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Abstract 
Consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic 
tasks upon a multiprocessor platform in which there are two distinct kinds of processors. We propose a polynomial-time 
approximation scheme (PTAS) for this problem. It offers the following guarantee: for a given task set and a given 
platform, if there exists a feasible task-to-processor assignment, then given an input parameter, 'e', our PTAS succeeds, 
in polynomial time, in finding such a feasible task-to-processor assignment on a platform in which each processor is 
1+3e times faster. In the simulations, our PTAS outperforms the state-of-the-art PTAS and also for the vast majority of 
task sets, it requires significantly smaller processor speedup than (its upper bound of) 1+3e for successfully determining 
a feasible task-to-processor assignment. 
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Abstract—Consider the problem of determining a task-to-

processor assignment for a given collection of implicit-deadline

sporadic tasks upon a multiprocessor platform in which there

are two distinct kinds of processors. We propose a polynomial-

time approximation scheme (PTAS) for this problem. It offers the

following guarantee: for a given task set and a given platform,

if there exists a feasible task-to-processor assignment, then given

an input parameter, �, our PTAS succeeds, in polynomial time, in

finding such a feasible task-to-processor assignment on a platform

in which each processor is 1+3� times faster. In the simulations,

our PTAS outperforms the state-of-the-art PTAS [1] and also

for the vast majority of task sets, it requires significantly smaller

processor speedup than (its upper bound of) 1+3� for successfully

determining a feasible task-to-processor assignment.

I. INTRODUCTION

This paper addresses the problem of finding an assignment
of tasks to processors (also referred to as partitioning) for a
given set of implicit-deadline sporadic tasks (also referred to as
Liu and Layland (LL) tasks [2]) on a heterogeneous multipro-
cessor platform comprising processors of two unrelated types:
type-1 and type-2. We refer to such a computing platform as
two-type platform. Our interest in considering such a platform
model is motivated by the fact that many chip makers offer
chips having two types of processors [3]–[7].

In the partitioning problem, every task must be statically
assigned to a processor at design time and all its jobs must
execute on that processor at run time. The challenge is to find,
at design time, a task-to-processor assignment such that, at run
time, an uniprocessor scheduling algorithm running on each
processor meets all the deadlines. Scheduling the tasks to meet
deadlines on an uniprocessor platform is a well-understood
problem. One may use Earliest-Deadline First (EDF) [2],
for example. EDF is an optimal scheduling algorithm on
uniprocessor systems [2], [8], with the interpretation that it
always constructs a schedule in which all the deadlines are
met, if such a schedule exists. Therefore, assuming that an
optimal scheduling algorithm is used on each processor, the
challenging part is to find a partitioning for which there exists
a schedule that meets all the deadlines — such a partitioning
is said to be a feasible partitioning hereafter. Even in the
simpler case of identical multiprocessors, finding a feasible
partitioning is strongly NP-Complete [9]. Hence, this result
continues to hold for two-type platforms. In this work, we
propose a polynomial-time approximation scheme (PTAS), for
this problem which outperforms the state-of-the-art PTAS [1].

Definition 1 (PTAS). A PTAS takes an instance of an opti-
mization problem (for which exact solutions are intractable)

and a parameter � > 0 and, in polynomial time, produces a
solution that is within a factor f(�) of being optimal where
function f() is independent of the problem instance.

Definition 2 (Approximation ratio). An algorithm for solving
an optimization problem is said to have an approximation ratio
of A if for all instances of the problem, the algorithm produces
a solution that is within a factor of A from the optimal value.

Related work. The partitioning problem on heteroge-
neous multiprocessors has been studied in the past [10]–[14].
In [10]–[12], the authors proposed algorithms for the problem
of partitioning LL task sets on heterogeneous multiprocessors
with an approximation ratio of 2. All these approaches [10]–
[12] focused on generic heterogeneous multiprocessor plat-
forms with two or more processor types. Due to practical
relevance, Andersson et al. [13] considered the partitioning
problem on two-type platforms and proposed an algorithm,
FF-3C, and couple of its variants based on first-fit heuristic.
These had the same performance guarantee as the approaches
in [10]–[12] (i.e., requiring processors twice as fast, in the
worst-case) but can be implemented efficiently and exhibited
better average-case performance than those in [11], [12].

In a recent significant development, Wiese et al. [1] pro-
posed a PTAS (referred to as PTASLP as it uses “Linear
Programming”) for partitioning LL task system on limited
heterogeneous multiprocessors in which processors are of a
relatively small number (≥ 2) of distinct types. The PTASLP

provides the following guarantee: if there exists a feasible
partitioning of a given task set on a limited heterogeneous
multiprocessor platform then the PTASLP succeeds in par-
titioning the task set on a platform in which each processor
is 1+�

1−� times faster. This is theoretically a significant result
since PTASLP partitions the task set in polynomial time,
to any desired degree of accuracy. However, its practical
significance is severely limited as the algorithm has a very
high run-time complexity since it “heavily” relies on solving
the linear program. Even on a two-type platform, it has a high
run-time complexity which makes its implementation highly
inefficient (which is confirmed by the simulations). Therefore,
we propose a PTAS for two-type platforms which does not
rely on solving linear programs and hence offers a significantly
better time-complexity than PTASLP.

Contribution and significance of this work. We present
a PTAS for the problem of partitioning an LL task set on
a two-type platform which offers the following guarantee. If
there exists a feasible partitioning of a task set τ on a two-type



platform π then given an � > 0, PTAS succeeds, in polynomial
time, in finding a feasible partitioning of τ on π(1+3�) where
π(1+3�) is a two-type platform in which each processor is 1+3�
times faster than the corresponding processor in π.

We believe the significance of this work is as follows. For
the problem under consideration, our PTAS has superior per-
formance compared to state-of-the-art, PTASLP. Specifically,
compared to PTASLP, our PTAS has (i) a much better run-
time complexity and (ii) a competitive approximation ratio.
We evaluate the average-case performance of these algorithms
with randomly generated task sets. The evaluation is based on
(i) the processor speedup the algorithm needs, for a given task
set, so as to succeed, compared to an optimal algorithm and (ii)
the running time. Overall, our algorithm outperforms PTASLP

by requiring much smaller processor speedup and running
faster by orders of magnitude. Also, for the vast majority of
task sets, it requires significantly smaller processor speedup
than its upper bound of 1 + 3�.

II. SYSTEM MODEL

We consider the problem of partitioning a task set τ =

{τ1, τ2, . . . , τn} of n implicit-deadline sporadic tasks (LL
tasks) on a two-type heterogeneous multiprocessor platform
comprising m processors, of which m1 are of type-1 and m2

are of type-2. Each task τi is characterized by two parameters:
a worst-case execution time (WCET) and a period Ti. Each
task τi releases a (potentially infinite) sequence of jobs, with
the first job released at any time during the system execution
and subsequent jobs released at least Ti time units apart. Each
job released by a task τi has to complete its execution within
Ti time units from its release. We assume that an optimal
scheduling algorithm such as EDF is used on each processor.

On a two-type platform, the WCET of a task depends on the
processor type on which it executes. We denote by C1

i and C2
i

the WCET of task τi on processors of type-1 and type-2 and
we denote by ui

def
= C1

i /Ti and vi
def
= C2

i /Ti its utilizations
on type-1 and type-2 processors, respectively. A task τi that
cannot be executed on processors of type-1 (resp., type-2) is
modeled by setting ui = ∞ (resp., vi = ∞).

III. AN OVERVIEW OF OUR APPROACH

We now give an overview of our algorithm, PTASNF (NF
stands for “Next-Fit”). Our PTAS takes � > 0 as an input
parameter and outputs a feasible partitioning. Let us partition
the given task set τ into two subsets as follows:

τhvy = {τi | ui ≥ � or vi ≥ �} (1)
τlgt = τ \ τhvy = {τi | ui < � and vi < �} (2)

Intuitively, τhvy refers to “heavy” and τlgt to “light” tasks. Our
PTAS, has the following steps:

Step 1. We first approximate the utilizations, ui and vi, of
every task τi ∈ τhvy to some pre-computed values. The moti-
vation for doing this is twofold: by (i) restricting the number
of pre-computed values to a constant, we ensure polynomial
complexity for the algorithm and (ii) choosing these values
cleverly, we ensure the approximation ratio of the algorithm is
bounded. Then, we assign the tasks in τhvy to processors using

the algorithm Ahvy described in Section IV-A. In Section IV-E,
we show that after using Ahvy, the sum of the utilizations of
the tasks assigned on processors of type-1 (resp., type-2) does
not exceed (1 + �)×m1 (resp., (1 + �)×m2).

Step 2. Some tasks from τhvy (with ui ≥ � ∧ vi < �
or ui < � ∧ vi ≥ �) may remain unassigned after using
Ahvy. These unassigned tasks form the set, τint (“intermediate”
tasks). Now, Aint fractionally assigns the tasks (i.e., tasks can
be split between processors) with ui < � ∧ vi ≥ � (resp.,
ui ≥ � ∧ vi < �) to type-1 (resp., type-2) processors as
described in Section V-A. In Section V-B, we show that after
using Aint, the sum of the utilizations of all the tasks assigned
so far on processors of type-1 (resp., type-2) still does not
exceed (1 + �)×m1 (resp., (1 + �)×m2).

Step 3. Fractionally assign the tasks in τlgt to processors
using the algorithm Algt (which makes use of fractional knap-
sack property) described in Section VI-A. In Section VI-B, we
show that after using Algt, the sum of the utilizations of all the
tasks assigned so far on processors of type-1 (resp., type-2)
does not exceed (1 + 2�)×m1 (resp., (1 + 2�)×m2).

Step 4. Finally, those tasks from τint and τlgt that were
assigned fractionally by Aint and Algt are assigned integrally
using the algorithm Afract described in Section VII-A. In
Section VII-B, we show that after using Afract, the sum of
the utilizations of all the tasks assigned so far on processors
of type-1 (resp., type-2) does not exceed (1+3�)×m1 (resp.,
(1 + 3�) ×m2). Hence, we conclude that if τ has a feasible
partitioning on π then PTASNF succeeds in finding such a
feasible partitioning of τ on π(1+3�).

IV. ASSIGNING THE TASKS IN τhvy (STEP 1)
In this section, we describe the algorithm, Ahvy, for inte-

grally assigning (a subset of) the tasks in τhvy to processors
and also analyze its returned assignment.

