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Abstract This paper presents a novel method for the analysis of nonlinear financial and economic systems. The 

modeling approach integrates the classical con- cepts of state space representation and time series re- gression. 

The analytical and numerical scheme leads to a parameter space representation that constitutes a valid 

alternative to represent the dynamical behavior. The results reveal that business cycles can be clearly revealed, 

while the noise effects common in financial indices can elegantly be filtered out of the results. 
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1 Introduction 

 
Financial indices play a fundamental role in mankind 

activities. The time series reveal complex dynamical 

phenomena and considerable efforts have been 

made to involve mathematical tools usual in the 

analysis of nonlinear dynamics [2, 18, 26, 27]. In 

spite of the ef- forts that have been devoted to this 

topic, the true is that “randomness” plays still a 

fundamental role when working with these kind of 

objects [3, 9, 20, 22, 25]. This state of affairs 

somehow points toward adopting 

 
 

 

 

 

statistical or stochastic analytical methods and, con- 

sequently, precluding modeling perspectives closer 

to those common in electrical, mechanical, thermal, 

and other types of physical systems. This paper 

emerges from realizing that this classical paradigm 

for system modeling needs to be adapted to 

financial systems and proposes a new approach for 

overcoming some of the aforementioned limitations. 

Financial signals reflect the dynamics of a complex 

system where the concepts of measure, variable, 

pa- rameter, and model are not clearly defined as 

occurs in physics or engineering. The “financial 

system,” under- lying the index evolution, is 

composed by a multitude of different agents, 

exhibiting a plethora of phenom- ena with distinct 

nature and size that interplay both between 

themselves and the “economical system.” Be- sides 

these difficulties of defining an assertive mod- eling 

paradigm, financial indices reveal a noisy be- haviour 

with chaotic characteristics. This fact poses 

numerical problems for calculating derivatives and, 

therefore, it is not straightforward adopting tools 

usual in dynamical systems such as the state space 

repre- sentation. Phase variables constitute a 

common choice for state variables, since they 

require the consecutive time derivatives and are a 

solid option for construct- ing trajectories 

representative of the system dynam- ics. 

Nevertheless, such option is avoided in the  case of 

financial dynamics due to the heavy noise present in 
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the indices. The noise filtering is often discharged 

a priori since a strong intervention perturbs not 

only noise, but also the signals that are under    

evaluation. 



 

 

Fig. 1   Time evolution of 
the Dow Jones Industrial 
Average and the Europe 
Brent Spot Price FOB, from 
18 May 1987 up to 12 April 
2013 (6,760 points) 

 

 

 

 
 
 
 
 
 
 

 
 

 

 

Several other options were proposed to overcome 

that problem, namely the use of pseudo state 

space [4], the adoption of fractional derivatives [8], 

the analy- sis using transforms [11, 15, 17], the 

study by means of visualization tools [12, 13], the 

formulation of fil- tering as an inverse optimization 

problem [10], or de- scribing the dynamics in the 

viewpoint of power law regressions [14, 16]. This 

paper adopts a new strat- egy by reformulating the 

problem of calculating the derivative. The newly 

proposed method discharges the noise and 

preserves the trend of the financial dynam- ics by 

considering regressions at several time  scales. 
The resulting parameters are then used for  
represent- 

gle and by obtaining its slope. Such slope represents 

the average over the interval. Consequently, 

reducing the interval length approximates the slope 

of the tri- angle up to the value of the derivative. 

Nevertheless, at small time scales, the effect of noise 

predominates. Often in financial analysis we are 

interested in the trend over a given time window 

and we simply look at the global signal evolution 

without paying atten- tion to small (noisy) 

phenomena. Following this line of thought, for a 

given signal f (t ), where t denotes time, the 

proposed method calculates a trendline  g(t) 
that approximates f (t ) over an interval t ∈ T . The 
derivative now can be obtained from  dg . This is  the 

ing the dynamics in a multidimensional plot that   
be- 

standard method of 
calculating 

dt  
numerical derivatives 

haves similarly to the classical phase space.  
Further- 
more, this strategy leads to an algorithm 

establishing a compromise between time resolution 

and filtering, while leading to the direct analysis of 

the resulting plots. 

Bearing these ideas in mind this paper is 

organized as follows. Section 2 formulates the new 

method, de- velops several experiments with two 

financial indices and discusses the results. Finally, 

Sect. 3 draws the main conclusions. 

