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Introduction 
 
 

Fluid catalytic cracking (FCC) catalysts are used in the 

petrochemical industry to split heavy oils into valuable 

smaller hydrocarbon molecules [1, 2]. It is known that the 

cracking reactions are mainly the diffusion controlled type. 

Thus, the measurement of diffusivity values of hydrocar- 

bons in FCC catalysts is important not only to evaluate 

the diffusion controlled rate for the cracking reaction, but 

also to design the FCC reactor. 

 

The cracking reactions mainly involve Zeolite crystals, 

consisting of micropores (diameter, dp < 20 Å). In most 

cases, the molecular size of the heavy hydrocarbon  is 

  much larger than the pore opening of zeolite crystals. So 

the heavy hydrocarbon cannot penetrate the zeolite cage 

which contains around 97% of the active sites for the crack- 

ing reaction [3]. Usually zeolites crystals are embedded 

Abstract: This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, 

for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the 

phenomena resembles those of fractional order systems, namely those with a fast initial transient followed 

by long and slow tails.  The experimental measurements are best fitted with the Harris model revealing a 

power law behavior. 
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in an amorphous matrix allowing the larger molecule to 

be cracked into smaller ones which can then penetrate in- 

side the zeolite cage. Typically an alumina-silica matrix 

(macroporous, dp > 50 Å) is adopted to bind the zeolites 

which mainly consist of 80% Al2O3 and 20% SiO2 [4]. It is 

also important to know the diffusivity value of the heavy 

hydrocarbon through the alumina matrix because it rep- 

resents the molecular highway to transport reactant and 

products to and from the zeolite micropores. 

The Zero Length Column (ZLC) technique is a simple and 

well established method to measure the diffusivity value 

of hydrocarbons in zeolites, achieved by analysing the 

desorption curve for a particular sorbet (i.e. hydrocar- 

bons). This experimental method and the mathematical 

model for ZLC were developed by Eic and Ruthven [5] for 

linear adsorption isotherms of hydrocarbons in zeolites. 

More recently the mathematical model was improved to 

include the effects of the presence of external film resis- 

tance [6], interstitial fluid holdup [7], incomplete saturation 

[8], and non linear adsorption [9]. In all proposed models 

the particle size was assumed to be constant. Moreover, 

[13–21]. Thus, in this paper we suggest a fractional or- 

der model which better fits experimental results containing 

the memory effect. We explain that the investigated data 

points were generated from a ZLC diffusion experimental 

setup for 1,3 Di-isopropyl benzene in 100% alumina ma- 

trix with variable particle size, whose mean diameter (dm) 

and standard deviation (SD ) are 116.7 and 68.9 µm mea- 

sured on a normal distribution basis and 105.6 and 1.9 µm 

measured on the basis of log normal distribution. 

The organization of the manuscript is as follows. Section 

2 reviews briefly the diffusion equation for a spherical 

particle. Section 3 is devoted to the experimental details. 

Section 4 presents the Harris model and its application 

to the fitting of the investigated data. Finally, section 5 

outlines the main conclusions. 

 

  A mathematical model of the ZLC 

The diffusion equation for a spherical particle is given by 

the Ficks second law: 

the diffusivity values of the hydrocarbons in solids were   
 

derived from the well established solution of the   Fick- 

ian type diffusion equation [6]. The corresponding chart 
 
  

 
  

consists of a straight line in a semi-log plot of normal- 

ized sorbent concentration versus time and its slope rep- 

resents the diffusivity value (D) divided by the square of 

the particle radius (R ). The ability of the ZLC technique 

to measure diffusivity in variable size distributed particles 

is still an open question. The effect of variable particle 

size will induce a tailoring effect in the ZLC desorption 

response curve as desorption is a function of mass load- 

ing in the solid. The theory of the calculation of diffusiv- 

where q = Kc represents the sorbet concentration in 

solids, K denotes the Henry’s adsorption coefficient, c is 

the gas phase sorbet concentration, r corresponds to the 

radial coordinate and D denotes the diffusivity. 

For uniform spherical adsorbent particles under linear 

equilibrium conditions the response curve can be ex- 

pressed as derived by Crank [22]:

ity value for variable size distribution was first developed  

 
 

  
by Ruthven and Loughlin [10] for the gravimetric analysis 

method. Duncan and Möller [11] proposed a model for 

ZLC experiments with variable particle size using a Fast 

Fourier transformation technique and taking into consid- 

eration the standard deviation of the particle size dis- 

tribution. Analysing the ZLC response curve using this 

model causes the diffusional time constant ( D ) to be un- 

der predicted and the adsorption related parameter over 

predicted. Loos et al. [12] also modelled the effect of 

crystal size upon the ZLC desorption response curve by 

summing up the desorption curve for different size ranges, 

weighting their volume fraction according to the model de- 

veloped by Ruthven and Loughlin [10] for the gravimetric 

method. Thus, an appropriate model should be developed 

to extract the correct value of diffusivity taking consider- 

ation of the variable particle size effect. 

  

 
where c0 yields the initial gas phase sorbet concentration 

and βn are the roots of the transcendental equation [22]: 
 

  

 
  

 

 

where F denotes the purge flow rate, R is the solid par- 

ticle radius and Vs represents the solid volume. 