A. Description of the algorithm Ahvy

It consists of three steps described in the next three sections:
Step 1.1. It defines a finite set S(�) of utilization values,

based on the value of the input parameter, �. Then, it computes
the “rounded-down utilizations” urd

i and vrdi of every task τi ∈
τ by rounding down ui and vi to one of the quantized values
in S(�). We will denote by τ rdhvy the set of tasks obtained by
rounding down the utilizations of the tasks of τhvy.

Step 1.2. It uses dynamic programming to determine, in
polynomial time, (i) all the subsets of τ rdhvy that can be
partitioned upon m1 processors of type-1 and (ii) all the
subsets that can be partitioned upon m2 processors of type-2.

Step 1.3. It exhaustively considers each pair of subsets such
that one subset can be partitioned on m1 processors of type-1
and the other subset can be partitioned on m2 processors of
type-2. Using the ordered pair of subsets under consideration,
it integrally assigns (a subset of the) tasks from τhvy to
processors (at least those with ui ≥ � and vi ≥ �).

B. Rounding-down the utilizations of the tasks (Step 1.1)
We compute the set S(�) of all real numbers ≤ 1 that are of

the form �(1 + �)k, for all integers k ≥ 0. Then, we compute



the rounded-down utilizations urd
i and vrdi of every task τi ∈ τ

by rounding down each of its utilizations (ui and vi) to the
nearest value present in the set S(�). If there is no such value
in S(�) (i.e., if ui or vi is < �) then the corresponding rounded-
down utilization is set to 0. For those tasks whose ui or vi

is set to ∞, we set their rounded-down utilizations to ∞ as
well. The definition of S(�) leads to the following property.

Property 1. For a task τi, if � ≤ ui ≤ 1 then there exists k

such that �(1 + �)k ≤ ui < �(1 + �)k+1 and thus
ui

urd
i

=
ui

�(1 + �)k
<

�(1 + �)k+1

�(1 + �)k
= (1 + �) (3)

The same holds for vi.

Therefore, if the utilizations of each task is reduced by this
maximal factor, it follows that any collection of tasks with
their reduced utilizations summing to ≤ 1 would have their
original utilizations summing to ≤ (1 + �).

Let us now determine the number L of distinct values in
S(�). Since only values �(1 + �)k ≤ 1 are included in S(�),
it holds that k log(1 + �) ≤ log(1/�) and thus, k ≤ log(1/�)

log(1+�) .

Then we conclude that L =

�
log(1/�)
log(1+�)

�
+ 1.

For each �, 0 ≤ � < L, we denote by X� (resp., Y�) the
number of tasks in τ rdhvy with urd

i s (resp., vrdi s) equal to �(1+
�)� ∈ S(�). The task set τ rdhvy can thus be represented by
2×L non-negative integers X0, X1, . . . , XL−1, Y0, Y1, YL−1.
Note that each X� and each Y� is no greater than |τhvy|.

C. Generating the feasible configurations (Step 1.2)
The rounding down of the utilizations described in the

previous section ensures that the utilizations of the tasks in
τhvy may only take one of the values in S(�), providing
the set τ rdhvy. In this section, using dynamic programming,
we determine, in polynomial time, all the subsets of τ rdhvy
that can be partitioned upon m1 processors of type-1 (resp.,
m2 processors of type-2). Once all the feasible subsets (also
referred to as feasible configurations) are determined, we use
this information to assign a subset of tasks from τhvy on type-1
and type-2 processors (described in Section IV-D).

Definition 3 (feasible configurations). Consider any L-tuple
T = (x0, x1, . . . , xL−1) where x� ≥ 0, ∀� ∈ [0, L − 1], and
let τ(T ) denote a task set containing exactly x� tasks τi of
utilization ui = �(1+ �)� for each �. The L-tuple T is said to
be a feasible configuration on m1 processors of type-1 if and
only if there exists a feasible partitioning for the corresponding
task set τ(T ) on m1 processors of type-1. Analogously, we
define an L-tuple (y0, y1, . . . , yL−1) with vi values that is a
feasible configuration on m2 processors of type-2.

The algorithm Ahvy uses the same approach as the
one presented in [14] to determine all the configurations
(x0, x1, . . . , xL−1) of tasks in τ rdhvy (resp., (y0, y1, . . . , yL−1)

of tasks in τ rdhvy) that are feasible on m1 processors of type-1
(resp., m2 processors of type-2), in which x� ≤ X� ≤ |τhvy|
(resp., y� ≤ Y� ≤ |τhvy|) for each �, 0 ≤ � < L. This
approach [14] is summarized below. As there are no more than
ΠL−1

�=0 (1 + X�) ≤ ΠL−1
�=0 (1 + |τhvy|) = O(nL) such feasible

configurations on type-1 processors (and the same holds for
type-2 processors) and since L is a constant for a given value
of �, the time to determine all the feasible configurations is
polynomial in n.
Summary of the approach in [14]: It constructs two separate
tables: one table each for storing the information about all the
configurations on processors of each type. The table for type-1
processors has m1 rows and ΠL−1

�=0 (1 + X�) columns. Each
column corresponds to a different configuration and each cell
has a value ∈ {yes, no}. A cell in the i’th row and j’th column
is a “yes” if the corresponding configuration is feasible on i

processors of type-1. This table is filled row by row starting
with the first row. Filling in the first row is straightforward
for all the configurations: it is a “yes” if the corresponding
configuration, say (x0, x1, . . . , xL−1), is feasible on a single
processor, i.e., if

�L−1
�=0 x� × �(1 + �)� ≤ 1, it is a “no”

otherwise. The i’th row is filled in by using the entries of the
(i−1)’th row. Specifically, for the configuration corresponding
to the j’th column, say (x0, x1, . . . , xL−1), the cell at the i’th
row is a “yes” if and only if there exists two configurations
(x�

0, x
�
1, . . . , x

�
L−1) and (x��

0 , x
��
1 , . . . , x

��
L−1) such that

1) (x�
0, x

�
1, . . . , x

�
L−1) is a feasible configuration on (i−1)

processors of type-1;
2) (x��

0 , x
��
1 , . . . , x

��
L−1) is a feasible configuration on one

processor of type-1; and
3) x� = x�

� + x��
� , for all 0 ≤ � < L.

For each cell in the j’th row, there are polynomially many
possible candidates for the role of (x�

0, x
�
1, . . . , x

�
L−1); hence,

each cell in the j’th row can be filled in polynomial time [14].
Analogously, the second table for the configurations on type-2
processors is constructed.

D. Determining the partitioning (Step 1.3)
Using the two configuration tables that were constructed

in the previous step, we now determine a partitioning for
a subset of the heavy tasks. The main idea is as follows.
Suppose that the task set τ can indeed be partitioned on
the given platform and let Hfeas denote (one of) the feasible
partitioning. For each �, 0 ≤ � < L, let xfeas

� denote the
number of tasks τi satisfying �(1 + �)� ≤ ui < �(1 + �)�+1

that are assigned to type-1 processors in Hfeas. Since Hfeas is a
feasible partitioning, the configuration (xfeas

0 , xfeas
1 , . . . , xfeas

L−1)

must appear in the table constructed (in the previous step)
for type-1 processors and the cell at the m1’th row of the
corresponding column must contain “yes”. Analogously, the
configuration (yfeas0 , yfeas1 , . . . , yfeasL−1) must appear in the table
constructed for type-2 processors and the cell at the m2’th row
of the corresponding column must contain “yes”. However,
since we do not know which of the feasible configurations in
our tables correspond to Hfeas, we consider every ordered pair
of configurations that are feasible on m1 and m2 processors
of type-1 and type-2 respectively. Since there are only poly-
nomially (i.e., O(nL)) many distinct feasible configurations in
each table, it follows that there are at most polynomially many
such ordered pairs of feasible configurations to consider.

For each considered ordered pair of configurations, by
assuming that they are the ones corresponding to Hfeas, we



attempt to construct a similar task-to-processor assignment for
the tasks in τhvy as that of Hfeas. The assignment obtained
will be similar to Hfeas in the following sense: although the
tasks assigned in both the assignments may not be the same,
it holds that (as we show later), the sum of utilizations of the
tasks assigned by our algorithm on each processor type does
not exceed that of Hfeas by a factor of 1 + �.

Let {(x0, x1, . . . , xL−1), (y0, y1, . . . , yL−1)} denote the
currently considered ordered pair of feasible configurations
on m1 and m2 processors of type-1 and type-2, respectively.
The algorithm Ahvy to determine the corresponding task-to-
processor assignment of tasks from τhvy is as follows.
Step 1.3.1. For each �, 0 ≤ � ≤ L − 1, Ahvy assigns exactly
x� tasks τi satisfying urd

i = �(1 + �)� to type-1 processors.
Specifically, for each �,

1) If there are fewer than x� such tasks in τhvy, then Ahvy

declares failure with respect to this particular ordered
pair of feasible configurations, and moves on to the next
ordered pair of feasible configurations.

2) If there are exactly x� such tasks then Ahvy assigns all
of them to type-1 processors.

3) If there are more than x� such tasks, it assigns x� of them
to type-1 processors by favoring those with larger vi.

Step 1.3.2. After assigning tasks to processors of type-1, Ahvy

assigns the remaining tasks to processors of type-2 as follows.
For each �, starting with � = L− 1 and repeatedly decreasing
� by one until � equals 0,

1) If there are less than y� unassigned tasks τi satisfying
vrdi = �(1+ �)� (say, n1 tasks), then Ahvy assigns these
n1 tasks to type-2 processors. Then, Ahvy assigns y�−n1

other (unassigned) tasks τj with smaller utilization on
type-2 processors (i.e., vrdj < �(1 + �)�), by favoring
those with larger vj and within these tasks that are
favored, those with larger ui are favored.

2) If there are exactly y� unassigned tasks τi satisfying
vrdi = �(1 + �)� then all of them are assigned to type-2
processors.

3) If there are more than y� unassigned tasks τi satisfying
both (i) vrdi = �(1 + �)� and (ii) urd

i > 0, then Ahvy

declares failure with respect to this particular ordered
pair of feasible configurations and moves on to the next
ordered pair of feasible configurations.

