

Real-Time Scheduling of Parallel Tasks in
the Linux Kernel

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120714

Version:

Date: 07-24-2012

José Carlos Fonseca

Luis Miguel Nogueira

Cláudio Maia

Luís Miguel Pinho

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-120714 Real-Time Scheduling of Parallel Tasks in the Linux Kernel

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Real-Time Scheduling of Parallel Tasks in the Linux Kernel
José Carlos Fonseca, Luis Miguel Nogueira, Cláudio Maia, Luís Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF
scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed
on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable,
provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while
still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead
of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.

Real-Time Scheduling of Parallel Tasks in the
Linux Kernel

José Carlos Fonseca, Lúıs Nogueira, Cláudio Maia, and Lúıs Miguel Pinho

CISTER Research Centre/INESC-TEC
School of Engineering (ISEP), Polytechnic Institute of Porto (IPP), Portugal

{jcnfo,lmn,crrm,lmp}@isep.ipp.pt

Abstract. This paper proposes a global multiprocessor scheduling algo-
rithm for the Linux kernel that combines the global EDF scheduler with
a priority-aware work-stealing load balancing scheme, enabling parallel
real-time tasks to be executed on more than one processor at a given time
instant. We state that some priority inversion may actually be accept-
able, provided it helps reduce contention, communication, synchronisa-
tion and coordination between parallel threads, while still guaranteeing
the expected system’s predictability. Experimental results demonstrate
the low scheduling overhead of the proposed approach comparatively
to an existing real-time deadline-oriented scheduling class for the Linux
kernel.

Keywords: Real-time scheduling, task-level parallelism, work-stealing,
Linux

1 Introduction

High-level parallel languages seek to reduce the complexity of multicore pro-
gramming by giving programmers abstract execution models, such as implicit
threading, where programmers annotate their programs to suggest the parallel
decomposition. Implicitly-threaded programs, however, do not specify the actual
decomposition of computations or the mapping from computations to cores. The
annotations act simply as hints that can be ignored and safely replaced with se-
quential counterparts. The parallel decomposition itself is the responsibility of
the language implementation and, more specifically, of the runtime scheduler.

However, scalable performance is only one facet of the problem in embed-
ded multicore real-time platforms. Predictability and computational efficiency
are often conflicting goals, as many performance enhancement techniques aim at
boosting the average expected execution time, without considering potentially
adverse consequences on worst-case execution times. Therefore, the growing im-
portance of parallel programming models to real-time applications introduces
a new dimension to multicore real-time scheduling, since a real-time task may
split into parallel execution regions at specific points.

Early work in parallel real-time scheduling [1–3] makes simplifying assump-
tions about task models, such as knowing beforehand the parallelism degree of

jobs and using this information when making scheduling decisions. In practice,
this information is not easily discernible, and in some cases can be inherently
misleading. Recently, Lakshmanan et al. [4] proposed a scheduling technique
for synchronous parallel tasks where every task is an alternate sequence of se-
quential and parallel regions, respectively. Each parallel region is formed by the
same number of threads, all of equal length, that synchronise at the end of the
region. In [5], Saifullah et al. considered a slightly more general task model, al-
lowing different regions of the same parallel task to contain different numbers
of threads. Nevertheless, it still requires threads of execution that are of equal
length within each parallel region. Furthermore, both works consider schedul-
ing parallel tasks by decomposing them into sequential subtasks. In the former,
this technique requires a resource augmentation bound of 3.42 under partitioned
Deadline Monotonic (DM) scheduling, while the latter proves a resource augmen-
tation bound of 4 for global Earliest Deadline First (EDF) and 5 for partitioned
DM scheduling.

In contrast, we consider a more general model of parallel real-time tasks,
where the number of spawned threads may be dynamic and each one of them
might take arbitrarily different amounts of time to execute. There are many ap-
plications for which the previous conditions hold, and it is this kind of irregular
parallelism that is of primary interest for us in this paper. Applications with
these properties pose significant challenges for high-performance parallel imple-
mentations, where equal distribution of work over cores and locality of reference
are desired within each core.

