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Abstract
It has been shown that in reality at least two general scenarios of data structuring are possible:
(a) a self-similar (SS) scenario when the measured data form an SS structure and
(b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random
sequences that are almost periodic with respect to each other. In the second case it becomes
possible to describe their behavior and express a part of their randomness quantitatively in
terms of the deterministic amplitude–frequency response belonging to the generalized Prony
spectrum. This possibility allows us to re-examine the conventional concept of measurements
and opens a new way for the description of a wide set of different data. In particular, it
concerns different complex systems when the ‘best-fit’ model pretending to be the description
of the data measured is absent but the barest necessity of description of these data in terms of
the reduced number of quantitative parameters exists. The possibilities of the proposed
approach and detection algorithm of the QP processes were demonstrated on actual data:
spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested
methodology allows revising the accepted classification of different incommensurable and
self-affine spatial structures and finding accurate interpretation of the generalized Prony
spectroscopy that includes the Fourier spectroscopy as a partial case.

Keywords: complex systems, random data processing, quasi-periodic process, the generalized
Prony spectrum
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List of acronyms

AFR

amplitude–frequency response

GMV-function

generalized mean value function

GPCF

generalized Pearson correlation function

GPS

generalized Prony spectrum

CC-factor

complete correlation factor

LLSM

linear least-squares method

QP-process

quasi-periodic process

QT-property

quasi-translational property

SRA

sequence of the ranged amplitudes

SS-process

self-similar process

1. Introduction and formulation of the problem

Scientific research pursues one important purpose: to
find the relationships existing between two (or more)
measured variables and express them in terms of fundamental
mathematical relationships. Actually, all these fundamental
relationships (so-called laws) constitute the basis of natural
sciences and this paradigm is emerging in social sciences
also. This is why researchers are trying to establish unknown
regularities (rules) existing in nature between different
variables. Nevertheless, it became evident that with the
increasing complexity of a system at different stages
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of its evolution, the fundamental and simple (from the
mathematical point of view) rules that had been established
earlier were difficult to find and then (if they were found)
to justify. It implies, particularly, the cases where the
organization of the matter forms some complex structure.
In many cases these relationships are diffusive and covered
by the interruption of other uncontrollable factors known
in measurements as an influence of random fluctuations or
‘noise’. These uncontrollable factors can hide completely
the desired relationship and, therefore, in many cases these
factors play a destructive role. Besides these hidden (in most
cases) relationships, there are other general rules that can
characterize the degree of correlation between self-similar
(SS) temporal sequences. These correlated relationships can
serve as a specific indication of the existence of a relevant
law and, on a certain stage, help in the understanding of
a specific behavior of the complex system studied. The
development of the fractal geometry [1, 2] and its impact in
the development of the fractional calculus [3, 4] allows one to
establish new mathematical relationships expressed in terms
of the non-integer operators of differentiation and integration.
In [5] the first author solved the inverse problem that existed
for SS structures developing on different time scales. In
other words, the original algorithm was suggested, which (a)
tested the presence of an SS structure in the random sequence
considered; (b) allowed the corresponding functional equation
that describes the SS structure to be restored and (c) provided
a good fit of the random data considered to the analytical
function that follows from the solution of the corresponding
functional equation. Nevertheless, we think that this SS
scenario, in spite of its attractiveness and generality, is not
unique. In this paper we want to show that there is another
possibility of the existence of the almost periodic processes
which many complex systems can reveal in their temporal
evolution. We define this type of temporal evolution as
the quasi-periodic (QP) process and describe its general
properties. So, the problem that is considered in this work can
be outlined as follows.

1. Formulate some general conditions that help to identify
the presence of some QP process in the random data
considered.

2. Find a functional equation and its solution that yields the
description of the identified QP process.

3. Suggest some computing procedure for the fitting of the
QP data to the analytical function that follows from the
solution of the corresponding functional equation.

The content of this paper is organized as follows. In
section 2 we formulate the answers to the problem posed
above. Furthermore, it contains the mathematical description
of the QP process and the interpretation of the meaning
of the generalized Prony spectrum (GPS) that includes
the conventional Fourier decomposition as a partial case.
Section 3 contains the basic steps of the mathematical
algorithm that is tested on actual data. Finally, in section 4
we summarize the results and outline the perspectives of this
approach for the quantitative description of time-dependent
random data that are registered in different complex systems.

We want to stress here the following idea. The detection
of the QP processes helps to suggest a new scheme

for the classification of the disordered (self-affine) and
incommensurable systems. They have a specific memory and
this spatial memory can be expressed also in terms of spatial
GPS. These possibilities are also discussed in the final section.