4) If there are more than y� unassigned tasks τi satisfying
vrdi = �(1+ �)� but not more than y� of these tasks have
urd
i > 0, then Ahvy assigns y� of these tasks by favoring

those with larger ui.
Step 1.3.3. If any task τi remains unassigned with both
urd
i > 0 and vrdi > 0, Ahvy declares failure with respect

to this particular ordered pair of feasible configurations, and
moves on to the next ordered pair of feasible configurations.

If Ahvy did not declare failure in any of the above steps,
implying that all the tasks with ui ≥ � ∧ vi ≥ � are assigned
(and may be few other tasks from τhvy with ui ≥ � ∧ vi < �
or ui < � ∧ vi ≥ �) then algorithm Aint is called with
the ordered pair of feasible configurations under consideration.
This algorithm, Aint, is presented in Section V.

E. Assignment analysis

Let Hhvy denote the assignment of the heavy tasks returned
by Ahvy. In this section, we show that in Hhvy, the subset of
tasks assigned to each processor consume no more than (1+�)
of the capacity of that processor.

Definition 4 (The subsets Γ1
hvy and Γ2

hvy). We denote by
Γ1
hvy,Γ

2
hvy ⊆ τhvy the subsets of tasks assigned to the

processors of type-1 (resp., type-2) in the assignment Hhvy

returned by the algorithm, Ahvy.

Note: Hereafter, we use the notation τ for the subsets of tasks
that we explicitly define (like τhvy and τlgt, for example), Γ
for the subsets of tasks returned by the different steps of our
PTAS and Φ for the subsets of tasks assigned in Hfeas.

We know that the ordered pair of feasible configura-
tions {(xfeas

0 , xfeas
1 , . . . , xfeas

L−1), (y
feas
0 , yfeas1 , . . . , yfeasL−1)} corre-

sponding to the feasible partitioning Hfeas must be present in
the tables constructed in Step 1.2 (in Section IV-C). Therefore,
this particular ordered pair of feasible configurations (denoted
by P feas hereafter) will come to be considered by Ahvy.

Lemma 1. If P feas is the ordered pair of feasible config-
urations currently under consideration by Ahvy, then Ahvy

successfully terminates (i.e., without declaring failure) and it
holds that every task τi ∈ Γ1

hvy can be 1:1 mapped to exactly
one task τk that is assigned to a type-1 processor in Hfeas

such that ui ≤ (1+�)uk. An analogous property holds for the
tasks in Γ2

hvy (such that vi ≤ (1 + �)vk).

Proof: First, let us focus on the tasks in Γ1
hvy. In

Step 1.3.1, for each � ∈ [0, L − 1], it is straightforward
(from the fact that we consider the ordered pair P feas) to see
that Ahvy successfully assigns exactly xfeas

� tasks τi satisfying
�(1 + �)� ≤ ui < �(1 + �)�+1 to type-1 processors (through
either case 1.3.1.2 or 1.3.1.3). While these may not be the
same tasks as those that are assigned to these processors in
Hfeas, the utilization of each task does not exceed that of the
corresponding task assigned in Hfeas by more than a factor of
(1 + �). Hence the lemma holds for the heavy tasks in Γ1

hvy.
Now, let us focus on Step 1.3.2, i.e., on the tasks in Γ2

hvy.
If Ahvy terminates without declaring failure then it means that
for each � ∈ [0, L−1], Ahvy went through either case 1.3.2.1,
1.3.2.2 or 1.3.2.4 and it is trivial to see that the lemma holds for
all these cases. Indeed, for each task τi with �(1+ �)� ≤ vi <

�(1 + �)�+1 that is assigned to processors of type-2 through
one of these cases, there is a task, say τk, also with �(1+�)� ≤
vk < �(1+�)�+1 which is also assigned to processors of type-2
in Hfeas (since we consider the ordered pair P feas).

Since we have shown that the lemma holds as long as
Ahvy does not declare failure, we now show that Ahvy cannot
fail while considering the ordered pair P feas of feasible
configurations. For a failure to occur, it is necessary for
Ahvy to go through case 1.3.2.3, i.e., there must be some
� ∈ [0, L−1] such that there are strictly more than yfeas� tasks τi
yet unassigned, that satisfy both vrdi = �(1+ �)� and urd

i > 0.
Let us consider the largest such � and denote by n1 > yfeas� the
number of tasks satisfying both the aforementioned conditions.



Recall that in Hfeas, yfeas� tasks τi with vrdi = �(1 + �)�

are assigned to type-2 processors. Therefore, it must be the
case that in Hfeas, some of the n1 − yfeas� “additional” tasks
were assigned to type-1 processors. Let τj denote one of
these additional tasks, thus satisfying vrdj = �(1 + �)� and
urd
j = �(1 + �)x > 0, for some x ∈ [0, L − 1]. Since

this task τj has not been assigned yet by Ahvy, we know
that at the time Ahvy was assigning tasks in Step 1.3.1 with
� = x, it went through case 1.3.1.3 and instead of choosing
to assign τj , it chose to assign another task τk �= τj , also
with urd

k = �(1 + �)x, that is assigned to type-2 processors
in Hfeas. Furthermore, according to case 1.3.1.3, it must hold
that vrdk ≥ vrdj = �(1 + �)�. Now, two cases may arise.

1) If vrdk = vrdj = �(1+�)� then τk is one of the yfeas� tasks
assigned to type-2 processors in Hfeas and, since Ahvy

assigned τk to type-1 processors, there is a free “slot” on
type-2 processors in which τj can fit. This contradicts
our assumption that τj is unassigned at this time instant.

2) If vrdk > vrdj = �(1 + �)� then τk is one of the yfeasr
tasks (with r > �) assigned to type-2 processors in
Hfeas and, since Ahvy assigned τk to type-1 processors,
there was a free slot on type-2 processors in Step 1.3.2,
when � was equal to r. At this moment, when � = r,
Ahvy necessarily went through case 1.3.2.1 and since
this case allows tasks with smaller utilization on type-
2 processors to be accommodated in unused slots that
were reserved for tasks with larger utilization, τj must
have been assigned at that moment. This contradicts our
assumption that τj is unassigned at this time instant.

Hence, we can conclude that Ahvy does not declare failure
for the ordered pair P feas of feasible configurations and the
lemma holds for every task in Γ1

hvy ∪ Γ2
hvy.

Definition 5 (The corresponding sets Φ1
hvy and Φ2

hvy). We
define by Φ1

hvy the set of tasks assigned to type-1 processors
in Hfeas such that each task τk ∈ Φ1

hvy can be mapped
to exactly one task τi ∈ Γ1

hvy (bijective relation, implying��Φ1
hvy

�� =
��Γ1

hvy

��) and for which ui ≤ (1 + �)uk. The set Φ2
hvy

is defined analogously (for which vi ≤ (1 + �)vk)1.
Lemma 2. After assigning the tasks in τhvy, we have

�
τi∈Γ1

hvy
ui ≤ (1 + �)m1 (4)

and
�

τi∈Γ2
hvy

vi ≤ (1 + �)m2 (5)

Proof: We show only the proof of Expression (4), as the
proof of Expression (5) is quite similar. For both cases, the
proof is a direct consequence of Lemma 1. We know from
Lemma 1 and Definition 5 that there exists a 1:1 mapping
between every task τi in Γ1

hvy and every task τk ∈ Φ1
hvy such

that ui ≤ (1 + �)uk. Therefore, since |Φ1
hvy| = |Γ1

hvy| (from
the bijective relation between the two sets), we have:�

τi ∈ Γ1
hvy

ui ≤ (1 + �)
�

τk ∈ Φ1
hvy

uk (6)

Finally, we know from the feasibility of Hfeas that�
k∈Φ1

hvy
uk ≤ m1 and hence

�
τi ∈ Γ1

hvy
ui ≤ (1 + �)m1.

1Note that Lemma 1 showed that such task sets Φ1
hvy and Φ2

hvy exist.

V. ASSIGNING THE TASKS IN τint (STEP 2)
The tasks from τhvy that were not assigned by algorithm

Ahvy form the set τint, i.e., τint = τhvy \ {Γ1
hvy ∪ Γ2

hvy}. Let
us partition τint into two subsets τ1int and τ2int as follows:

τ1int = {τi ∈ τint | ui < � and vi ≥ �} (7)
τ2int = {τi ∈ τint | ui ≥ � and vi < �} (8)

A. The description of the algorithm Aint

The algorithm Aint to assign the tasks in τint is as follows:
1) Assuming a platform, π(1+�), assign all the tasks in

τ1int to type-1 processors using the wrap-around tech-
nique. This technique works as follows. Take the first
processor of type-1 and assign as many of the tasks as
possible from τ1int “integrally” onto that processor. When
a task fails to be assigned integrally, assign that task
“fractionally” such that the current processor is filled
completely and the remaining fraction is assigned to the
next processor of type-1, continue this procedure until
all the tasks from τ1int are assigned to type-1 processors.

2) Analogously, assign all the tasks in τ2int to type-2 pro-
cessors using the wrap-around technique.

B. Assignment analysis
We now show that for a task set τ that is feasible on a

platform π, Aint always succeeds in assigning all the tasks in
τ1int to type-1 processors on a platform π(1+�). That is, if Γ1

int
and Γ2

int denote the set of tasks assigned to type-1 and type-2
processors by Aint, we have Γ1

int = τ1int and Γ2
int = τ2int.

In the following lemma, we make use of the fact that the two
sets of tasks Γ1

hvy and Γ2
hvy have been obtained by algorithm

Ahvy, using the ordered pair P feas of feasible configurations.