 
 

2 Modeling approach and experiments 
 

In the standard procedure for calculating the deriva- 

tive of a function, we start by constructing a trian- 



 

 

when adopting polynomials for g(t) and a few 

points for T [5, 7, 23]. In the proposed algorithm, 

we shall preserve the initial idea of having a 

considerable num- ber of points in T embedded 

with a scheme for defin- ing the appropriate time 

scale. Therefore, we    divide 

iteratively the domain of f (t ) into 2n−1, n = 1, 2,.. . , 
time windows of identical size. Obviously, the 

higher the value of n, the smaller the number of 

points in the corresponding interval Tn and the 

stronger the effect of noise upon the calculations. 

The choice for a par- ticular value of n, that is, the 

choice of a given time scale, is for the user to 

decide based upon a compro- mise between 

instantaneous behavior and noise limita- tion. The 

second aspect of the algorithm is the choice of 

g(t). In the present case, we consider “robust” func- 



 

 

 
 
 
 

Fig. 2 Dependency tree in 
the locus {a, b} for the Dow 
Jones Industrial Average, 
n = 4 and n = 7, linear 
trendline 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 



 

 

 
 

 
Fig. 3 Locus {a, b} for the 
Dow Jones Industrial 
Average, n = 4, and n = 7, 
linear trendline 
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Fig. 4 Dependency tree in 
the locus {a, b} for the Dow 
Jones Industrial Average, 

n = 5, linear trendline 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

tions, where robustness means that they do not 

present singularities and that they include 

parameters simple to associate with the time series 

and its dynamics. In other words, while in standard 

calculations the deriva- 

tive is yielded by  dg , in the proposed algorithm,   we 

substitute f (t ) and its derivatives by the 
parameters of g(t). In the sequel, we choose g(t) = 
bk + akt and g(t) = bk exp(ak t), ak, bk ∈ R, k = 1 , . .. ,  n. 
There- fore, for the straight line and exponential    
functions, 

we can loosely say that ak and bk reflect the mean 
val- 

Figure 1 shows the time evolution of the Dow 

Jones Industrial Average and the Europe Brent Spot 

Price FOB over period T1. 
Figure 2 depicts the dependency tree in the   locus 

{a, b} for the Dow Jones Industrial Average, n = 4 
and n = 7, linear trendline, in period T1. The circles 
are proportional to the mean root mean square 
error over each time window and the labels p : q 

mean the pth time window for a total of q intervals. 
The a-axis 
reflects the slope of the financial index and, therefore, 

ues of  df
 and f over each time window Tn. More- the first/second quadrant means a positive/negative 

cy- 
over, we substitute the representation in the phase 

space by an alternative one consisting of the param- 

eter space. 

We adopt numerical experiments for two 

financial indices, representing the Dow Jones 

Industrial Aver- age and the Europe Brent Spot Price 

FOB (in dollars per barrel) available at the websites 

of the “Yahoo! Fi- nance” and the “US Energy 

Information Administra- tion,” respectively. The time 

series include daily val- ues in period T1 starting at 

18 May 1987 and ending at 12 April 2013. Special 

days and holidays that lead to some lack of data in 

the original time series, were estimated by simple 

interpolation of the neighbor val- ues, so that all 

weeks include 5 days, making a total of 6,760 points. 



 

 

cle. On the other hand, the b-axis reflects the value 

of the index itself. It is clear that the larger the 

number of intervals n, the more intricate the tree 

becomes and the larger the dispersion particularly 

for a. Another as- pect that deserves to be 

highlighted is the choice of a succession of time 

bisections. That algorithm would lead to the 

requirement of a total number of points per- 

forming a power of two. To alleviate this 

restriction, during the time scale formulation, 

several limit points are not considered so that each 

one has an even num- ber of points. Since the 

number of points remaining in each interval is still 

large, the effect of such truncation 

upon the result is negligible. Figure 3 shows the pa- 
rameter locus {a, b} (i.e., a mimic of the phase 
plane). The dots represent the estimated 
parameters ak and bk , 





 

 

 
 

 
Fig. 5 Locus {a, b}, n = 5, of 
the Dow Jones Industrial 
Average, for linear and 
exponential trendlines 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 



 

 

 
 
 

Fig. 6 Locus {a, b}, n = 5, of 
the Europe Brent Spot Price 
FOB, for linear and 
exponential trendlines 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 



 

 

Fig. 7  Locus {a, b, c}, n 
= 5, of the Dow Jones 
Industrial Average, for 
parabolic trendline 

 
 
 

 

 
 

 

 

 
 

 
 

 
 
 
 
 
 
 

 
k = 1 , . . . ,n  for each period and the connecting trajec- 
tories. We observe that n = 3 leads to an oversimplifi- 
cation, while the case n = 7 reflects the noisy behavior 
of the original time series. 