Here and below, under the complex system we imply
a system when a conventional model is absent [6]. Under
simplicity of the acceptable model we imply the proper
hypothesis (‘best fit’ model) containing a minimal number
of the fitting parameters (FP) that describe the behavior of
the system considered quantitatively. The different approaches
that exist nowadays for the description of these systems are
collected in a recent review [7].

2. Description of a quasi-periodic process in terms
of Prony’s spectrum

It is well-known that a pure periodic process with the given
period T satisfies the following functional equation:

Pr (t ± T ) = Pr(t). (1)

The general solution of this functional equation is known
and it can be expressed in the form of the Fourier series (if
the initial function is defined on the discrete set of the given
points [t j ] j = 1, 2, . . . , N )

Pr(t) = A0 +
∞∑

k=1

[
Ack cos

(
2πk

t

T

)
+ Ask sin

(
2πk

t

T

)]
.

(2)
Instead of equation (1) we consider a somewhat

generalized temporal process

F(t + T ) = aF(t) + b, (3)

where the parameters a and b determine some real constants.
This functional equation means that the temporal evolution of
some process taking place on the interval t > T is based on
events that took place presumably in the nearest past (t < T ).
This functional equation was considered for the first time
in [8] but in the present paper we want to expand it beyond
the scope of the previous consideration. The solution of this
equation can be written in the following form [8]:

a 6= 1 : F(t) = exp (λt) Pr(t) + c0, λ =
ln(a)

T
, c0 =

b

1 − a
,

a = 1 : F(t) = Pr(t) + b
t

T
. (4)

If a > 1 then we have the increasing exponential factor
(λ > 0). For this situation the influence of the past events
on the present event is essential. For a < 1 we have
the effect of the exponential decay (λ < 0) and in this
case the influence of the past events (that took place for t < T )
on the present event (t > T ) is negligible. For a = 1 (b 6= 0)
we have alongside with periodic oscillations the appearance
of a linear temporal trend and, finally, for a = 1 and b = 0
the solution (4) is reduced to conventional solution (2). It is
natural that equation (3) admits the following generalization:

F(t + LT ) =

L−1∑
s=0

as F(t + sT ) + b. (5)



This functional equation describes mathematically a wide
class of the QP processes and can be interpreted as follows.
The process that takes place during the interval [(L − 1)T,
LT] partly depends on the processes that have happened
during the previous temporal intervals [sT, (s + 1)T ]
with s = 0, 1, . . . , L − 2. The set of constants [as]
(s = 0, 1, . . . , L − 1) can be quantitatively interpreted as
the presence of a memory in the system considered. In
comparison with the functional equation (5), equation (3) can
be interpreted as a system having the shortest memory. The
solution of the generalized functional equation (5) can be
presented in two forms (A) and (B):

(A)

L−1∑
s=0

as 6= 1 : F(t) =

L∑
r=1

exp

(
ln (λr )

t

T

)

× Prr (t) + c0, c0 =
b

1 −
∑L−1

s=0 as

,

(6)

(B)

L−1∑
s=0

as = 1 : F(t) =

L∑
r=1

exp

(
ln (λr )

t

T

)

× Prr (t) + c1
t

T
, c1 =

b

L −
∑L−1

s=0 sas

.

Here the functions Prr (t) define a set of
periodic functions from expressions (2), the values λr

(r = 1, 2, . . . , L) coincide with the roots of the characteristic
polynomial

P(λ) = λL
−

L−1∑
s=0

asλ
s
= 0. (7)

In general these roots can be positive, negative, g-fold
degenerated (with the value of the degeneracy g) and complex
conjugated. We should note also that for the case (B) in
(6) one of the roots λr coincides with the unit value (λ1 =

1) that leads to the pure periodic solution. As before, the
finite set of the unknown periodic functions Pr(T )

r (t)(r =

1, 2, . . . , L) is determined by their decomposition coefficients
Ac(r)

k , As(r)
k , r = 1, 2, . . . , L; k = 1, 2, . . . , K :

Pr(T )
r (t) = A(r)

0 +
K�1∑
k=1

[
Ac(r)

k cos

(
2πk

t

T

)

+As(r)
k sin

(
2πk

t

T

)]
. (8)

We want to stress here the following fact. The
conventional Prony decomposition [9–11] implies that
exponential multipliers figuring before periodic functions
have only real and decaying values. But solution (6) implies
that other roots from algebraic equation (7) are also possible.
These roots can change completely the structure of the
periodic part (8). In particular, it is instructive to reproduce
the corresponding decompositions [8] for the case of negative,
degenerated and complex-conjugated roots also. When a root
λ from (7) accepts a negative value the function in (8)
becomes anti-periodic (see definition (9) below) and the

solution for this case is written as

F(t) = exp

(
ln |λ|

t

T

)
Pr(a)(t), Pr(a)(t + T ) = −Pr(a)(t),

Pr(a)(t) =

K�1∑
k=1

[
Ack cos

(
(2k − 1) π

t

T

)
(9)

+Ask sin

(
(2k − 1) π

t

T

)]
.