Lemma 3. After assigning all the tasks in τint using the
ordered pair of feasible configuration , we have:

�
τi∈Γ1

hvy
ui +

�
τi∈τ1

int
ui ≤ (1 + �)m1 (9)

and
�

τi∈Γ2
hvy

vi +
�

τi∈τ2
int

vi ≤ (1 + �)m2 (10)

Proof: In the feasible assignment Hfeas,
��τ1

int

�� number of
tasks with ui < � and vi ≥ � must have been assigned to
type-1 processors. This is a consequence of the fact that P feas

contains exactly the same number of tasks with utilization
≥ � on the processor that they are assigned to, as in Hfeas.
Let Φ1

int denote the set of tasks with ui < � and vi ≥ � that
are assigned to type-1 processors in Hfeas. Since Hfeas is a
feasible assignment, it holds that,

�

τi ∈ Φ1
hvy

ui +
�

τi ∈ Φ1
int

ui ≤ m1 (11)

Since the number of tasks with ui < � and vi ≥ �
that have been assigned to type-1 processors is same in
both Hfeas and the assignment computed by our algorithm,
we have

��τ1
int

�� =
��Φ1

int

�� =
��Γ1

int

��. Here, it is worth recalling
Step 1.3.1.3 and Step 1.3.2.4 of algorithm Ahvy. In these
steps, while assigning the tasks to processors of type-1 (resp.,
type-2), when Ahvy has to choose few tasks to assign from
the available set of tasks, it always chooses those tasks that



have a larger utilization on type-2 (resp., type-1) processors
(leaving “easier” tasks for Aint to assign). Now coming back
to algorithm Aint, although the tasks (with ui < � and vi ≥ �)
assigned by Aint to type-1 processors may not be the same
as those assigned by Hfeas, we can infer (using the rules of
Step 1.3.1.3 and Step 1.3.2.1 of Ahvy) that:

�

τi ∈ τ1
int

ui ≤
�

τi ∈ Φ1
int

ui (12)

Applying Inequality (6) and (12) on (11) and then performing
some arithmetic manipulations (see [15] for details), we get:

�

i ∈ Γ1
hvy

ui +
�

τi ∈ τ1
int

ui ≤ (1 + �)×m1

Using similar reasoning as above, we can show that Expres-
sion (10) holds as well. Hence the proof.

Corollary 1. After assigning the tasks in τint, we have:
�

τi ∈ Γ1
hvy ∪ Γ1

int

ui ≤ (1 + �)
�

τi ∈ Φ1
hvy ∪ Φ1

int

ui (13)

and
�

τi ∈ Γ2
hvy ∪ Γ2

int

vi ≤ (1 + �)
�

τi ∈ Φ2
hvy ∪ Φ2

int

vi (14)

Proof: Inequality (13) follows from Expressions (6)
and (12) (since Γ1

int = τ1int) and Inequality (14) can be inferred
from analogous expressions for type-2 processors.

VI. ASSIGNING THE TASKS IN τlgt (STEP 3)
Let us partition τlgt into τ1lgt and τ2lgt as follows:

τ1lgt = {τi ∈ τlgt | ui ≤ vi} (15)

τ2lgt = {τi ∈ τlgt | ui > vi} (16)

A. The description of the algorithm Algt

The pseudo-code for assigning tasks in τlgt is shown in
Algorithm 1 (which uses the fract-next-fit subroutine
shown in Algorithm 2). The intuition behind the design of this
algorithm is that, assuming a platform, π(1+2�), first we assign
tasks to processors on which they have a smaller utilization
(lines 1 and 2). Then, if there are remaining tasks, these have
to be assigned to processors on which they have a larger
utilizations (lines 7 and 15).

B. Assignment analysis
First, we present some useful result in Lemma 4 obtained

by relating the problem under consideration to the fractional
knapsack problem (see Chapter 16.2 in [16]). This result will
be used in Lemma 5. The relation between the fractional
knapsack problem and the problem under consideration was
explored in [13]. Lemma 4 is an adaptation of Lemma 5
in [13]. Hence, we only state the lemma here. The detailed de-
scription of the fractional knapsack problem, its relation with

2While assigning tasks to type-1 processors, if a task cannot be assigned
integrally on m1’th processor (the last processor of type-1), then assign a
fraction of that task such that m1’th processor is fully utilized and assign the
rest of the fraction to m2’th processor (the last processor of type-2). This
task is denoted by τf later in the proofs — in Section VII. This is not shown
in the pseudo-code explicitly for ease of representation.

Algorithm 1: Algt: An algorithm to assign τlgt tasks
1 Γ1

lgt1
:= fract-next-fit(τ1lgt,m1)

2 Γ2
lgt2

:= fract-next-fit(τ2lgt,m2)

3 if (Γ1
lgt1

= τ1lgt ∧ Γ2
lgt2

= τ2lgt) then declare SUCCESS
4 if (Γ1

lgt1
�= τ1lgt ∧ Γ2

lgt2
�= τ2lgt) then declare FAILURE

5 if (Γ1
lgt1

�= τ1lgt ∧ Γ2
lgt2

= τ2lgt) then

6 Γ2
lgt1

:= τ1lgt \ Γ1
lgt1

7 if (fract-next-fit(Γ2
lgt1

,m2) = Γ2
lgt1

) then

8 declare SUCCESS
9 else

10 declare FAILURE
11 end

12 end

13 if (Γ1
lgt1

= τ1lgt ∧ Γ2
lgt2

�= τ2lgt) then

14 Γ1
lgt2

:= τ2lgt \ Γ2
lgt2

15 if (fract-next-fit(Γ1
lgt2

,m1) = Γ1
lgt2

) then

16 declare SUCCESS
17 else

18 declare FAILURE
19 end

20 end

Algorithm 2: fract-next-fit(ts, ps): Next-fit bin-packing
with fractional assignment of tasks

Input : ts: set of tasks; ps: set of processors
Output: set of tasks that were assigned successfully

1 If ps consists of type-1 (resp., type-2) processors, then sort ts by
decreasing vi/ui (resp., increasing vi/ui). Use any order for
processors ps, but maintain it during the execution of fract-next-fit.

2 Assign tasks using wrap-around technique2.
3 Return the set of successfully assigned tasks.

the problem under consideration and the proof of Lemma 4
can be found in Appendix A in [15].

Lemma 4. Consider a task set T and a two-type platform
conforming to the system model of Section II. Let us partition
T into two disjoint subsets, T 1 and T 2 as follows:

T = T 1 ∪ T 2 (17)
∀τi ∈ T 1 : ui ≤ vi (18)
∀τi ∈ T 2 : ui > vi (19)

Let x denote a real number such that 0 ≤ x ≤ m1.
Let A1 denote a subset of T 1 such that

�
τi∈A1 ui > m1−x

and for every pair of tasks τi ∈ A1 and τj ∈ T 1 \A1 it holds
that vi

ui
− 1 ≥ vj

uj
− 1.

Let A2 denote T 1 \A1.
Let B1 denote a subset of T 1 such that

�
τi∈B1 ui ≤ m1−x.

Let B2 denote τ \B1. It then holds that:
�

τi ∈ A1

ui +
�

τi ∈ A2

vi +
�

τi ∈ T2

vi ≤
�

τi ∈ B1

ui +
�

τi ∈ B2

vi (20)

Lemma 5. Let Γ1
lgt and Γ2

lgt be the subset of tasks from τlgt
that are assigned by Algt to type-1 and type-2 processors,
respectively. After assigning all the tasks from τlgt, we have:

�
τi∈Γ1

hvy
ui +

�
τi∈Γ1

int
ui +

�
τi∈Γ1

lgt
ui ≤ (1 + 2�)m1 (21)

and
�

τi∈Γ2
hvy

vi +
�

τi∈Γ2
int

vi +
�

τi∈Γ2
lgt

vi ≤ (1 + 2�)m2 (22)



where

1) all the tasks in τhvy \ τint are assigned integrally
2) some tasks in τint are assigned fractionally and the rest

are assigned integrally
3) some tasks in τlgt are assigned fractionally and the rest

are assigned integrally

Proof: Informally, the claim can be written as follows: if
there exists a feasible partitioning for a task set τ on a two-type
platform π then algorithms Ahvy, Aint and Algt succeed in
assigning the tasks in τ on a platform π(1+2�), with some tasks
assigned fractionally. We already know from Lemma 3 that
after assigning the tasks in τhvy\τint and τint using algorithms
Ahvy and Aint, respectively, the sum of the utilizations of the
tasks assigned on type-1 (resp., type-2) processors does not
exceed (1 + �)m1 (resp., (1 + �)m2).

Therefore, we need to show that after assigning the tasks
in τlgt by using algorithm Algt, the sum of the utilizations
of the tasks assigned on processors of type-1 (resp., type-2)
does not exceed (1+2�)m1 (resp., (1+2�)m2). An equivalent
claim is that, after assigning tasks in τhvy \ τint and τint by
using algorithms Ahvy and Aint respectively, if Algt fails to
assign the tasks of τlgt (with fractional assignment of tasks
allowed) on platform π(1+2�) then there does not exist a
feasible partitioning of the tasks in τ on platform π. Here,
we prove this equivalent claim by contradiction. Assume that
there exists a feasible assignment Hfeas of τ on π but Algt

fails to assign the tasks in τlgt on π(1+2�) (after Ahvy and
Aint successfully assigned the tasks of τhvy \ τint and τint).
Since Algt failed to assign these tasks, it must have declared
FAILURE and we explore all possibilities for this to occur:
Failure on line 4 in Algorithm 1: From the case, we have
Γ1
lgt1 ⊂ τ1lgt and Γ2

lgt2 ⊂ τ2lgt. Therefore, when executing line 1
in Algt there was a task τf1 ∈ τ1lgt \ Γ

1
lgt1 which could not be

assigned to type-1 processors and similarly, when executing
line 2 in Algt there was a task τf2 ∈ τ2lgt \ Γ

2
lgt2 which could

not be assigned to type-2 processors. Hence, we have:

�
p∈P1 U [p] + uf1 > m1(1 + 2�) = m1 + 2m1� (23)

and
�

p∈P2 U [p] + vf2 > m2(1 + 2�) = m2 + 2m2� (24)

where P 1 and P 2 denote the set of type-1 and type-2 proces-
sors respectively and U [p] denotes the sum of the utilization
of the tasks assigned on processor p.