One of the simplest, yet best-performing, dynamic load-balancing algorithms
for shared-memory architectures is work-stealing [6]. Blumofe and Leiserson have
theoretically proven that the work-stealing algorithm is optimal for scheduling
fully-strict computations, i.e computations in which all join edges from a thread
go to its parent thread in the spawn tree. Under this assumption, an application
running on P cores achieves P -fold speedup in its parallel part, using at most
P times more space than when running on one core. These results are also
supported by experiments [7]. The principle of work-stealing is that idle cores,
which have no useful work to do, should bear most of the scheduling costs, and
busy cores, which have useful work to do, should focus on finishing that work.

Motivated by these observations, this paper breaks new ground in several
ways. First, it proposes a novel scheduling algorithm, named Priority-Aware
Work-Stealing (PAWS), that combines the global EDF scheduler [8] with a
priority-based work-stealing policy, which enables parallel real-time tasks to be
executed in more than one processor at a given time. To the best of our knowl-
edge, no research has ever focused on this subject. Second, while several others
have previously considered work-stealing as a load balancing mechanism for par-
allel computations, we are the first to do so considering different tasks’ priorities.
Third, our work is the first to actually implement support for parallel real-time
computations in the Linux kernel.

2 System model

We consider the scheduling of periodic independent real-time tasks onm identical
cores p1, p2, . . . , pm using global EDF. Global EDF places each task ready to
execute in a system-wide queue, ordered by nondecreasing absolute deadline,
from which the first m tasks are extracted to execute on the available cores.

We primarily consider a synchronous task model, where each task τ1, . . . , τn
can generate a virtually infinite number of multithreaded jobs. A multithreaded
job is a sequence of several regions, and each region may contain an arbitrary
number of parallel threads which synchronise at the end of the region (see Figure
1). To generate such parallel structures, one may enforce not only parallel for
loops but also any thread-based construct available in established parallel pro-
gramming paradigms such as OpenMP [9], as long as no regions contain nested
parallelism (it is beyond the scope of this work). For any region with more than
one thread, the threads on that region can be executed in parallel on different
cores. All parallel regions in a task share the same number of cores and threads
have implicit deadlines. For now, our work is focused on systems where all paral-
lel threads are fully independent, i.e., except for the m-cores there are no other
shared resources, no critical sections, nor precedence constraints.

Fig. 1. A multithreaded job with five regions.

The jth job of task τi arrives at time ai,j , is released to the global EDF queue
at time ri,j , starts to be executed at time si,j with deadline di,j = ri,j + ti, with
ti being the period of τi, and finishes its execution at time fi,j . These times are
characterised by the relations ai,j ≤ ri,j ≤ si,j ≤ fi,j . Successive jobs of the
same task are required to execute in sequence.

During the course of its execution, the jth job of task τi can dynamically
generate an arbitrary number of parallel threads which synchronise at the end
of that parallel region. A thread is denoted wj

i , 1 ≤ j ≤ ni, with ni being the
total number of threads generated by the jth job of task τi in that parallel region.
We assume ni ≥ 2 holds for at least one task τi in the system. Otherwise, the
considered task set does not have intra-task parallelism.

The execution requirement of a thread wj
i is denoted by eji . Threads of the

same region may have different execution requirements. Therefore, the worst

case execution time (WCET) Ci of task τi on a multicore platform is the sum
of the execution requirements of all of its threads, if all threads are executed
sequentially in the same core.

The fraction of the capacity of one core that is assigned to a task τi is defined
as its utilisation ui =

Ci
Ti
. We further define UΠ =

�n
i ui as the system utilisation

on the identical multicore platform Π comprised of m unit-capacity cores and
uΠ = max1≤i≤nui as the maximum task utilisation.

A task set Γ is said to be schedulable by algorithm A, if A can schedule Γ
such that every τi ∈ Γ can meet its deadline di. With global EDF, a task τi
executed on the identical multicore platform Π comprised of m unit-capacity
cores never misses its scheduling deadline under the following conditions [10]:

UΠ ≤ m− uΠ(m− 1)

uΠ ≤ 1

Contrary to regular jobs of a task, dynamically generated parallel threads are
not pushed to the global EDF queue but instead maintained in a local priority-
based work-stealing double-ended queue (deque) of the core where the job is
currently being executed, thus reducing contention on the global queue. For any
busy core, parallel threads are pushed and popped from the bottom of the deque
and these operations are synchronisation free.