If the found root λg (λg > 0) from (7) is g-fold
degenerated with the degree of the degeneracy equaling g then
the solution for F(t) is written as

F(t) = exp

(
ln(λg)

t

T

) g−1∑
r=0

(
tr Prr (t)

)
,

Prr (t) = A(r)
0 +

K�1∑
k=1

[
Ac (r)

k cos

(
2kπ

t

T

)
+As(r)

k sin

(
2kπ

t

T

)]
.

(10)

Finally, we write the solution for the complex-conjugated
roots λc = |λc| exp (±jϕ)

F(t) = exp

(
ln |λc|

t

T

)
Prc(t),

Prc(t) =

K�1∑
k=0

[
Ack cos

(
(2kπ + ϕ)

t

T

)
(11)

+Ask sin

(
(2kπ + ϕ)

t

T

)]
.

Taking into account these decompositions one can say that
they can be referred to as the amplitude (Ack , Ask)-frequency
(ωk = (2kπ + ϕ)/T ) response (AFR) corresponding to the
GPS because they take into account the different types of roots
that can appear in general solution (6). These decompositions
(8)–(11) have clear meaning and correspond to the linear
recording of memory effects that can exist in the random
sequences considered. The memory effect (considered for
the discrete set of data) is expressed quantitatively by the
enumerable set of real constants {as} figuring in equation
(5). In this sense the process without memory (Markovian
process) corresponds to the following set of constants: a0 = 0,
a1 = 0, . . . , aL−1 = 1 and its solution coincides with a pure
periodic function (2). So, in this sense the Fourier series can
be interpreted as the process without memory. From another
side, the conventional expression for the mean function when
in expression (5) 〈F(t)〉 = F(t + (N + 1)T ) and as = 1/N ,
b = 0 can be interpreted as the process with uniform memory.

3. Description of the general algorithm

In this section we propose an algorithm that detects the QP
process from the real data and performs the corresponding fit
to general solution (6). The algorithm can be divided into two
fundamental steps.

Step 1: finding the value of T. The first important step
is related to finding the period T from a priori information.



If this parameter can be found then in the general fitting
procedure it becomes easier to reduce the nonlinear fit to
the well-known linear least-squares method (LLSM). The
development of the method when this a priori information is
absent merits special research. In order to find the value T it is
necessary to have data repeated many times with some fixed
period of T. If some necessary conditions for repeating the
measuring process are fulfilled then one can link this time of
recycling with T.

What is it necessary to undertake if this period T is known
approximately?

In this case one can use the statistics of the fractional
moments [12, 13] and suggest a procedure that can separate
statistically homogeneous segments of the length T from
general sampling having the length TL � T . In order to find
these statistically homogeneous segments it is necessary to
suggest at least two criteria.

Firstly, the criterion based on external correlations.
For the sequence having N number of points within the

temporal segment of length TL we calculate the generalized
mean value (GMV) function

GMVp(s) =

 1

N

N∑
j=1

∣∣nrm j (s)
∣∣momp

1/momp

,

momp = exp
(
Ln p

)
, Ln p = mn +

( p

P

)
(mx − mn) , (12)

p = 0, 1, . . . , P.

Here the value s fixes the given segment. The
normalized sequence located in the interval 0 < nrm(y) < 1
is determined below by an expression (13). The value momp

determines the current moment from the interval [0, P]. The
value P determines the final value of the linear function Ln p

located in the interval [mn, mx]. The values mn and mx define
correspondingly the limits of the moments in the uniform
logarithmic scale. In many practical cases these values are
chosen as mn = −15, mx = 15 and P is chosen as an integer
value located in the interval [50–100]. This choice is related
to the fact that the transition region of the random sequences
considered and expressed in the form of the GMV-functions
is concentrated usually in the interval Ln p ∈ [−5, 5]. The
extended interval [−15,15] is taken usually for the calculation
of the limiting values of this function in the space of the
fractional moments. The initial sequences are chosen in that
way: the minimum of the GMV-function coincides with zero
value while the maximal value of this function coincides
with max(nrm j (y)). In formula (12) the random sequence is
normalized to the unit value in accordance with expressions
(A) and (B):

(A) nrm j (y) =
y(+)

j

max(y(+)
j )

−
y(−)

j

min(y(−)
j )

,

y(±)
j =

1
2

(
y j ±

∣∣y j

∣∣) ,
(13)

(B) nrmj (y) =
1y j

max(1y j )
, 1y j = y j − min(y j ).

j = 1, 2, . . . , N , 0 < nrm(y) < 1.