Since τf1 ∈ τ1lgt
(15)⇒ τf1 ∈ τlgt

(2)⇒ uf1 < � ≤ m1� and
analogously since τf2 ∈ τ2lgt, we know that vf2 < � ≤ m2�.
Using these on Expressions (23) and (24), we get

�
p∈P1 U [p] > m1(1 + �) (25)

and
�

p∈P2 U [p] > m2(1 + �) (26)

Observe that (i) the set of tasks that has been assigned on
type-1 processors so far is Γ1

hvy ∪ Γ1
int and a strict subset of

τ1lgt, and (ii) the set of tasks assigned on type-2 processors is
Γ2
hvy∪Γ2

int and a strict subset of τ2lgt. Therefore, it holds from
Expression (25) and (26) that:

�

τi∈Γ1
hvy∪Γ1

int

ui +
�

τi∈τ1
lgt

ui > m1(1 + �) (27)

�

τi∈Γ2
hvy∪Γ2

int

vi +
�

τi∈τ2
lgt

vi > m2(1 + �) (28)

Applying Expression (13) and (14) on Expression (27)
and (28) respectively, performing some arithmetic manipu-
lations and summing the resulting expressions (see [15] for
details) yields:

�

τi∈Φ1
hvy∪Φ1

int∪τ1
lgt

ui +
�

τi∈Φ2
hvy∪Φ2

int∪τ2
lgt

vi > m1 +m2 (29)

It is trivial to see that assigning all the tasks of τ1lgt and τ2lgt
to type-1 and type-2 processors, respectively (as in the above
expression), requires the minimum processing capacity. Hence,
Expression (29) continues to hold for any other assignment
of these tasks, implying that Hfeas cannot be a feasible
assignment, which leads to a contradiction.
Failure on line 10 in Algorithm 1: From the case, we have
Γ1
lgt1 ⊂ τ1lgt and Γ2

lgt2 = τ2lgt. Therefore, when executing line 7
in Algt there was a task τf ∈ τ1lgt \Γ

1
lgt1 which was attempted

on type-2 processors but failed. Hence, we have:�

p∈P2

U [p] + vf > m2(1 + 2�) (30)

We know that the tasks assigned to type-2 processors at this
stage are Γ2

hvy ∪ Γ2
int ∪ Γ2

lgt2 and a strict subset of tasks from
Γ2
lgt1 (line 7). Therefore, we can rewrite Expression (30) as:

�

τi∈Γ2
hvy∪Γ2

int∪Γ2
lgt2

∪Γ2
lgt1

vi > m2(1 + 2�)− vf (31)

Since τf ∈ τ1lgt \ Γ1
lgt1 , we know that vf < � ≤ m2�. Using

this on Expression (31), then applying Expression (14) and
finally performing some arithmetic manipulations (see [15] for
details) gives us:

�

τi∈Φ2
hvy∪Φ2

int

vi +
�

τi∈Γ2
lgt2

∪Γ2
lgt1

vi > m2 (32)

We also know that, when Algt executed line 1 (where it
performed fract-next-fit), there must have been a task τf1 ∈
τ1lgt\Γ

1
lgt1 which was attempted on type-1 processors but failed

to be assigned. Note that this task τf1 may be the same as τf
mentioned above or it may be different. Because it was not
possible to assign τf1 on type-1 processors, we know that:

�

p∈P1

U [p] + uf1 > m1(1 + 2�) (33)

We know that the tasks assigned to type-1 processors are
Γ1
hvy ∪ Γ1

int ∪ Γ1
lgt1 and thus, we rewrite Expression (33) as:
�

τi∈Γ1
hvy∪Γ1

int∪Γ1
lgt1

ui > m1(1 + 2�)− uf1 (34)

Since τf1 ∈ τ1lgt \ Γ1
lgt1 , we have uf1 < � ≤ 2�. Using

this on Expression (34), then applying Expression (13) and
finally performing some arithmetic manipulations (see [15] for
details) gives us:



�

τi∈Φ1
hvy∪Φ1

int

ui +
�

τi∈Γ1
lgt1

ui > m1 (35)

Finally, Expression (35) can be rewritten as:

�

τi∈Γ1
lgt1

ui > m1 −




�

τi∈Φ1
hvy

ui +
�

τi∈Φ1
int

ui



 (36)

Let us now discuss the feasible assignment Hfeas. Let Φ1
lgt

denote the set of tasks assigned to type-1 processors in Hfeas,
excluding those in Φ1

hvy ∪Φ1
int. Similarly, let Φ2

lgt denote the
set of tasks assigned to type-2 processors in Hfeas, excluding
those in Φ2

hvy ∪Φ2
int. Since, by assumption, Hfeas succeeds in

assigning all the tasks in τ to the processors, it holds that:
�

τi∈Φ1
hvy

ui +
�

τi∈Φ1
int

ui +
�

τi∈Φ1
lgt

ui ≤ m1 (37)

and
�

τi∈Φ2
hvy

vi +
�

τi∈Φ2
int

vi +
�

τi∈Φ2
lgt

vi ≤ m2 (38)

Expression (37) can be rewritten as:

�

τi∈Φ1
lgt

ui ≤ m1 −




�

τi∈Φ1
hvy

ui +
�

τi∈Φ1
int

ui



 (39)

We can now reason about the inequalities we obtained about
the assignment Hfeas and the one constructed by Algt. We can
see that Expressions (36) and (39), with x =

�
τi∈Φ1

hvy
ui +�

τi∈Φ1
int

ui, ensure that the assumptions of Lemma 4 are true,
given the ordering of tasks in τ1lgt during assignment over type-
1 processors (line 1 in Algorithm 2), which ensures that ∀τi ∈
Γ1
lgt1 , ∀τj ∈ Γ2

lgt1 : vi
ui

≥ vj
uj

. By applying Lemma 4 with the
following input:

• T = τ \ (Φ1
hvy ∪ Φ2

hvy ∪ Φ1
int ∪ Φ2

int),
• T 1 = τ1lgt, T

2 = τ2lgt = Γ2
lgt2 ,

• x =
�

τi∈Φ1
hvy

ui +
�

τi∈Φ1
int

ui,

• A1 is Γ1
lgt1 ; (36)⇒

�
τi∈A1 ui > m1 − x,

• A2 is Γ2
lgt1 ; Note that for every pair of tasks τi ∈ A1 and

τj ∈ A2 it holds that vi
ui

− 1 ≥ vj

uj
− 1,

• B1 is Φ1
lgt;

(39)⇒
�

τi∈B1 ui ≤ m1 − x,
• B2 is Φ2

lgt.
we get:

�

τi∈Γ1
lgt1

ui +
�

τi∈Γ2
lgt1

vi +
�

τi∈Γ2
lgt2

vi ≤
�

τi∈Φ1
lgt

ui +
�

τi∈Φ2
lgt

vi

Adding
�

τi∈Φ1
hvy∪Φ1

int
ui +

�
τi∈Φ2

hvy∪Φ2
int

vi to both the sides
in the above inequality, then applying Expressions (37)
and (38) to the right-hand side and then applying Expres-
sions (32) and (35) to the left-hand side yields:

m1 +m2 < m1 +m2

This is a contradiction.
Failure on line 18 in Algorithm 1: A contradiction results

— proof analogous to the previous case.
We showed that all the cases where Algt declares FAILURE

lead to a contradiction. Hence, the lemma holds.

VII. INTEGRAL ASSIGNMENT OF τint AND τlgt (STEP 4)
We now discuss how to integrally assign the tasks from τint

and τlgt that were fractionally assigned by algorithms Aint

and Algt, respectively. We also show that, if there is a feasible
partitioning of the given task set on a given two-type platform
then our PTAS succeeds in finding such a feasible partitioning
on a platform in which each processor is 1 + 3� times faster.

A. The description of the algorithm Afract

The algorithm, Afract, works as follows:
1) copy the assignment (made by Ahvy, Aint and Algt) onto

a faster platform π(1+3�)

2) on this platform, π(1+3�), assign a task split between any
two processors p1 and p1 + 1 of type-1 entirely on to
processor p1, where 1 ≤ p1 < m1; similarly, assign a
task split between any two processors p2 and p2 + 1 of
type-2 entirely on to processor p2, where 1 ≤ p2 < m2.

B. Assignment analysis
Theorem 1. If there exists a feasible partitioning of τ on π
then our PTAS algorithm, PTASNF, (which uses Ahvy, Aint,
Algt and Afract in sequence) succeeds in finding a feasible
partitioning of τ on π(1+3�).

Proof: We know from Lemma 5 that if there exists a
feasible partitioning of τ on π then the three algorithms Ahvy,
Aint and Algt described in Sections IV-VI succeed in assigning
tasks in τ (with a subset of tasks from τint and τlgt fractionally
assigned) on π(1+2�). As a consequence, we have:

∀p ∈ π(1+2�) : U [p] ≤ 1 + 2� (40)

We also know that in such an assignment (as a consequence
of using the wrap-around technique in Aint and Algt):

• at most m1−1 tasks are split between processors of type-
1 with one task split between each pair of consecutive
processors; let the set Γ1

split denote these fractional tasks.
• at most m2−1 tasks are split between processors of type-

2 with one task split between each pair of consecutive
processors; let the set Γ2

split denote these fractional tasks.
• at most one task (from τlgt) is split between processors

of type-1 and type-2; let τf ∈ τlgt denote this task that
must be split between the m1’th processor of type-1 and
the m2’th processor of type-2.

• the rest of the tasks are integrally assigned to either type-
1 or type-2 processors.

Let τ1p1,p1+1 ∈ Γ1
split denote the task split between the p1’th

and the (p1 + 1)’th processors of type-1 where 1 ≤ p1 <

m1. Analogously, let τ2p2,p2+1 ∈ Γ2
split denote the task split

between the p2’th and the (p2 + 1)’th processors of type-2
where 1 ≤ p2 < m2.

To prove the theorem, we need to show that Afract succeeds
in integrally assigning all the fractional tasks on π(1+3�).

On Step 1, Afract copies the feasible assignment (retain-
ing the fractional task assignments) onto the faster platform
π(1+3�). After this step,

∀p ∈ π(1+3�) : U [p] ≤ 1 + 2� (41)

Since Γ1
split ⊆

�
τ1
int ∪ τlgt

�
, Γ2

split ⊆
�
τ2
int ∪ τlgt

�
, we have:



(2), (7) ⇒ ∀τi ∈ Γ1
split : ui < � (42)

(2), (8) ⇒ ∀τi ∈ Γ2
split : vi < � (43)

On Step 2, Afract assigns the split tasks integrally. So, ∀p1 ∈
type-1 of π(1+3�), it moves the fraction of the task τ1p1,p1+1

that is assigned to (p1 + 1)’th processor of type-1 to p1’th
processor of type-1. After this re-assignment, it follows from
Expressions (41) and (42) that:

∀p1 ∈ type-1 of π(1+3�) ∧ p1 �= m1 : U [p1] ≤ 1 + 3� (44)
if p1 ∈ type-1 of π(1+3�) ∧ p1 = m1 : U [p1] ≤ 1 + 2� (45)

Analogously, ∀p2 ∈ type-2 of π(1+3�), it moves the frac-
tion of the task τ2p2,p2+1 that is assigned to (p2+1)’th processor
of type-2 to p2’th processor of type-2. After this re-assignment,
it follows from Expressions (41) and (43) that:

∀p2 ∈ type-2 of π(1+3�) ∧ p2 �= m2 : U [p2] ≤ 1 + 3� (46)
if p2 ∈ type-2 of π(1+3�) ∧ p2 = m2 : U [p2] ≤ 1 + 2� (47)

Finally, the task τf that is split between the m1’th processor
of type-1 and the m2’th processor of type-2 remains to be
integrally assigned. Since τf ∈ τlgt, it holds that uf < � and
vf < �. From Expression (45) and (47), it follows that task τf
can be integrally assigned to either m1’th or m2’th processor.
Hence, after integrally assigning this task, we obtain:

∀p ∈ π(1+3�) : U [p] ≤ 1 + 3� (48)

Since Expression (48) is a necessary and sufficient schedula-
bility condition for EDF on a uniprocessor of capacity 1+3�,
the assignment of τ on π(1+3�) returned by our algorithm,
PTASNF, is a feasible assignment. Hence, the proof.