Several experiments demonstrated that n = 5 es- 
tablishes a good compromise between precision 
and noise. For example, Fig. 4 depicts the 
dependency tree 
in the locus {a, b} for the Dow Jones Industrial Aver- 
age, n = 5, and linear trendline. Figures 5 and 6 show 
the locus {a, b}, n = 5, for the Dow Jones Industrial 
Average  and the Europe Brent Spot Price FOB,     re- 

spectively, when adopting the linear and exponential 

trendlines. 

We should note that the meaning of parameters 

a and b vary with the trendline g. Nevertheless, the 

two plots are of the same type and lead to 

identical con- clusions. This means also that there is 

no special rea- son for selecting one particular type 

of trendline. In what concerns the dynamics of 

the Dow Jones In- dustrial Average,  we observe 

four phases: a first   in- 
creasing trajectory {1 : 16} → {8 : 16}, two repeti- 
tive cycles {8 : 16}→ {11 : 16} and {11 : 16}→ {15 : 
16}, and finally a (still) indeterminate trajectory     
for 
{15 : 16}→ {16 : 16} that  presently  is  in  a positive 
state. For the Europe Brent Spot Price FOB, we    ob- 

serve a distinct behavior, namely three small initial 
cy- cles for {1 : 16}→ {9 : 16}, an increasing 
trajectory for {9 : 16}→ {13 : 16}, and an oscillatory 
behavior, composed of alternative and positive 
trajectories,  for 

{13 : 16}→ {14 : 16}→ {15 : 16}→ {16 : 16}.  This 



 

 

behavior can be recognized directly at the time 

evolu- tion represented in Fig. 1, but as occurs in 

state space representations, we obtain a much 

clear picture of the overall dynamics. 

In the analysis of dynamical systems, often is re- 

quired the adoption of more than two state 

variables. However, the use of a second-order 

derivative in the present time series is clearly a 

problematic option. Therefore, it is relevant to 

investigate if the proposed method can be 

generalized for a larger number of di- mensions. In 

this line of thought, we consider a 3- 

dimensional representation supported by the 

parabolic 

and Harris trendlines g(t) = ak + bkt + ckt 2 and g(t) 
= (ak + bktck )−1, ak, bk, ck ∈ R, k = 1 , . . .,  n, 
respectively. Both trendlines involve three 
parameters 

reflecting distinct “dynamical properties” and, 

there- fore, making them suitable for a three-

dimensional representation. Nevertheless, it is 

possible to adopt other types of functions revealing 

better/worst proper- ties for each specific type of 

time series. In particular, the parameter c required 

by the Harris model, reflects the power law 

behavior known in fractional order dy- namics [1, 

6, 19, 21, 24]. 
Figures 7 and 8 depict the locus {a, b, c}, n = 5, for 

the Dow Jones Industrial Average when adopting  
the 

parabolic and Harris regressions. 

The Harris model seems to be slightly superior 

to the parabolic regression because we verify 

that the third dimension is useful is discriminating 

the complex dynamics that appears in the final 

period of time. Fur- 



 

 

Fig. 8  Locus {a, b, c}, n 
= 5, of the Dow Jones 
Industrial Average, for 
Harris trendline 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

thermore, we observe a smooth evolution at the 

first part and two large loops at the final part of the 

trajec- tory. The large loops demonstrate a strong 

dynamical instability and a kind of strange attractor 

influencing present day financial dynamics. These 

results are in ac- cordance with those depicted by the 

two-dimensional charts, but provide a better 

visualization. 

In conclusion, we verified that the parameter 

space constitutes a valid alternative to the classical 

state space representation, namely by avoiding noise 

effects that are present in financial time series. 

 

 
3 Conclusions 

 
This study addressed the analysis of complex and 

nonlinear dynamics in financial systems. Markets 

are characterized by means of indices with 

considerable noise making difficult the application of 

state space representations. The proposed 

methodology reformu- lates the classical methods 

leading to a new model based in the trajectory 

evolution in the parameter space. Financial cycles 

and crises are clearly visible since noise effects are 

eliminated. 
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