Here, as it was done above, the set y j defines the initial
random sequence that can contain a trend or can be compared
with another trendless sequence. The symbol | . . . | and index
j ( j = 1, 2, . . . , N ) determine the absolute value and number
of the measured points, correspondingly. The second case (B)
in (13) corresponds to the case when the initial sequence is
positive. For detection of the external correlations between
two sequences s1 and s2 formed from initial sequence TL

it is necessary to calculate GMVp(s1) and GMVp(s2) and
to plot the function GMVp(s2) (having initially the same
chosen length T = TL) with respect to the previous function
GMVp(s1). If this dependence forms a curve close to the
straight line

GMVp(s2) ∼= Sl GMVp(s1) + It, (14)

(where Sl defines the slope and It corresponds to interception)
then the initial segments compared are similar and are
strongly correlated. Then, using this simple test expression
for other sequences, one can select all that are contained
in the given sampling having the length TL � T . So, after
this selection one can form the desired relationship (5) and
evaluate the unknown set of constants [as] (s = 0, 1, . . . ,

L − 1) by LLSM.
Secondly, the criterion based on internal correlations.
Besides this criterion, based on the external correlations,

one can suggest a more delicate selection of similar sequences
based on internal correlations. For this we introduce the
generalized Pearson correlation function (GPCF) [13]

GPCFp =
GMVp(s1, s2)√

GMVp(s1, s1)GMVp(s2, s2)
, (15)

where

GMVp(s1, s2, . . . , sK ) = 1

N

N∑
j=1

∣∣nrm j (s1) · nrm j (s2) · . . . · nrm j (sK )
∣∣momp

1/momp

(16)

determines the GMV-function of the Kth order. The
GPCFp determined by expression (15) coincides with the
conventional definition of the Pearson correlation coefficient
at momp = 2. Other values are determined by expressions
(12) and (13). If the limits mn and mx in (12) have the opposite
signs and accept sufficiently large values, then the GPCF
function has two plateaus (equaled unit at small numbers of
mn (i.e. GPCFmn = 1)) and another limiting value GPCFmx

depends on the degree of internal correlation between two
random sequences compared. This right-hand limit (defined
as Lm) is located between two values

M ≡ min(GPCFp)6 Lm ≡ GPCFmx 6 1. (17)

The appearance of two plateaus implies that all information
about possible correlations is complete and further increase of
the limiting numbers (mx, mn) in (12) is useless. Numerous
tests showed that the high degree of correlation between
two random sequences is achieved when Lm = 1, while
the lowest correlation is observed when Lm = M . This
simple observation, having a general character for all random



sequences, allows us to introduce a new correlation parameter,
the complete correlation (CC) factor, which is determined as

CC = M

(
Lm − M

1 − M

)
. (18)

We would like to stress here that this factor is determined
on the total set of the fractional moments located between
exp(mn) and exp(mx) (see expression (12)). As mentioned
above, in practical calculations for many cases it is sufficient
to put mn = −15 and mx = +15. The CC factor is equal to
unit value when the degree of correlation is high and the
case Lm = M corresponds to the lowest (remnant) degree
of correlation that can be observed between the compared
random sequences. In addition, we also want to stress
the following fact. This CC factor does not depend on
the amplitude of the random sequences. The pair random
sequences compared should be normalized to the interval
06

∣∣y j

∣∣6 1. It reflects the internal structure of correlations
of the compared random sequences based presumably on the
similarity of their probability distribution functions that are
not known in many cases. A recent example related to the
application of the statistics of the fractional moments was
considered in paper [14].

These two criteria based on statistical proximity of the
random sequences compared help to form the basic functional
equation (5) and, hence, to find the desired set of the constants
[as] (s = 0, 1, . . . , L − 1) (by the LLSM) forming a specific
discrete memory of the complex system considered.

Step 2: the final fit of the statistically close sequences to
the fitting function (6). In practical calculations it is desirable
to have similar sequences with small value of the parameter
L(= 2, 3, 4) in (5) that corresponds to the short memory. This
requirement is related to the following observation. If we limit
the decompositions in (8)–(11) by the fixed number of modes
(k = 1, 2, . . . , K ) then the total number of FPs are located in
the interval

2K L 6 FP6 (2K + 1) L . (19)

From the last expression it follows that all this approach
has a sense only in the case when the number of points
N that forms the chosen segment of length T exceeds the
value (2K + 1)L. In other words, we imply that the condition
of reduction of initial data to a small number of calculated
parameters is fulfilled when

N > L (2K + 1) . (20)

The value of L is calculated by the LLSM from the
functional equation (5) while the value K in decompositions
(8)–(11) is found from the expression

Re lErr(K ) =
stdev

(
y(t j ) − F(t j ; K

)
mean

∣∣y(t j )
∣∣

)
× 100%6 10%.