3 Real-time task-level parallelism

Most results in real-time scheduling concentrate on sequential tasks running on
multiple processors or cores [11]. While these works allow several tasks to execute
on the same multicore host and meet their deadlines, they do not allow individ-
ual tasks to take advantage of a multicore machine. It is essential to develop
new approaches for intra-task parallelism, where real-time tasks themselves are
parallel tasks which can run on multiple cores at the same time instant.

Many real-time applications have a lot of potential parallelism which is not
regular in nature and which varies with the data being processed. Implicit thread-
ing encourages the programmer to divide the program into threads that are as
small as possible, increasing the scheduler’s flexibility when distributing work
evenly across cores. Frameworks such as OpenMP [9], Cilk [12], Java Fork-join
Framework [13], or StackThreads/MP [14] are able to take advantage of that dis-
tributed computational power, once they allow parallelism to be easily expressed
by spawning threads, which can execute in parallel.

The downside of such fine-grained parallelism is that if the total scheduling
cost is too large, then parallelism is not worthwhile. Having many short-lived
threads requires a simple and fast scheduling mechanism to keep the overall
overhead low. The underlying architecture must then provide an efficient run-
time that can efficiently map ready threads to cores, dynamically balancing the
workload, while easing this burden from the programmer.

Dynamic scheduling of parallel computations by work-stealing [6] has gained
popularity in academia and industry for its good performance, ease of imple-
mentation and theoretical bounds on space and time. Work stealing has proven

to be effective in reducing the complexity of parallel programming, especially for
irregular and dynamic computations, and its benefits have been confirmed by
several studies [15, 16].

A work-stealing scheduler employs a fixed number of workers, usually one
per core. Each of those workers has a local deque to store threads. Workers treat
their own deques as a stack, pushing and popping threads from the bottom, but
treat the deque of another busy worker as a queue, stealing threads only from the
top, whenever they have no local threads to execute. This reduces contention,
by having stealing workers operating on the opposite end of the queue than the
worker they are stealing from, and also helps to increase locality, since stealing
a thread also migrates its future workload [12]. All queue manipulations run in
constant-time (O(1)), independently of the number of threads in the queues.
Furthermore, several papers [17, 18] explain how a non-blocking deque can be
implemented to limit overheads.

Following [19], we denote T∞ as the execution time of an algorithm on an
infinite number of cores and T1 as the sequential time of this algorithm. It is
proved that the time Tp required for execution, on an ideal machine with no
scheduling overhead, on p cores verifies Equation 1.

Tp ≤ T1

p
+ T∞ (1)

This time appears asymptotically optimal in the case of highly parallel ap-
plications where T∞ ≤ T1. However, the need to support tasks’ priorities fun-
damentally distinguishes the problem at hand in this paper from other work-
stealing choices previously proposed in the literature [20–22]. With classical
work-stealing, threads waiting for execution in a deque may be repressed by
new threads, which are enqueued at the bottom of the worker’s deque. As such,
a thread at the top of a deque might never be executed if all workers are busy.
Consequently, there is no upper bound on the response time of a multithreaded
real-time job. Therefore, considering threads’ priorities and using a single deque
per core would require, during stealing, that a worker iterate through the threads
in all deques until the highest priority thread to be stolen was found. This can-
not be considered a valid solution since it greatly increases the theft time and,
subsequently, the contention on a deque.

Our proposal is to replace the single per-core deque of classical work-stealing
with a per-core priority queue, each element of which is a deque. A deque holds
one or more threads of the same priority. At any time, a core picks the bottom
thread from the highest-priority non-empty deque. If it finds its queue empty,
it randomly selects another busy core and steals a thread from the top of the
highest-priority non-empty deque of the chosen core’s queue.

Blumofe and Leiserson [6] demonstrate that a random choice of the stolen
core is fair and presents the advantage that the choice of the target does not
require more information than the total number of cores in the execution plat-
form. Since the schedulability of the task set is guaranteed by global EDF, we
state that priority-aware work-stealing is robust to small deviations from a strict

priority schedule. In fact, as the achieved results demonstrate, controlled prior-
ity inversion concerning parallel threads may be actually acceptable, provided it
helps reduce contention, communication, synchronisation and coordination be-
tween them. Note that task-level scheduling is not affected by this approach,
and work-stealing takes place exclusively when a core would, otherwise, be idle.