VIII. EXPERIMENTAL SETUP AND RESULTS

After studying the theoretical (worst-case) bound, i.e., the
approximation ratio of our algorithm, PTASNF, we evaluate
its average-case performance and compare it with prior state-
of-the-art, i.e., PTASLP. For this purpose, we look at the
following aspects: (i) how much faster processors our algo-
rithm needs in practice in order to successfully partition a
task set compared to PTASLP? and (ii) how fast our algorithm
runs compared to PTASLP? Also, we look at (iii) how much
pessimism is there in our theoretically derived performance
bound? In order to answer these questions, we performed two
sets of experiments. The first set of experiments described in
Section VIII-A addresses (i) and (ii) and the second set of
experiments described in Section VIII-B addresses (iii).

A. Comparison with prior state-of-the-art
We compare the average-case performance of PTASNF with

PTASLP. We implemented both the algorithms in C on an
Intel Core2 (2.80 GHz) machine. For PTASLP, we used a
state-of-the-art LP solver, IBM ILOG CPLEX [17].

For a given task set, we define the minimum required
speedup factor, MRSFNF, of PTASNF as the minimum
amount of extra speed of processors that PTASNF needs, so
as to succeed in finding a feasible partitioning as compared
to an optimal algorithm. We define MRSFLP of PTASLP

analogously. For different values of �, we assess the average-
case performance of these algorithms by measuring their (i)
minimum required speedup factors and (ii) running times.

The problem instances (number of tasks, their utilizations
and number of processors of each type) were generated
randomly. Each problem instance had at most 10 tasks and at
most 2 processors of each type. For performing fair evaluation,
we convert the randomly generated task sets into critically
feasible task sets — more details in Appendix B in [15]. A
task set is termed critically feasible if it is feasible on a given
two-type platform but rendered infeasible if all ui and vi are
increased by an arbitrarily small factor. The intuition behind
using critically feasible task sets in our simulations is that it is
“hard” to find a feasible partitioning for these task sets since
only a few assignments are feasible among all the possible
assignments. Hence, by using such task sets, we believe our
evaluations have been fair and unbiased.

We ran PTASNF and PTASLP on 5000 critically feasible
task sets and for each task set, we obtain MRSFNF and
MRSFLP as follows. We initially set the speedup factor to
1.0 and input the task set to the algorithm. If the algorithm
cannot find a feasible mapping, we increment the speedup
factor by a small value, i.e., by 0.01, and divide the original
utilizations, ui and vi, of each task by the new speedup factor
(to simulate the faster platform) and feed the resulting task set
to the algorithm. These steps (adjust the speedup factor and
feed back the derived task set) are repeated till the algorithm
succeeds, which gives us the MRSF of the algorithm for the
task set. This entire procedure is repeated for 5000 task sets.

With this procedure, we obtain the histograms of MRSFs
for both the algorithms for different values of �. Figure 1 shows
the histogram for � = 0.2 (note that the y-axis is in log scale).
As can be seen, the MRSFNF never exceeded 1.12 which
is 20% from the optimal value of 1.0 compared to its upper
bound of 1 + 3� = 1.60, i.e., 1.12−1.0

1.6−1.0 × 100 = 20%, whereas
MRSFLP is as high as 1.30 which is 60% from the optimal
value of 1.0 compared to its upper bound of 1+�

1+� = 1.50,
i.e., 1.3−1.0

1.5−1.0 ×100 = 60%. Therefore, PTASNF requires much
smaller processor speedup on an average than PTASLP in
order to find a feasible partitioning. The observations for other
values of � follow the same trend — see Appendix B in [15].

We also measure the average running times of both al-
gorithms for different values of �. In these experiments, the
speedup factor is set to 1 + 3� for PTASNF and to 1+�

1+� for
PTASLP. This ensures that both the algorithms succeed in
finding a feasible partitioning for a given task set in a single
run and hence the experiments are not biased to give advantage
to any of them. In our experiments with 5000 task sets, as can
be seen in Table I, for � = 0.1, PTASNF runs approximately
50000 times faster compared to PTASLP. This factor is even
higher for other values of �.

To summarize, our algorithm exhibits a better average-
case performance by requiring significantly smaller processor
speedup for finding a feasible partitioning and by running
orders of magnitude faster compared to PTASLP. Overall,
PTASNF outperforms prior state-of-the-art, PTASLP.
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Fig. 1: Comparison of minimum required speedup factor of PTASNF

and PTASLP for � = 0.2 (if an algorithm has low MRSF for many
task sets then the algorithm is said to perform well).

Measured avg. run-time Ratio of avg. run-time

Value of � PTASNF PTAS of [1]

0.10 128.57 6583384.71 51204
0.15 45.43 6914127.72 152192
0.20 18.40 4449061.29 241796
0.25 10.48 1564060.39 149242
0.30 7.17 465894.09 64978

TABLE I: Comparison of run times of PTASNF and PTASLP (µs).

B. Evaluation of PTASNF for different values of �
In order to understand how much pessimism is there in

the analysis of PTASNF, we evaluated its performance for
different values of �. In this set of experiments, we chose larger
number of problem instances with each problem instance being
more complex3. We generated 10000 critically feasible task
sets where each task set had at most 25 tasks and at most 3
processors of each type. Then, for different values of �, we ran
PTASNF on these 10000 critically feasible task sets and obtain
the histogram of MRSFNF. Figure 2 shows the histogram for
� = 0.3. As can be seen, for almost 98% of the task sets, the
MRSFNF did not exceed 1.06, i.e., approximately 7% of its
theoretical bound (i.e., 1+3� = 1.90), for the remaining 2% of
the task sets, the factor did not exceed 1.12, i.e., approximately
13% of its theoretical bound. Thus, in the simulations, for the
vast majority of task sets, our algorithm requires much smaller
processor speedup than indicated by its approximation ratio.
The observations for other values of � follow the same trend
— see Appendix B in [15].

Hence, PTASNF performs significantly better in simulations
than indicated by its theoretical bound.

IX. CONCLUSIONS

A polynomial-time approximation scheme was proposed for
the problem of partitioning a given collection of implicit-
deadline sporadic tasks upon a multiprocessor platform in
which there are two distinct kinds of processors. It provides
the following guarantee: if a task set has a feasible partitioning
on a two-type platform then given an �, our PTAS succeeds in
finding such a feasible partitioning for the task set on a two-
type platform in which each processor is 1 + 3� times faster.

3Since we do not run PTASLP (which takes much longer to output the
solution) in this batch of experiments, we could increase the problem instances
and size of each problem compared to previous set of experiments.
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Fig. 2: Performance evaluation of PTASNF for � = 0.3 in terms of
the minimum required speedup factor.

In simulations, our algorithm outperforms prior state-of-the-art
PTAS [1] and also performs significantly better in simulations
than indicated by its theoretical bound.

ACKNOWLEDGMENT
This work was partially supported by FCT(Portuguese Foundation for Science and

Technology) and by ERDF (European Regional Development Fund) through COMPETE
(Operational Programme ’Thematic Factors of Competitiveness’), within REHEAT
project, ref. FCOMP-01-0124-FEDER-010045; by FCT and the EU ARTEMIS JU
funding, within RECOMP project, ref. ARTEMIS/0202/2009, JU grant nr. 100202; by
FCT and ESF through POPH, under PhD grant SFRH/BD/66771/2009.

REFERENCES
[1] A. Wiese, V. Bonifaci, and S. Baruah, “Partitioned EDF scheduling on

a few types of unrelated multiprocessors,” The University of North Car-
olina, Tech. Rep., 2012, http://www.cs.unc.edu/ baruah/Submitted/2012-
k-unrelated.pdf.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, vol. 20, pp.
46–61, 1973.

[3] AMD Inc., “The AMD fusion family of APUs,”
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.

[4] Intel Corporation, “The second generation Intel core processor family,”
http://www.intel.com/consumer/products/processors/core-family.htm.

[5] TI Inc., “OMAP application processors: OMAP 5 platform,”
http://www.ti.com/ww/en/omap/omap5/omap5-platform.html.

[6] Qualcomm Inc, “Quad-core for next generation devices,”
http://www.qualcomm.com/snapdragon/specs.

[7] Samsung Inc., “Samsung exynos 4 quad application processor,”
www.samsung.com/exynos/.

[8] M. Dertouzos, “Control robotics: The procedural control of physical
processes,” in Proceedings of IFIP Congress, 1974, pp. 807–813.

[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 3rd ed. Springer, 2006.

[10] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” Math. Program., vol. 46,
pp. 259–271, 1990.

[11] S. Baruah, “Task partitioning upon heterogeneous multiprocessor plat-
forms,” in Proceedings of the 10th IEEE International Real-Time and
Embedded Technology and Applications Symposium, 2004, pp. 536–543.

[12] ——, “Partitioning real-time tasks among heterogeneous multiproces-
sors,” in Proceedings of the 33rd International Conference on Parallel
Processing, 2004, pp. 467–474.

[13] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in Proceedings of the 31st IEEE International Real-Time Systems
Symposium, 2010, pp. 239–248.

[14] S. Baruah, “Task assignment on two unrelated types of processors,” in
19th International Conference on Real-Time and Network Systems, 2011,
pp. 69–78.