(21)
Here y(t j ) is an initial random sequence having the

length T and F(t; K) is the fitting function from (6). It
contains initially the number of FPs that satisfy conditions
(19) and (20), where the parameter L is supposed to be
known from expression (5). Other k parameters (Ack , Ask)
(k = 1, 2, . . . , K ) are linear and evaluated again with the help

of the LLSM when the upper infinite limit of the periodic
function defined by expressions (8)–(12) is replaced by the
finite value K. This value is calculated from minimization
of the fitting function to initial expression and the value of
the relative error from (21) should not exceed 10%. In order
to decrease the number of the reduced parameters that enter
(20) one can apply the detection of the QP processes for the
sequences J y j that are more correlated (in comparison with
initial signals) and obtained from the initial sequences with
the help of integration

Dy j = y j − mean(y),

J y j = J y j−1 + 0.5
(
x j − x j−1

) (
Dy j + Dy j−1

)
, J y0 = 0,

j = 1, 2, . . . , N . (22)

As an integration operation of a discrete sequence, one
can use the simplest trapezoid method. This simple procedure
was applied successfully for the smoothing of the initial
signals [14] and the detection of the hidden traps [15], and
so it can be applied in the same manner for the treatment of
other data. Finally, we obtain

y j → QP(T, λr , Ack, Ask), (23)

the description of the initial signal in terms of AFR of the
identified QP process that contains the period of the process
T, the set of exponential factors λr (r = 1, 2, . . . , L) and linear
combination of amplitudes (Ack , Ask) (k = 1, 2, . . . , K ). The
set of frequencies ωk is obtained easily from the known period
T. We suppose that this recognition procedure can contain
additional and valuable information proving the existence of
the QP processes in different complex systems.

4. Detection of the QP processes on real data

In this section we are going to show how to detect the QP
processes from real data. The basic requirements are the
following:

(a) The same measurements should be repeated during
period T many times. The interval between measurements
(time-break) should be approximately the same.

(b) It is desirable that the interval T is controlled during
measurements and accepts the same value.

But if these requirements are out of the accurate control
then one can try to find other sets of the strongly correlated
variables for detection of the QP processes. Two randomly
taken sets of data (obtained from different sources) should
demonstrate to the skeptically tuned reader that QP processes
exist in many periodic processes studied and it is necessary
only to keep some conditions for their detection.

4.1. The recognition of QP processes from Raman spectra
recorded for pure water

As the first example we consider the Raman spectra of pure
(double degasified) water. The Raman spectroscopy (http://
en.wikipedia.org/wiki/Raman_spectroscopy) is a well-known

http://en.wikipedia.org/wiki/Raman_spectroscopy
http://en.wikipedia.org/wiki/Raman_spectroscopy
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Figure 1. Two similar Raman spectra belonging to two different
passages for double-gas-free water are shown.
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Figure 2. The comparison of the different Raman spectra with
respect to the first spectrum (Raman spectrum_1) expressed in terms
of the CC factor (expression (18)). One can notice that this sampling
containing 103 passages is rather heterogeneous. As one can see
from this figure only four spectra are located in the interval of
correlations [0.8–1.0] and seven have correlations between
[0.5–1.0].

spectroscopic method for the investigation of vibration
modes of different substances and so we can omit its
general description. For us it is important only for the
following specific information [16, 17] associated with
these available data: the type of laser that defines the basic
pumping frequency and the period of time when one passage
(containing 1024 measured points) is obtained. For the data
treated below one passage is performed during 10−8 s. One
experiment containing approximately 100–110 passages with
time-breaks is finished during 100 s. The typical Raman
spectrum corresponding to one passage for double-gas-free
water was shown in figure 1. The wavenumbers (in
cm−1) are counted off from the laser pumping frequency
equaling 532 nm and all wavenumbers are classified as
Stokes(+)–anti-Stokes(−) regions, correspondingly. For
comparison in figure 1 we give only one similar spectrum
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Figure 3. Comparison of the integrated (cumulative) spectra
obtained from expression (22). One can note that in comparison
with figure 1, the high-frequency fluctuations are essentially
decreased and all possible similarities (differences) are becoming
noticeable.
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Figure 4. The comparison of the different integrated spectra with
respect to the first spectrum (JSpectrum_1) expressed in terms of the
CC factor (expression (18)). One can note that integrated spectra
containing again 103 passages become strongly correlated and
homogeneous to each other. As one can see from this figure all
correlations (1,N) are located in the interval of correlations
[0.994–1.0]. The same statement is valid for all pair correlations
compared.