4 The PAWS scheduler

One approach to scheduling parallel applications using work-stealing is to in-
clude the calls to a user-space runtime library that manages threads themselves
explicitly in the application. This technique places a lot of onus on the program-
mer, requiring that he is fully aware of the runtime library and the details of
scheduler, which in turn affects the productivity. Hence, work-stealing schedulers
generally resort to an alternate approach where the parallelism is expressed at
a higher-level of abstraction using some parallel constructs in a language. This
code is then transformed into an equivalent version with appropriate calls to the
work-stealing runtime library using a compiler. However, the compiler needs to
do a good job mapping threads appropriately in order to match the performance
of a good hand-written application with direct calls to runtime.

Therefore, implementing a work-stealing scheduler at the kernel level, by ex-
ploiting the operating system’s capabilities, allows one to finally switch from
the current support of user-space runtime libraries or compilers to native sup-
port from the operating system. Furthermore, existing user-level work-stealing
schedulers are not effective in the increasingly common setting where multiple
applications time-share a single multicore, suffering from both system through-
put and fairness problems [23].

On the other hand, kernel-focused work has been invaluable in demonstrating
the capabilities and limitations of new multicore resource allocation techniques
on actual hardware. Among research projects, the works more related to our
proposal of extending the Linux kernel with the concept of actual timing con-
straints, e.g. deadlines, are LITMUSRT [24] and SCHED DEADLINE (originally
named SCHED EDF) [25]. The LITMUSRT patch is a soft real-time extension
of the Linux kernel with a focus on multicore real-time scheduling and synchro-
nisation. The Linux kernel is modified to support the sporadic task model and
modular scheduler plugins. Work in [25] targets global/clustered EDF schedul-
ing specifically through dynamic task migrations. This means that tasks can
migrate among (a subset of) cores when needed, by means of pushes and pulls.
Nevertheless, none of those patches directly supports parallel real-time tasks.

PAWS extends the Linux kernel with a global EDF scheduling scheme com-
bined with a priority-based work-stealing load balancing policy, used to allow
parallel tasks to execute on more than one core at a time. The major rules of
the proposed scheduler are described next.

– Rule A: a single global ready queue exists in the system, ordered by nonde-
creasing absolute deadlines. At each instant, the higher priority (with shorter
absolute deadline) jobs are scheduled for execution.

– Rule B: whenever a job of a task τi being executed at a core k enters a
parallel region and dynamically generates a set of parallel threads, those
threads are not pushed to the global EDF queue but instead maintained in
the core’s local priority queue to reduce contention on the global queue.

– Rule C: each entry in the local priority queue is a deque, holding one or
more threads of equal priority. At any time, a core first looks into its local
queue, picking the bottom thread from the highest priority non-empty deque.

– Rule D: if the local queue is empty and there is no thread to pick, then a
core searches for jobs in the global EDF queue.

– Rule E: still, if there is no eligible job in the global EDF queue, the core will
randomly select a busy core and steal the thread at the top of the highest
priority non-empty deque from the core’s priority queue.

– Rule F: opposed to a locally generated thread, a stolen thread preempted
by a new arriving job with a shorter deadline is enqueued in the global queue
and not back in the respective deque of the core’s local priority queue.

Each released job is enqueued in a system wide global EDF queue ordered
by non-decreasing deadlines, with ties broken by FIFO. At t = 0, all the m
cores are idle and the m higher priority jobs are selected for execution. By
following a global approach, cores are responsible for dequeueing the highest
priority jobs from the global queue and therefore the bin-packing problem of
partitioned approaches is avoided. Furthermore, our implementation includes a
dispatching routine, which directly enqueues a task on the most suitable core (if
any). Therefore, contention on the global queue is minimised and only occurs
in the case when two or more cores simultaneously finish their executions, their
local queues are empty, and there is pending work on the global queue.

When entering a parallel region, a job generates an arbitrary number of
threads, possibly with different execution requirements. To avoid uncontrolled
priority inversion when stealing, each core has a deadline-ordered queue, each
element of which is a deque. Therefore, each dynamically generated thread is
enqueued at the bottom of the respective deque, so that data locality is achieved
and communication and synchronisation among cores are minimised.