As time increases the Eq. (1) reduces to a simple exponen- 

tial decay curve since only the first term of the summation 

is significant, namely: 

 

Recently, fractional dynamics started to be applied  in-   
tensively to properly treat data from several disciplines   
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where β1 is the first root of the transcendental Eq. (3). 100

 

Under these conditions, D and L can be determined di- 

rectly from the slope and intercept of the semi logarithmic 

plot of c
 versus t. This is known as long time (LT) anal- 

ysis. This model depicts a straight line at long time with 

uniform particle size distribution (radius, R = fixed) and 

cannot handle the particle size effect. 

 
 

Experimental details 
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The ZLC is a tiny volume reactor made of a 1 ” stainless 

steel coupler. A very small weight of adsorbent particles 

(1 ∼ 10 mg) was kept inside the reactor and its open ends 

were sealed with (20 µm pore diameter) sintered disks. 
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A small amount of adsorbent will minimize the intrusion 

of thermal effects and extra particle resistance to mass 

transfer. The ZLC cell was kept inside an oven. To pro- 

vide isothermal conditions, both the carrier and purge gas 

flowed through a 2 meter long tube inside the oven before 

it entered the ZLC cell. The carrier gas contained a low 

concentration of 1,3 Di-isopropyl benzene in helium. Two 

gas streams, (gas flow was controlled using a mass flow 

controller from OMEGA inc), were mixed to prepare the 

career gas. One was a high velocity stream (100 cc/min 

pure He) and the other , a low velocity helium stream (10- 

20 cc/min) passing through a 1,3 Di-isopropyl benzene 

liquid bath to get saturated with 1,3 Di-isopropyl benzene 

at the liquid bath temperature. These two streams were 

mixed with a tee and continued to the ZLC cell. At the 

beginning of the experiment, the adsorbent in the ZLC cell 

was saturated with 1,3 Di-isopropyl benzene by the car- 

rier gas and at time zero the carrier gas line was changed 

to purge gas (pure Helium gas only and with the same ve- 

locity of the carrier gas). Desorption of 1,3 Di-isopropyl 

benzene was detected with time by using a Flame Ioniza- 

tion detector (FID). A plotter was used to record the data 

points. The normalized concentration y versus time t, for 

the set of tested temperatures T , can be seen in Figure 1. 

 
 

Description by means of the Har- ris 
model 

We have verified that after dissipating the initial tran- 

sient the plots approximately follow a power law. This 

is in contrast with the classical exponentially decreas- 

ing curves that occur with integer models. It is possi- 

ble to find a regression of this part of the trace, however 

it seems preferable to obtain a fitting expression for all 

points. Therefore, several models where tested in order 

to fit to the experimental data by adopting the nonlinear 

Figure 1. Normalised concentration y versus time t for tempera- 

tures T = 125 (◦ C), T  = 150 (◦ C), T  = 170 (◦ C) and 

T = 190 (◦ C). 

 
Marquardt-Levenberg optimization [23, 24]. The Harris 

model [25, 26] was found to lead to a very good fit for all 

cases and, therefore, has been subsequently adopted. The 

Harris model is defined by the expression: 

 
 

 

 

where {a; b; α} are parameters (that depend on the tem- 

perature T ) to be determined, t denotes the time and y 

represents the normalized concentration. 

It should be noted that other models did also provide a 

good numerical fit for some temperatures, but that the 

Harris model accomplished best results when considering 

all cases. 

Table 1 presents the values of the three parameters to- 

gether with the correlation coefficient (ρ). The figures 

demonstrate very good correlation. We also observe that 

a is very close to 1.0 and that the values of the other 

two parameters vary with temperature. Furthermore, it 

was verified numerically that, if we “normalize” the time 

variable so that the range of measured values falls into 

the interval between zero and one, then the parameters a 

and α remain invariant but b increases several orders of 

magnitude. Therefore, we conclude that α is the most im- 

portant parameter that describes the the fractional order 

dynamics of the phenomenon. 

Figure 2 depicts the variation of the three parameters ver- 

sus temperature. In this case we observe that a clear re- 

lationship is more difficult to reach. 

Besides the numerical fitting details, expression (6) 

demonstrates that the time responses have a power law 

behavior, characteristic of fractional order systems. While 
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Table 1. Parameters of the Harris model for the tested temperatures 

T . 

T (◦C) 125 150 170 190 

a 1.0047716  0.9902946 1.0036169 1.0001506 

b 0.0113998 0.0128535 0.0184412  0.0201651 

α 1.3157845 1.3949092 1.4216989  1.8460826 

 ρ 0.9999347 0.9998371 0.9998847 0.9994520 
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1.4 

Conclusions 

We know that the standard classical mathematical mod- 

els do not work adequately in several cases where power 

laws are reported. As a result some alternative modelling 

tools should be introduced to explain more accurately the 

experimental data. 

In this manuscript we reported the existence of the power 

law in the data points generated from a ZLC diffusion 

experimental set-up for 1,3 Di-isopropyl benzene in 100% 

alumina matrix with variable particle size by using the 

Harris model. While the fitting of the responses over time 

is very good, the parameters b and c are shown to have 

a non-linear dependence on temperature T which needs 

to be analysed further. Therefore, this study is merely the 

first step in properly understanding the power law effect 

and the existence of the non-local phenomena which are 

present in the investigated process. 
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Figure 2. Parameters {a; b; α} of the Harris model versus tempera- 

ture T (◦ C). 
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