identified with the help of CC-factor (see expressions (15) and
(18) above). Comparing the first spectral record with the other
100 passages is given in figure 2. As one can note on this
plot these spectra (in spite of apparent similarity) are strongly
deviated from each other. In order to make them more
similar one can integrate them in accordance with expression
(22). The numerical integration suppresses high-frequency
fluctuations and makes the spectra more correlated to each
other. The pair of the integrated spectra is shown in figure 3.
The variation of the CC factor of the first integrated spectra
with others is shown in figure 4. In comparison with figure 2
the CC factor is located in the interval [0.994–1.0] that proves
their close statistical proximity to each other. Having these
smoothed spectra one can try to detect the QP-processes
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Figure 5. (a) The variations of the constants found by the LLSM
from equation (24). One can notice that all of them located in the
interval [−2, 3] and it proves again that this sampling expressed in
terms of the integrated spectra is homogeneous. Because of saving
place for other figures the calculated roots are not shown. We want
to mark here that the roots can be negative and complex-conjugated.
(b) Here we show the variations of the relative error defined by (21).
One can note that all these values are located in the interval [0.75,
4.5](%) and this plot proves that hypothesis (24) is realized with
high accuracy.

expressed in terms of expression (5) for the short memory
case (L = 2). We test the simplest hypothesis

F(t + LT ) ∼= A1(L)F(t + T ) + A0(L)F(t). (24)

Here the function F(t) determines the initial integrated
spectrum and the constants A1,0(L) are calculated
approximately in the frame of LLSM. The index
L = 3, 4, . . . 100 counts the number of passages. The
influence of the passages located between one and L is
supposed to be negligible. The recording time t for registration
of one passage is located in the interval [0,10 ns]. We omit
experimental time-breaks and suppose that T coincides with
the duration of one passage recording 10 ns. But we want
to note here that the result qualitatively is not changed
when we take into account the time-breaks and consider
T = 1 s, having in mind that the recording time together with
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Figure 6. (a) Integrated spectrum_1 expressed in terms of the
generalized Prony’s decomposition (24). In order to receive the
accurate fit in the limits of the relative error less than 1.5%
(= 1.08% if one can be more precise) only 20 modes in
decomposition (25) for periodic functions are necessary. We note
that in comparison with the previous figure 3 we realized the fit for
the time of recording (and not for the corresponding wave numbers
as it is accepted). (b) The values of the amplitudes (Ack , Ask)
(k = 1, 2, . . . , 10) calculated with the help of the LLSM that enter
solution (25). These amplitudes form the desired AFR that
represents itself the reduced description of the integrated spectrum.
Similar values one can calculate for other integrated spectra that are
connected with each other by means of relationship (24).

time-breaks occupies the period of 1 s. The dependence of the
coefficients A0,1(L) with respect to a number of passage L is
shown in figure 5(a). Figure 5(b) shows the variation of the
relative error that provides an approximate fit of the left part
to the pair of the previous measurements in expression (24).
The solution of the functional equation (24), in accordance
with general expression (6), is written in the form

1∑
r=0

Ar (L) 6= 1 : F(t) =

2∑
r=1

exp

(
ln (λr (L))

t

T

)
Prr (t),

(25)
where

λ1,2(L) = −
A1(L)

2
±

√(
A1(L)

2

)2

+ A0(L), (26)
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Figure 7. (a) Two similar reflected acoustic signals recorded on the
same depth. (b) Two SRAs generated from two acoustic signals
depicted on the previous figure. The plot given inside a small frame
shows that these two SRAs are strongly correlated.

the roots of quadratic equations associated with equation (24).
The periodic functions Pr1,2(t) are defined by expression
(8)–(11) and depend essentially on the character of roots
(positive, negative, complex-conjugated) of expression (26).
In order to provide the acceptable fit (with the values of the
relative error less than 1%) only 20 modes (K = 20) in the
corresponding decompositions (8)–(11) are necessary. This fit
for L = 2 is shown in figure 6(a). We want to stress here that
in comparison with figure 3 this dependence is given with
respect of the recording time t from interval [0,10 ns] and not
to the respect of the wavenumbers as in figure 3. The values
of the decomposition coefficients Ack , Ask with respect to the
number of a current mode k (k = 0(1), 2, . . . , 10) are shown
in figure 6(b) for L = 3. The coefficients Ack , Ask for other
values of L look similar and so they are not shown. From
analysis of this simple example some important conclusions
are following:

1. The repetition of experimental measurements (at the
same external conditions) cannot reproduce similar
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Figure 8. Here we demonstrate the variations of CC-factor
(expression (18)) between the first signals and other signals
registered in late time. Even for integrated sequences these signals
remain weakly correlated. In order to increase their correlations one
can generate the corresponding SRAs and compare their
correlations. As one can see from the figure in a small frame these
sequences are strongly correlated. All correlations are located in the
interval [0.97–1.0].

results as initially one might expect. So, for the reliable
detection of the QP-processes the high-correlated random
sequences calculated from initial measurements are
necessary.

2. The fit of these functions is realized in respect of the
observation/registration time, but not in respect of the
actual external parameter (as the wavenumber in this
case).