Whenever a new job is released and enqueued in the global EDF queue and
all the cores are busy, the scheduler verifies if the core executing the lowest
priority job/thread among all the executing jobs/threads has a higher deadline
than the newly arrived job. If this is the case, this job is preempted. One of
three possible situations occurs, depending on the properties of the preempted
entity: (i) the job is enqueued back in the global queue; (ii) the locally generated
thread is enqueued back in the respective deque in the core’s local priority queue;
and (iii) a previously stolen thread is enqueued in the global queue in order to
prevent starvation and, therefore, a possible deadline miss.

For each core, the local deques are the first place to look for work, not only
due to the fact that if they have work to execute it means that there is a deadline
to be met, but also to take advantage of data locality. If local deques are empty,
the global queue is searched. This step assumes that if the other cores in the
system have work to execute they are able to finish their work within the deadline

(the schedulability of the task set is assured by global EDF). Clearly, this step
favours jobs in the global queue with respect to parallel threads generated on
other cores. Finally, the last step considers stealing which implies that a core is
idle. Therefore, the cost of stealing operations is the responsibility of the idle
core. Nevertheless, simultaneously, the system is taking advantage of potential
parallelism which contributes to reduce the worst-case response time of the jobs.

The stealing operation assures that the top-right parallel thread, i.e. the
highest priority thread in that core, is stolen. This reduces contention, by having
stealing cores operate on the opposite end of the deque than the core they are
stealing from. Moreover, as this thread is the oldest in that deque, it increases
the probability of not having its data in the cache and also of being an element
with a heavier workload, thus making it the best candidate for stealing.

5 Experimental evaluation

Based on the design principles presented in the previous section, we have im-
plemented PAWS in the standard Linux kernel 2.6.36 as a new scheduling class
called SCHED PAWS. The experiments reported in this paper were conducted
in a machine equipped with a dual-core processor, where each of the cores is
running at 1.6 GHz, and 4 GB of main memory. Concerning the running envi-
ronment, the Linux kernel was configured as follows: disabled CPU frequency
scaling, hyperthreading and tickless system; HZ macro set to 1000; preemptible
kernel selected as preemption model. Since our evaluation is also based in a
comparison to SCHED DEADLINE (version 3), we have disabled bandwidth
management to set equal grounds.

A set of four experiments was conducted, where in each of the experiments
20 random task sets were utilised. In order to dinamically generate the task sets,
we have defined the number of cores in the system (m) to 2; the minimum task
utilisation (umin) equal to 0.1; the maximum task utilisation (umax) equal to
0.4; a minimum period (Tmin) of 100 ms; and finally, a maximum period (Tmax)
of 150 ms. The period Ti is computed as follows: Ti = Tmin+x ∗ (Tmax−Tmin),
where x denotes a random value between 0 and 1.

Four utilisation windows were chosen, which constitute the basis for the ex-
periments, where each interval was defined based on Umin, the minimum task
set utilisation and Umax, the maximum task set utilisation. More precisely, the
intervals are given by ([Umin, Umax]): [0.28, 0.30], [0.58, 0.60], [0.78, 0.80] and
[0.83, 0.85]. With these parameters, we compute each task utilisation as follows:
ui is given by ui = umin + x ∗ (umax − umin), where

�n
k=1 uk ≥ Umin and�n

k=1 uk ≤ Umax. Finally, Ci is given by Ci = Ti ∗ Ui.
The number of parallel threads per task was not defined a priori but derived

as follows: ni = x∗(m∗3), whereas the number of tasks (n) was totally dynamic,
based on the system utilisation window condition being satisfied. Note that as we
keep increasing Umax, and umax remains constant, n scales. We strongly believe
that this set of task sets can deeply assess our scheduler features.

Fig. 2. Average number of migrations between cores

Regarding workloads, each task is an academic application whose periodicity
is simulated by a periodically activated ”infinite” loop that: (i) executes sequen-
tially; (ii) splits into multiple parallel threads; (iii) syncronizes and terminates
them; and (iv) resumes master thread execution. All and each one of the work
performed is limited to a bunch of NOP instructions to avoid memory and cache
interferences. Sequential, parallel and total execution times are not assigned by a
rigid calculation but instead derived randomly, being the actual total execution
time upper bounded by Ci.

Data was collected and averaged concerning the number of context switches
and migrations. The main goal of these two metrics, which represent the main
sources of scheduling overhead, is to highlight the overhead caused by such
preemptive time-constrained real-time schedulers. Moreover, Table 1 shows the
number of deadline misses verified in the experiments, so that we can understand
if an increase in overheads is justified by a gain in schedulability.