[15] G. Raravi and V. Nélis, “A PTAS for assigning sporadic tasks on
two-type heterogeneous multiprocessors,” CISTER/INESC-TEC, ISEP,
Porto, Tech. Rep., 2012, http://www.hurray.isep.ipp.pt/docs/.

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 3rd Ed. McGraw-Hill, 2009.

[17] IBM, “IBM ILOG CPLEX Optimizer,” http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/.



APPENDIX

A. Fractional knapsack problem, its relation with the task
assignment problem and an useful property

In this section, we give a detailed description of the frac-
tional knapsack problem followed by its relation with the
task assignment problem on two-type platform and finally
provide the proof of Lemma 4 which we used earlier (in
Lemma 5) while proving the approximation ratio of our
algorithm, PTASNF.

1) Fractional knapsack problem: We now define the frac-
tional knapsack problem.

Definition 6 (Fractional knapsack problem). A vector x has
n elements. The problem instance is represented by vectors p

and w of real numbers, arranged such that pi

wi
≥ pi+1

wi+1
∀i ∈

{1, 2, . . . , n−1}. (Intuitively, pi and wi may be thought of as,
respectively, the “profit” and “weight” of an item, indexed i,
while xi as the fraction of it that is employed.) Consider the
problem of assigning profits to the elements in x so as to:

maximize
�n

i=1 xi · pi subject to�n
i=1 xi · wi ≤ CAP

and xi is a real number and 0 ≤ xi ≤ 1

and CAP is a given upper bound.

Intuitively, determine how much of each item to use such that
cumulative profit is maximized, subject to cumulative weight
not exceeding some bound.

Lemma 6. The following algorithm optimally solves the
Fractional knapsack problem:

Algorithm 3: An optimal algorithm for the fractional
knapsack problem

1 re-index tuples {pi, wi} by order of descending pi/wi
2 for i:=1 to n do

3 xi:=0
4 end

5 i:=1; SUMWEIGHT:=0; SUMPROFIT:=0;
6 while (SUMWEIGHT+wi ≤ CAP ) and (i ≤ n) do

7 xi:=1
8 SUMWEIGHT:=SUMWEIGHT+wi
9 SUMPROFIT:=SUMPROFIT+pi

10 i:=i+1
11 end

12 if i ≤ n then

13 xi:=(CAP−SUMWEIGHT)/wi
14 SUMWEIGHT:=SUMWEIGHT+wi · xi
15 SUMPROFIT:=SUMPROFIT+pi · xi
16 end

This is found in textbooks (e.g., Chapter 16.2 in [16]).
We now briefly describe the relation between fractional

knapsack problem and the task assignment problem on two-
type platform.

2) Relation with the task assignment problem: For a given
problem instance in our scheduling problem, we can create an
instance of a fractional knapsack problem as follows: (i) for
each task in our scheduling problem, create a corresponding
item in the fractional knapsack problem, (ii) the weight of
an item in the fractional knapsack problem is the utilization

of the corresponding task where the utilization here is taken
for the processor on which the task executes fast and (iii) the
value of an item in the fractional knapsack problem is how
much lower the utilization of its corresponding task is when
the task is assigned to the processor on which it executes fast
as compared to its utilization if assigned to the processor on
which it executes slowly. Informally speaking, we can see that
if tasks could be split, then solving the fractional knapsack
problem is equivalent to assigning tasks to processors so
that the cumulative utilization of tasks is minimized. Again,
informally speaking, we can then show that a task assignment
minimizes the cumulative utilization of tasks assuming that
(i) the cumulative utilization of tasks that are assigned to the
processors on which they execute fast is sufficiently high and
(ii) the tasks that are assigned to the processors where they
execute fast has a higher ratio (vi/ui) than the ones that are
not. Lemma 4 expressed this formally for which we provide
the proof next.

3) Proof of Lemma 4: In this section, we provide a formal
proof of Lemma 4. First, we (re-)introduce some of the
notations. Let the task set τ be partitioned into two disjoint
subsets, τ1 and τ2. The set τ1 consists of those tasks which run
at least as fast on a type-1 processor as on a type-2 processor;
τ2 consists of all other tasks. In notation:

τ = τ1 ∪ τ2 (49)
∀τi ∈ τ1 : ui ≤ vi (50)
∀τi ∈ τ2 : ui > vi (51)

We now (re-)state Lemma 4 and provide its proof.

Lemma 4. Consider n tasks and a two-type platform con-
forming to the system model (and notation) of Section 2. Let
x denote a number such that 0 ≤ x ≤ m1.

Let A1 denote a subset of τ1 such that�

τi ∈ A1

ui > m1 − x (52)

and for every pair of tasks τi ∈ A1 and τj ∈ τ1 \A1 it holds
that vi

ui
− 1 ≥ vj

uj
− 1. Let A2 denote τ1\A1.

Let B1 denote a subset of τ1 such that�

τi ∈ B1

ui ≤ m1 − x (53)

Let B2 denote τ\B1. It then holds that:
�

τi ∈ A1

ui +
�

τi ∈ A2

vi +
�

τi ∈ τ2

vi ≤
�

τi ∈ B1

ui +
�

τi ∈ B2

vi (54)

Proof: Let us arbitrarily choose A1, B1 as defined. We
will prove that this implies Inequality (54). Using Inequali-
ties (52) and (53) we clearly get:�

τi ∈ A1

ui >
�

τi ∈ B1

ui (55)

With this choice of A1 and B1, let us consider different
instances of the fractional knapsack problem:

Instance1:

CAP = left-hand side of Inequality (55).
For each τi ∈ τ , create an item i with



pi = vi − ui and wi = ui

SUMPROFIT1=value of variable SUMPROFIT when the
algorithm in Lemma 6 terminates with Instance1 as input.

Instance2:

CAP = left-hand side of Inequality (55).
For each τi ∈ A1, create an item i with
pi = vi − ui and wi = ui

SUMPROFIT2=value of variable SUMPROFIT when the
algorithm in Lemma 6 terminates with Instance2 as input.

Instance3:

CAP = right-hand side of Inequality (55).
For each τi ∈ B1, create an item i with
pi = vi − ui and wi = ui

SUMPROFIT3=value of variable SUMPROFIT when the
algorithm in Lemma 6 terminates with Instance3 as input.

Instance4:

CAP = right-hand side of Inequality (55).
For each τi ∈ τ , create an item i with
pi = vi − ui and wi = ui

SUMPROFIT4=value of variable SUMPROFIT when the
algorithm in Lemma 6 terminates with Instance4 as input.

Observe that:
O1: In all four instances, it holds for each element that
pi

wi
=

vi
ui

− 1.
O2: Instance1 and Instance2 have the same capacity.
O3: Although Instance2 has a subset of the elements of
Instance1, this subset is the subset of those elements with the
largest pi/wi. (Follows from the definition of A1.)
O4: CAP in Instance2 is exactly the sum of the weights of
the elements in A1.
O5: From O1-O4: SUMPROFIT2=SUMPROFIT1.
O6: Instance3 and Instance4 have the same capacity.
O7: Instance3 has a subset of the elements of Instance4.
O8: From O6 and O7: SUMPROFIT3≤SUMPROFIT4.
O9: Instance4 has smaller capacity than Instance1.
O10: Instance4 has the same elements as Instance1.
O11: From O9 and O10: SUMPROFIT4≤SUMPROFIT1.
O12: From O8 and O11: SUMPROFIT3≤SUMPROFIT1.
O13: From O12 and O5: SUMPROFIT3≤SUMPROFIT2.

Using O13 and the definitions of the instances and of A1

and B1 and observing that the capacity of Instance2 and
Instance3 are set such that all elements in either instance will
fit into the respective “knapsack”, we obtain:

�

τi ∈ B1

(vi − ui) ≤
�

τi ∈ A1

(vi − ui) (56)

Now, observing that τ = τ1 ∪ τ2 = B1 ∪B2 gives us:
�

τi ∈ τ1

vi +
�

τi ∈ τ2

vi =
�

τi ∈ B1

vi +
�

τi ∈ B2

vi

Substituting the value of
�

i∈B1 vi in Inequality (56) yields:
�

τi ∈ τ1

vi +
�

τi ∈ τ2

vi −
�

τi ∈ B2

vi −
�

τi ∈ B1

ui ≤
�

τi ∈ A1

vi −
�

τi ∈ A1

ui

Rearranging terms, we get:

�

τi ∈ A1

ui +
�

τi ∈ τ1

vi −
�

τi ∈ A1

vi +
�

τi ∈ τ2

vi ≤
�

τi ∈ B1

ui +
�

τi ∈ B2

vi

Exploiting A2 = τ1\A1 yields:
�

τi ∈ A1

ui +
�

τi ∈ A2

vi +
�

τi ∈ τ2

vi ≤
�

τi ∈ B1

ui +
�

τi ∈ B2

vi

This is the statement of the lemma. Hence the proof.
We now provide a detailed description of the simulation

setup, experiments performed and the observed results.

B. Experimental Setup and Results

After studying the theoretical (worst-case) bound, i.e., the
approximation ratio of our algorithm, PTASNF, we evaluate
its average-case performance and compare it with prior state-
of-the-art algorithm, PTASLP. For this purpose, we look at
the following aspects: (i) how much faster processors our
algorithm needs in practice in order to successfully partition a
task set compared to PTASLP? and (ii) how fast our algorithm
runs compared to PTASLP? Also, we look at (iii) how much
pessimism is there in the theoretically derived performance
bound of our algorithm, PTASNF?

In order to answer these questions, we performed two sets of
experiments. In the first set of experiments, we compared the
average-case performance of our algorithm, PTASNF, with
PTASLP. Recall that the approximation ratio of both these
algorithms depend on the value of the input parameter, �.
Hence, we evaluated the performance of both the algorithms
for different values of �. We observed that, in the experiments
with randomly generated task sets, our algorithm requires sig-
nificantly smaller processor speedup (for finding a feasible par-
titioning) than PTASLP. We also observed that our algorithm
runs faster by orders of magnitude compared to PTASLP.
Overall, in the simulations, PTASNF exhibited better average-
case performance by outperforming the prior state-of-the-art
algorithm, PTASLP. In the second set of experiments, in
order to see how much pessimism our theoretical analysis
has, we simulated only PTASNF for different values of �. We
observed that, it performs significantly better in simulations
by requiring much smaller processor speedup than indicated
by its theoretical bound. We now discuss both the cases in
detail.