3. The calculation of the decomposition coefficients Ack ,
Ask for the highly correlated sequences allows one to
reduce the initial information (i.e. contained in 1024
measured points) to 42–44 parameters (in this case)
when the actual model pretending on description of the
integrated spectra is absent.

4.2. The recognition of QP processes from random acoustic
signals (geophysics data)

Many companies working in the region of geophysical
industry/prospecting register the reflected acoustic signals
emitted from the acoustic generator located inside a test
hole on the certain depth. For further analysis only the
following details are important. The time of recording
of the reflected acoustic signal containing 1024 measured
points occupies the interval [120–150 ms]. The interval
between the registered signals is in the limits [1 s–1 min]
and depends on the character of the rocks surrounded. After
the registration of 20–40 signals the receiver changes its
depth of location inside the test hole. The author (RRN)
received these reflected acoustic signals for analysis from
the company (http://tgtoil.com). Based only on these data
(without other supplied geophysical information) we try to
find an answer to the following question: Do these data
belong to some QP-process or not? How to present data in
a more correlated form in order to detect the QP-process with
high reliability? In this example the period of time between

http://tgtoil.com
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Figure 9. The verification of the hypothesis (27). The fit with the
help of two previous SRAs looks acceptable. The relative fitting
error does not exceed 9%. The same fit can be realized for other
sequences presented in the form of the SRAs. The values of the
fitting constants (A0(L), A1(L), C0(L)) and the value of the fitting
error are shown on figures 10.

recordings is uncertain and acoustic signals registered over the
same time interval are deviated from each other. Figures 7(a)
and (b) depict two similar acoustic signals taken without any
filtering (figure 7(a)) and after transformation of the initial
signal to the sequence of the ranged amplitudes (SRAs),
when all registered amplitudes are located in the descending
order (y1 > y2 > · · · > yN ) (central plots in figure 7(b)). In
the small frame of figure 7(b) these SRAs being plotted
with respect to each other exhibit their strong correlations.
Figure 8 gives the variations of the CC factor of the first
acoustic signal with others that are registered in late moments
of time. The integration of initial signals with respect to
their mean value does not facilitate the situation. Figure 8
shows also the variations of CC factors for the integrated
signals. Only a few of them are strongly correlated. In order
to increase their correlations and to make them more or
less homogeneous we form, from the initial acoustic signal,
the SRAs. It is interesting to note that the corresponding
SRAs, generated from initial acoustic signals, are strongly
correlated. This statement is confirmed by figure 8, where
the CC factor comparing different SRAs with the first one
is shown in the small frame. The appearance of strong
correlations between different SRAs can be explained by
the following way. Any initial acoustic signal belongs to
the general sampling having the volume N!, where a set
of amplitudes is not changed essentially and forms random
sequences only by means of various permutations. Any SRA
represents itself the limiting permutation when the amplitudes
are located in descending order. Another limiting case is
formed when the same amplitudes are located in ascending
order. If the given set of amplitudes generating different
samplings is not changed essentially then their SRAs should
be close to each other. Being plotted to respect each other
two SRAs should give a curve close to a straight line (14).
See figure 7(b) in a small frame. Therefore, this independent
test confirms the existence of the sampling with volume
N! generated by random permutations and all these random
sequences belonging to this sampling are strongly correlated.
Consequently, one can try to confirm the existence of the
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Figure 10. (a) The variations of the constants A0(L) and A1(L)
found by the LLSM from equation (27). One can note that all of
them located in the interval [−0.5, 1.5]. It proves again that this
sampling expressed in terms of the SRAs is homogeneous. Because
of space restraints, the calculated roots are not shown. We want to
mark here that other calculated roots can be only positive or
negative. The complex-conjugated roots are absent. (b) The
variations of the constant C0(L) and the value of the relative error
found by the LLSM from equation (27). The value of the relative
error lies in the interval (5–15%) in spite of the fact that initial
acoustic signals are weakly correlated.

QP-process that can be observed between different SRAs.
Again, in order not to increase the number of FPs we consider
the case with the short memory. We suppose that the following
hypothesis is valid:

F(t + LT ) ∼= A1(L)F(t + T ) + A0(L)F(t) + C0(L). (27)