28-30% 58-60% 78-80% 83-85%

SCHED PAWS 0 0 0 0

SCHED DEADLINE 0 0 4 3

Table 1. Number of task sets which missed deadlines

Figure 2 depicts the average number of migrations that occurred for each
scheduling policy. The overall results show that, no matter the considered work-
load rate, SCHED PAWS outperforms SCHED DEADLINE. This is easily ex-
plained by our decision to favour data locality, generating parallelism only when
strictly required, i.e. when a core becomes idle. As the reader may notice, the
number of migrations increases with higher system utilisations. This happens be-
cause load balancing calls are more frequently required, as a greater number of
tasks must enter the system to fullfill the increasing [Umin, Umax] (as previously
explained), and each one of them create more threads in the parallel regions.
Nonetheless, values indicate a linear scalability for both policies, which can be
seen as a good behaviour.

Regarding the average number of context switches, depicted in Figure 3,
SCHED PAWS also outperforms SCHED DEADLINE in every experiments.

Fig. 3. Average number of context switches

Note that the latter policy blindly assigns new jobs to the core where the task
was last executed, which rather frequently leads to a preemption, the only vari-
able factor when accounting such metric. Contrariwise, in our implementation,
preemption is minimised because a released job is assigned to a idle core (if
available) by the dispacthing routine or inserted into the global queue when its
piority is lower than the ones currently executing. Moreover, we do not allow
parallel threads to preempt other threads or jobs, unless they have been stolen.
Even though the number of context switches follows the previous metric trend,
when system workload gets heavier, it appears to scale less than linearly.

Although the underlying operating system’s unpredictability, the achieved
results seem promising and match to the expectations that guided our scheduling
algorithm design. Still, we are now conducting new experiments in a machine
with more cores, as well as taking some more metrics to further evaluate the
behaviour of PAWS scheduling algorithm.

6 Conclusions and Future Work

Multicore platforms have transformed parallelism into a main concern and dy-
namic task-level parallelism is steadily gaining popularity as a programming
model. The idea is to encourage application programmers to expose the oppor-
tunities for parallelism by pointing out potentially parallel regions within tasks,
leaving the actual and dynamic scheduling of these regions onto processors to
be performed at runtime, exploiting the maximum amount of parallelism.

In contrast to prior work on real-time scheduling of parallel tasks, this paper
considers a more general model of parallel real-time tasks, where the number of
spawned threads may be dynamic and each one of them might take arbitrarily
different amounts of time to execute. It proposes PAWS, a novel scheduling algo-
rithm, implemented in the Linux kernel, that combines the global EDF scheduler
with a priority-based work-stealing policy, allowing parallel real-time tasks to be
executed in more than one processor at a given time. To the best of our knowl-
edge, we are the first to: (i) deal with real-time priorities in a work-stealing

scheduler; and (ii) to actually implement support for parallel real-time compu-
tations in the Linux kernel.

Experimental results show that the proposed scheduler, in comparison to
other practical work, significantly reduces the scheduling overhead through an
efficient and scalable (regarding tasks/threads and workloads) control of migra-
tions and context switches. While focused on keeping overheads low and achiev-
ing good data locality, we have never neglected the system’s schedulability. In
fact, our scheduling algorithm proved to be very robust as we did not get any
deadline miss on the performed experiments. Therefore, we can conclude that
some priority inversion, on the randomized work-stealing algorithm, does not
compromise the schedulability goals, and it even helps to reduce contention as
well as to keep system tracking information to a minimum.

In future work, we will consider an even more general parallel task model
that allows nested parallelism and conduct further experiments to evaluate more
metrics, such as worst-case response time and task latency, as well as to measure
the scalability of PAWS on machines with a greater number of cores.

Acknowledgements

This work was partially supported by National Funds through FCT (Portuguese Foun-

dation for Science and Technology) and by ERDF (European Regional Development

Fund) through COMPETE (Operational Programme ’Thematic Factors of Compet-

itiveness’), within REGAIN and VipCore projects, refs. FCOMP-01-0124-FEDER-

020447 and FCOMP-01-0124-FEDER-015006.