1) Comparison with state-of-the-art: We implemented both
the algorithms using C on Windows XP on an Intel Core2
(2.80 GHz) machine. For PTASLP, which relies on solving
linear programming formulations, we used one of the state-of-
the-art LP/ILP solvers, IBM ILOG CPLEX [17].

The algorithm, PTASLP, proposed in [1], for partitioning
the task set on a heterogeneous multiprocessor platform, can
be summarized as follows:

• The given task set is transformed into another task set
by “rounding up” the utilizations to some specific values
that are determined based on the value of �.

• The tasks in the transformed task set are grouped into big
and small tasks based on their utilizations. For big tasks,



different feasible patterns are generated using dynamic
programming.

• For a feasible pattern, the task assignment problem (for
both big and small tasks) is formulated as an ILP and
then relaxed to LP. The LP formulation is solved using
an LP solver. If a feasible solution is returned by the LP
solver then go to next step else consider the next feasible
pattern and repeat this step.

• Using the values of the indicator variables from the
solution returned by the LP solver, construct a bipartite
graph and define a fractional matching. In the bipartite
graph, one set of nodes represents tasks and another set
of nodes represent processors. The fractional matching
represents how much fraction of a task (indicated by
the value of the indicator variable) is assigned to the
processor to which it is connected.

• Using any maximum cardinality bipartite matching algo-
rithm (such as Ford-Fulkerson algorithm — see pp. 714
in [16]), find an integral matching from the fractional
matching. This integer matching gives the partitioning of
tasks to processors.

For a given task set, a parameter � and an algorithm A (A is
either PTASNF or PTASLP), we define the minimum required
speedup factor as the minimum amount of extra speed of
processors that A needs, so as to succeed in finding a feasible
partitioning as compared to an optimal partitioning algorithm.
We denote the minimum required speedup factor of PTASNF

and PTASLP by MRSFNF and MRSFLP, respectively. For
different values of �, for many task sets, we assess the average-
case performance of both the algorithms by measuring their
(i) minimum required speedup factors and (ii) running times.

The problem instances (number of tasks, their utilizations
and the number of processors of each type) were generated
randomly. Each problem instance had at most 10 tasks and at
most 2 processors of each type. We generated 5000 task sets4,
denoted as {τ (1), τ (2), . . . , τ (5000)}, which we transformed
into “critically feasible task sets”. We define a critically
feasible task set as a task set which is partitioned feasible on a
given two-type platform but rendered (partitioned) infeasible
if all the task utilizations (i.e., both ui and vi) are increased by
an arbitrarily small factor. The intuition behind using critically
feasible task sets in our simulations is that it is “hard” to find
a feasible partitioning for these task sets since only a few task
assignments are feasible amongst all possible assignments.
Hence, by using such task sets in our simulations, we believe
our evaluations have been fair and unbiased.

To obtain a partitioned critically feasible task set τ (k)crit from
a randomly generated task set τ (k), k ∈ [1, 5000], we perform
the partitioning of τ (k) by formulating the problem as an
Integer Linear Program as shown in Figure 3 and feeding it to
a solver (such as IBM ILOG CPLEX) which outputs Z, the

4Since PTASLP has a huge run-time complexity as it heavily relies on
solving LP formulation (i.e., it solves LP formulation for every feasible
pattern generated by the dynamic programming till it succeeds), the number of
problem instances and the size of each problem instance were set to relatively
smaller values. For example, in the simulations with � = 0.3, PTASLP took
48h to determine the MRSF of 5000 critically feasible task sets.

utilization of the most utilized processor. Then, we multiply
all the task utilizations with 1/Z and repeatedly feed it back
to the solver until 0.99 < Z ≤ 1, which gives us τ (k)crit.

Minimize Z subject to the following constraints:
I1.

�m
j=1 xij = 1 (i = 1, 2, · · · , n)

I2.
�n

i=1 (xij · uij) ≤ Z (j = 1, 2, · · · ,m)

I3. xij are non-negative integers (i = 1, 2, · · · , n)

(j = 1, 2, · · · ,m)

Fig. 3: Integer Linear Programming formulation to find a
feasible partitioning of τ (k) on π — xij are indicator variables
and uij are utilizations.

For a given �, for each critically feasible task set τ (k)crit
and algorithm A (where A is either PTASNF or PTASLP),
we measure the minimum required speedup factor, denoted
by MRSF

(k)
A (�). For a given �, Algorithm 4 shows how we

compute MRSF
(k)
A (�) for every partitioned critically feasible

task set, τ (k)crit. On line 3, we initially set MRSF
(k)
A (�) to 1.0

as it denotes the speed of processors on which an optimal
algorithm succeeds in finding a feasible partitioning of τ (k)crit.
Then, we input the task set to algorithm A (on line 5) and
if A cannot find a feasible assignment, the minimum speedup
factor MRSF

(k)
A (�) is incremented by a small value, here 0.01

(on line 7), and the original ui and vi of each task of τ (k)crit are
divided by the new speedup factor (on line 8) in order to
simulate the faster platform and this resulting task set is fed
back to algorithm A. These steps (speedup factor adjustment
and feeding back the derived task set) are repeated until the
the algorithm A succeeds in finding a feasible partitioning,
which gives us the minimum required speedup factor of A

for the task set under consideration. This entire procedure is
repeated for 5000 critically feasible task sets. Algorithm 4 is
repeatedly called with different values of �, specifically, we
used � = 0.1, 0.2, 0.25 and 0.3.

With this procedure, we obtain the histograms of MRSFs
for both the algorithms for different values of �. Figure 4
shows the histograms. As can be seen from Figure 4b, in the
experiments with � = 0.2, the MRSFNF never exceeded 1.12

which is 20% from the optimal value of 1.0 compared to its
upper bound of 1 + 3� = 1.60, i.e., 1.12−1.0

1.6−1.0 × 100 = 20%,
whereas MRSFLP is as high as 1.30 which is 60% from the
optimal value of 1.0 compared to its upper bound of 1+�

1+� =

1.50, i.e., 1.3−1.0
1.5−1.0 × 100 = 60%. Therefore, in simulations,

PTASNF requires much smaller processor speedup compared
to PTASLP in order to find a feasible partitioning. As can
be seen from Figure 4, the observations for other values of �
follow the same trend.

We also measure the average running times of both the
algorithms for different values of �. In these experiments, the
speedup factor is set to 1 + 3� for PTASNF and to 1+�

1+� for
PTASLP. This ensures that both the algorithms succeed in
finding a feasible partitioning for a given task set in a single
run and hence the experiments are not biased to give advantage
to any of the algorithms. In our experiments with 5000 task
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(d) Comparison with � = 0.3

Fig. 4: Comparison of minimum required speedup factors of PTASNF and PTASLP for different values of � (if an algorithm
has low MRSF for many task sets then the algorithm is said to perform well).

Algorithm 4: Pseudo-code for determining the minimum
required speedup factor, MRSF

(k)
A (�).

Input : Algorithm A (either PTASNF or PTAS proposed in [1])
The critically feasible task sets {τ (1)crit, τ

(2)
crit, . . . , τ

(5000)
crit }

Output: The minimum required speedup factors
{MRSF(1)

A (�),MRSF(2)
A (�), . . . ,MRSF(5000)

A (�)}
1 step ← 0.01 ;
2 for k = 1 to 5000 do

3 MRSF(k)
A (�) ← 1.0 ;

4 while true do

5 result ← call A(τ (k)crit, assignment) ;
// assignment is an output variable which

contains the task assignment
information; A is either SA or SA-P

6 if result �= SUCCESS then

7 MRSF(k)
A (�) ← MRSF(k)

A (�) + step ;
8 τ (k)crit ← τ (k)crit × (1/MRSF(k)

A (�)) ;
9 else break ;

10 end

11 return {MRSF(1)
A (�),MRSF(2)

A (�), . . . ,MRSF(5000)
A } ;

12 end

sets, as can be seen in Table II, for � = 0.1, for each task set,
PTASNF, has an average running time of 128 µs whereas the
PTASLP has an average running time of 6583384 µs. Hence,
for � = 0.1, for each task set, PTASNF runs approximately

Measured avg. run-time Ratio of avg. run-time

Value of � PTASNF PTAS of [1]

0.10 128.57 6583384.71 51204
0.15 45.43 6914127.72 152192
0.20 18.40 4449061.29 241796
0.25 10.48 1564060.39 149242
0.30 7.17 465894.09 64978

TABLE II: Comparison of average running times of PTASNF

and PTASLP (in µs).

50000 times faster compared to PTASLP. This factor is even
higher for other values of � as illustrated in Table II.

To summarize, in simulations, our algorithm exhibits a bet-
ter average-case performance by requiring significantly smaller
processor speedup for finding a feasible partitioning and by
running orders of magnitude faster compared to PTASLP.
Overall, PTASNF outperforms prior state-of-the-art algorithm,
PTASLP.

2) Evaluation of PTASNF for different values of �: In order
to understand how much pessimism is there in the analysis of
PTASNF, we evaluated its performance for different values of
�. In this set of experiments, we chose larger number of prob-
lem instances with each problem instance being more complex.
We generated 10000 critically feasible task sets where each
task set had at most 25 tasks and at most 3 processors of each
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(c) Performance with � = 0.3

Fig. 5: Performance evaluation of PTASNF for different values of � in terms of the minimum required speedup factor.

type. Since we do not run PTASLP (which takes much longer
to output the solution as it relies on solving the linear program
formulations) in this batch of experiments, we could increase
the problem instances and size of each problem compared to
previous set of experiments. Then, for different values of �,
we ran PTASNF on these 10000 critically feasible task sets
and obtained histograms of MRSFNF. Figure 5 shows the
histograms. As can be seen from Figure 5c, for example, in
the experiments with � = 0.3, for almost 98% of the task sets,
the MRSFNF did not exceed 1.06 which is approximately 7%

of its theoretical bound (i.e., 1+3� = 1.90), for the remianing
2% of the task sets, the factor did not exceed 1.12 which
is approximately 13% of its theoretical bound. Thus, in the
simulations, for the vast majority of task sets, our algorithm
requires much smaller processor speedup than indicated by
its approximation ratio. As can be seen from Figure 5, the
observations for other values of � follow the same trend.

Hence, PTASNF performs significantly better in simulations
than indicated by its theoretical bound.