The free constant C0(L) is added to hypothesis (27)
in order to decrease the value of the relative error when
the approximate equality between the right and left sides of
equation (27) is verified with the help of the LLSM. The
fit of the SRA for L = 3 by means of sequences belonging
to L = 1, 2 is shown in figure 9. The values of the fitting
constants (A0(L), A1(L), C0(L)) (L = 3, 4, . . . , 37) and the
value of the fitting error are depicted in figures 10(a) and (b).
Finally, we show the fit of the SRA (L = 1) to solution of the
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Figure 11. (a) The fit of the function F(t) (coinciding with SRA
L = 1) by its expression that follows from solution (28). In order to
have acceptable fit with the value RelErr = 1.37% only 14 FP are
necessary. The value of K is equaled to 6. (b) The values of the FP
that enter to decomposition (28). Besides the six parameters
Ac(1, 2)k , As(1, 2)k (k = 1, 2, 3), we give the values of the constant
C (at L = 1) and the constant A0 that presents for the roots having
positive values. In order to place all these values in one plot the
actual value of the constant Ac(2)1 should be increased in 108 times.

functional equation (27) in figure 11(a)

1∑
r=0

Ar (L) 6= 1 :

F(t)=
2∑

r=1

× exp

(
ln (λr (L))

t

T

)
Prr (t)+C(L), (28)

C(L) =
C0(L)

1 −
∑1

r=0 Ar (L)
.

The AFR containing 14 parameters, and reproducing the
fit of the function F(t) (and coinciding with SRA (L = 1)), is
shown in figure 11(b).

5. Results and discussion

In this section we summarize the basic conclusions that follow
from this approach.

The detection of the QP processes opens new possibilities
in the description and classification of data that are registered
from different complex systems. Before, all repeated data
were supposed to be similar to each other and so all
experimentalists in the world try to reduce a massive amount
of initial data to their mean values and standard deviations.
The QP processes allow one to find a fine structure of
the massive data analyzed and even fit them in respect of
observation time. One can note, for example, that the first set
of data referring to the Raman spectra are more homogeneous
in comparison with the geophysics data. In the first case for
detection of the QP process the simple integration with respect
to their mean values was sufficient while in the second case the
transformation of the initial acoustic signals to the SRAs was
necessary.

Usually all researchers working with different data are
accustomed to thinking that the model containing a minimal
number of FPs is ideal in any case. But what we should do
when this ‘ideal’ model is absent? The detection of the QP
or SS processes [5] allows us to introduce the concept of
an intermediate model, when any general principle (such as
the concept of self-similarity [5] or quasi-periodicity) allows
one to reduce the redundant information that is imbedded
in the initial data to other forms (to the AFR in our case)
that contain less information but allows one to reproduce the
initial data containing N measured points. This reduction of
information is the basic aim of any researcher who is trying
to find additional laws that help him to reduce and classify
redundant information.

The research presented in this paper allows us to
generalize this approach and apply it to spatial objects
with quasi-translation (QT) properties. As is well known, a
function remains translationally invariant if

f (r +
3∑

i=1

ni ai ) = f (r). (29)

Here f (r) is a function that can be given in scalar or
vector form, vector triple (ai , i = 1, 2, 3) determines the basic
translation vectors. In complete analogy with the functional
equation (5) one can write the following expression:

F(r + L1a1 + L2a2 + L3a3)

=

L1−1, L2−1,L3−1∑
s1,s2,s3=0

As1,s2,s3 F r +
3∑

i=1

si ai

)
+ b. (30)

Here si (0, 1, 2, . . . , L i ) (i = 1, 2, 3) coincides with the
set of integer numbers that determine the QT-property in
space. Perhaps in the near future equation (30) and its
solutions can serve as a new classification scheme for the
identified QT structures. This equation can be generalized
easily for classification of self-affine structures [1, 2]. Let us
consider the following scaling equation:

F(rξ L1
1 ξ

L2
2 ξ

L3
3 ) =

L1−1, L2−1, L3−1∑
s1,s2,s3=0

As1,s2,s3 F(rξ s1
1 ξ

s2
2 ξ

s3
3 ) + b.

(31)
Making a substitution ln(r) → r, ln(ξi ) → ai (for each

component of the corresponding vector a) and L i = si we
reduce equation (31) to the previous equation (30).



A partial solution of the functional equation (30) is
written in the form

F(r) = exp (κ · r) f (r), κ = κ(κ1, κ2, κ3), (32)

where the periodic function f (r) is determined by equation
(29) and the vector κ remains unknown. The substitution
of a partial solution to equation (30) leads finally to the
following algebraic equation for finding the desired roots λI

and unknown components of the vector κ :

λ
L1
1 λ

L2
2 λ

L3
3 =

L1−1,L2−1,L3−1∑
s1,s2,s3=0

As1,s2,s3λ
s1
1 λ

s2
2 λ

s3
3 ,

λi = exp (κi ai ) , i = 1, 2, 3. (33)

Particularly, for different polymers and large molecules
forming a complex structure on different space/time scales
the ideal translation or scaling scheme for their classification
is not valid. The solution of equation (33) is not a trivial
procedure and can be obtained for partial cases by analogy
with expression (6) when the polynomials (7) for each
direction can be at least separated or factorized. The
detailed consideration of these new possibilities merits special
research.
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