References

1. Lee, W.Y., Lee, H.: Optimal scheduling for real-time parallel tasks. Transactions
on Information and Systems E89-D (June 2006) 1962–1966

2. Collette, S., Cucu, L., Goossens, J.: Integrating job parallelism in real-time schedul-
ing theory. Information Processing Letters 106 (May 2008) 180–187

3. Kato, S., Ishikawa, Y.: Gang edf scheduling of parallel task systems. In: Proceedings
of the 30th IEEE Real-Time Systems Symposium. (December 2009) 459 –468

4. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: Proceedings of the 31st IEEE Real-Time Systems Sym-
posium. (December 2010) 259 –268

5. Saifullah, A., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling for
generalized parallel task models. In: Proceedings of the 32nd IEEE Real-Time
Systems Symposium, Vienna, Austria (December 2011) 217 –226

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5) (September 1999) 720–748

7. Saha, B., Adl-Tabatabai, A.R., Ghuloum, A., Rajagopalan, M., Hudson, R.L.,
Petersen, L., Menon, V., Murphy, B., Shpeisman, T., Sprangle, E., Rohillah, A.,
Carmean, D., Fang, J.: Enabling scalability and performance in a large scale cmp
environment. ACM SIGOPS Operating Systems Review 41(3) (June 2007) 73–86

8. Liu, C.L., Layland, J.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM 1(20) (1973) 40–61

9. ARB, O.: Openmp. Available at http://www.openmp.org/
10. Goossens, J., Funk, S., Baruah, S.: Priority-driven scheduling of periodic task

systems on multiprocessors. Real-Time Systems Journal 25 (September 2003)
187–205

11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys 43(4) (October 2011) 35:1–35:44

12. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 mul-
tithreaded language. ACM SIGPLAN Notices 33(5) (1998) 212–223

13. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande. (2000) 36–43

14. Taura, K., Tabata, K., Yonezawa, A.: Stackthreads/mp: integrating futures into
calling standards. ACM SIGPLAN Notices 34(8) (1999) 60–71

15. Neill, D., Wierman, A.: On the benefits of work stealing in shared-memory mul-
tiprocessors. Technical report, Department of Computer Science, Carnegie Mellon
University (2009)

16. Navarro, A., Asenjo, R., Tabik, S., Caşcaval, C.: Load balancing using work-
stealing for pipeline parallelism in emerging applications. In: Proceedings of the
23rd International Conference on Supercomputing, New York, NY, USA, ACM
(2009) 517–518

17. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the 10th annual ACM symposium on
Parallel algorithms and architectures, New York, NY, USA, ACM (1998) 119–129

18. Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized nonblocking work
stealing deque. Distributed Computing 18 (February 2006) 189–207

19. Blumofe, R.D., Leiserson, C.E.: Space-efficient scheduling of multithreaded com-
putations. In: Proceedings of the 25th ACM symposium on Theory of computing,
New York, NY, USA, ACM (1993) 362–371

20. Vrba, Z., Halvorsen, P., Griwodz, C.: A simple improvement of the work-stealing
scheduling algorithm. In: Proceedings of the 4th International Conference on Com-
plex, Intelligent and Software Intensive Systems. (February 2010) 925–930

21. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: a scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. In: Proceedings of the 24th IEEE
International Symposium on Parallel and Distributed Processing. (April 2010) 1–
12

22. Vrba, v., Espeland, H., Halvorsen, P., Griwodz, C.: Limits of work-stealing schedul-
ing. In: Proceedings of the 14th International Workshop on Job Scheduling Strate-
gies for Parallel Processing. (May 2009) 280–299

23. Ding, X., Wang, K., Gibbons, P.B., Zhang, X.: Bws: balanced work stealing for
time-sharing multicores. In: Proceedings of the 7th ACM European Conference on
Computer Systems, New York, NY, USA, ACM (2012) 365–378

24. Calandrino, J.M., Leontyev, H., Block, A., Devi, U.C., Anderson, J.H.: LitmusRT :
A testbed for empirically comparing real-time multiprocessor schedulers. In: Pro-
ceedings of the 27th IEEE International Real-Time Systems Symposium. (2006)
111–126

25. Faggioli, D., Trimarchi, M., Checconi, F.: An implementation of the earliest dead-
line first algorithm in linux. In: Proceedings of the 2009 ACM symposium on
Applied Computing. (March 2009) 1984–1989

26. Department, V.Y., Yodaiken, V.: The rtlinux manifesto. In: In Proc. of The 5th
Linux Expo. (1999)

