Duffing Oscillator is used [40]. Hence, the function 

F(x, y) is defined as a dynamic Gaussian function that changes over 

time based on the algorithm presented in Appendix B. A sequence 

of the F(x, y) peaks’ motion is represented in Fig. 18. The motion 

of each peak can be configured through the tuple {γ , ω, ε, Γ , Ω} 
where γ controls  the  size  of  the  damping,  ω controls  the size 
of  the  restoring  force,  ε controls  the  amount  of  nonlinearity  in 

the restoring force, Γ controls the amplitude of the periodic 

driving force and Ω controls the frequency of the periodic driving 

force (cf., Appendix B). Although the tuple {γ , ω, ε, Γ , Ω} may be 
randomly defined for a more unexpected and chaotic behavior, to 
better understand the experimental results, it was defined   with 

the constants {0.1, 1, 0.25, 1, 0.5}. To soften the surface, a circular 
averaging filter is also applied. 

Similarly as before, Fig. 19 depicts the performance of the 

nonadaptive and adaptive RDPSO under a dynamic environment. 

Once again, analyzing Fig. 19, it is clear that the proposed mission 

can be accomplished by any number of robots greater or equal 
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Fig. 17.  Heat maps representation of robots’ trajectories. (a) Nonadaptive N = 25; (b) Adaptive N = 25; (c) Nonadaptive N = 50; (d) Adaptive N = 50; (e) Nonadaptive 

N = 100; (f) Adaptive N = 100. 
 

than 25. However, one can observe that the adaptive strategy 

improves the convergence of the RDPSO. That difference is more 

visible than in the previous static example, both for the median 

value and the variability of the solution. In the adaptive RDPSO, this 

last one is lower than the nonadaptive RDPSO and the difference 

increases as the number of robots increases. It is also clear that 

the nonadaptive RDPSO seems to be unable to always successfully 

track the optimal solution, thus increasing the inconsistency of 

the final result obtained (larger interquartile range).  Moreover, 

it is interesting to observe that, in the adaptive RDPSO, the line 

representing the third quartile (top solid blue line) gets closer to 

the one representing the median value (darker solid blue line). 

In other words, the data distribution turns out to be negatively 

skewed (i.e., the mean is smaller than the median). This means 

that, in this case, as the goal is to maximize the normalized 

objective function, approximately 50% of the trials are around the 

desired objective value for the adaptive RDPSO under a dynamic 

environment. 

To further improve the comparison between nonadaptive and 

adaptive strategies, heat maps were used (Fig. 20). The blue arrows 

represent the trajectory carried out by the sup-optimal and optimal 

solutions during the 500 iterations. Fig. 20 presents the heat map 

of evolutionary trajectories over the 100 trials  of  500  iterations 

each for both nonadaptive and adaptive RDPSO, under a   dynamic 

objective  function,  for  each  population  of  N     =   25, 50, 100. 
Although the most visited regions correspond to the vicinities 
of the solutions, the algorithm is unable to effectively track the 

exact trajectory in some specific situations (cf., Fig. 20(a)). Once 

again, one may observe that the adaptive RDPSO present a higher 

exploration behavior keeping a high level of exploitation as the hot 

(i.e., darkest) colors are more concentrated around the solutions’ 

trajectories. 

 
7. Conclusion 

 
The previously proposed Robotic Darwinian Particle Swarm 

Optimization (RDPSO) algorithm is a sociobiologically inspired 

parameterized swarm algorithm that takes into account real- 

world multi-robot system characteristics.  This  paper  presented 

an extension of the RDPSO with adaptive capabilities based on 

contextual information. To that end, a swarm of two physical 

platforms was used to evaluate constraints such as robot dynamics, 

obstacles and communication, thus  allowing  defining  metrics at 

the micro and macro level. Afterward, those context-based metrics 

were used as inputs of a fuzzy system to systematically adapt 

the  RDPSO  algorithms.  Experimental  results  show  that the 

adaptive version of the algorithm presents an improved 

convergence when compared to the traditional one on both real 

and simulated trials. Also,  the  distribution  of  target  locations, 

i.e., main objective function, does not greatly affect the adaptive 

algorithm performance. Even within a dynamic distribution, the 

adaptive RDPSO is able to track the optimal solution easier than 

the nonadaptive case. As future work, this novel adaptive RDPSO 

will be compared to other swarm robotic algorithms within larger 

population of real platforms. 
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Fig. 18.  Planar motion of F(x, y) peaks based on Forced Duffing Oscillator. (a) t = 0; (b) t = 150; (c) t = 300; (d) t = 450 iterations. 
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Fig. 19.   Performance of the nonadaptive and adaptive RDPSO under a dynamic environment for: (a) N = 25 robots; (b) N = 50 robots; (c) N = 100  robots. 
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Fig. 20. Heat maps representation of robot’s trajectory in a dynamic environment. The blue arrows indicate the trajectory of the sub-optimal and optimal solutions. (a) 

Nonadaptive N = 25; (b) Adaptive N = 25; (c) Nonadaptive N = 50; (d) Adaptive N = 50; (e) Nonadaptive N = 100; (f) Adaptive N = 100. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix A 

 

The real polynomial p (λ) described in Eqs. (1) and (2) can be 
rewritten  as: 

  

Furthermore, one can construct an array having initial rows 

defined as: 

 

 

and subsequent rows defined by: 
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