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ABSTRACT 
 

  

 
 

It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical 

approaches suggest the use of intermedi- ate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework 

for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints 

to assign interme- diate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the 

deadline assignment problem while maximizing the aggre- gate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline 

assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation. 
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1. Introduction 

 
A distributed task is usually comprised of several subtasks, each one 

having processing demands at some node in order, and often requires 

end-to-end guarantees on quality-of-service (QoS). For example, a 

real-time task is subject to timing constraints typically specified by 

deadlines (hard real-time systems) or time-sensitive utility functions 

(soft real-time systems) (Wu et al., 2005). The optimization goal of 

such a distributed system is often defined as maximizing schedulability 

(i.e., maximizing the number of schedu- lable tasks) in hard real-time 

systems, or maximizing the collective utilities of individual tasks in soft 

real-time systems. Achieving such delay-sensitive optimization goals is 

generally difficult, because it is challenging to precisely calculate 

maximum end-to-end delays in the presence of resource contention 

among tasks. 

In a distributed system, tasks potentially compete with each other 

for computing resources whenever they go through the same node. 

Prioritized scheduling is an effective mechanism to provide bounded 

local delays to individual subtasks within a node, while they are subject 

to interference from other subtasks. Nonetheless, prioritized scheduling 

does not significantly alleviate the difficulty 

 

 
 

of computing the maximum end-to-end delay of a task. In many 

practical cases, it is computationally intractable to calculate the 

maximum local delay of a subtask (Baruah et al., 1990; Leung and 

Whitehead, 1982; Palencia and Harbour, 2005). 

As a practical solution, many previous studies have commonly 

adopted an approach to approximate the maximum end-to-end delay rather 

than to compute it exactly (Garcia and Harbour, 1995; Saksena and Hong, 

1996; Kao and Garcia-Molina, 1993,  1994; Bettati and Liu, 1992; Natale 

and Stankovic, 1994; Jonsson and Shin, 1997). They introduced a local 

deadline for each subtask in a node, and used this deadline to upper-

bound the local delay of the sub- task. Then, the end-to-end delay of a 

task can be upper-bounded by the sum of local deadlines of all its subtasks. 

The problem of finding the task end-to-end delays for some optimization 

objectives, is then reduced to the problem of finding local subtask 

deadlines for the given objective. Many existing studies proposed 

methods to assign local subtask deadlines in order to maximize 

schedulability (Garcia and Harbour, 1995; Saksena and Hong, 1996; Kao 

and Garcia- Molina, 1993, 1994; Bettati and Liu, 1992; Natale and 

Stankovic, 1994; Jonsson and Shin, 1997). We believe that a 

perspective of considering the resource contention from other  subtasks  is  

cru- cial to determining local deadlines of subtasks. However, all these 

previous studies commonly lack such a  perspective. 

The difficulty of finding a “right” local subtask deadline for some 

optimization objective lies on its seemingly contradicting effects. If the 

local deadline of a subtask becomes larger, then it imposes more 

stringent timing constraints on the other subtasks that belong to the 

same task, given that we naturally want to 
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minimize its end-to-end delay. On the other hand, if the local 

deadline of a subtask becomes smaller, it can potentially interfere with 

more subtasks within the same node that belong to other tasks, 

threatening node schedulability. In determining a local subtask 

deadline, therefore, it is necessary to investigate its effect on both the 

other subtasks of the same task (across nodes) and the other subtasks 

within the same node (across tasks). It entails a global approach to the 

deadline assignment problem of individual tasks in the presence of 

optimization objectives. 

We propose a framework to address different QoS-related con- vex 

optimization problems for both soft and hard real-time tasks. Our 

framework allows global viewpoints to be incorporated into the 

formulation of deadline assignment problems, taking resource 

contention among tasks into consideration. It derives local solu- tions 

through Lagrange duality, wherein nodes can collectively converge to 

a global optimum through distributed computation. There has been 

little work on maximizing the aggregate QoS of end-to-end real-time 

tasks. Our framework can be effectively used to find local deadlines 

that maximize the collective QoS, when each soft real-time task has a 

utility function that characterizes its QoS. In order to maximize 

schedulability of deadline-based hard real-time tasks, many previous 

studies proposed heuristics to the deadline assignment problem. We 

show that our framework can characterize these heuristics using 

closed-form utility functions, thereby providing a precise 

mathematical interpretation of the heuristics. We note that the 

solutions proposed by those heuris- tics do not necessarily meet end-to-

end deadlines. By incorporating these heuristics in our convex 

optimization framework, we provide guarantees on end-to-end deadlines. 

Our paper is organized as follows. Section 2 presents related work, 

and Section 3 describes the system model. Section 4 provides 

these techniques have been applied to solve the problem of guar- 

anteeing end-to-end delays in a distributed real-time system (Chen et al., 

2007; Bini and Cervin, 2008; Zhu et al., 2009; Lumezanu et al., 2008). 

Some of these techniques use centralized solutions to the optimization 

problem (Chen et al., 2007; Bini and Cervin, 2008; Zhu et al., 2009). 

Distributed solutions to this optimization problem have been recently 

considered (Lumezanu et al., 2008). This study assumes proportional 

share scheduling within nodes. Since such a scheduling framework is 

not implementable, it must be approxi- mated. However, any 

approximation of the scheduling framework will invalidate the proposed 

analysis. Distributed optimization has been applied to achieving QoS 

maximization for soft real-time tasks through dynamic route and rate 

assignments in distributed real-time systems (Shu et al., 2008), and 

through bandwidth allo- cation in wireless networks (Jayachandran and 

Abdelzaher, 2008). Our previous study (Lee et al., 2010) also provides 

a distributed optimization framework for QoS maximization in the 

presence of failure. However, this paper is differentiated from those 

studies in two aspects: our framework (i) aims at intermediate deadline 

assignment and (ii) accommodates both soft and hard real-time 

distributed systems. 

 
3.  System model 

 

In this paper, we consider a distributed real-time system with VN 

nodes and VT tasks. The nodes are numbered 1, . . ., Vn such that each 

node has a unique number, and we express a node number n as Nn. Each 

task ri ∈ r is comprised of mi subtasks such that each subtask executes 

on exactly one node. The kth subtask executing on Nn is denoted as 

J(i,k,n); whenever n is irrelevant we omit the third parameter 

completely. Adjacent subtasks J(i,k)  and J(i,k    1) 

our convex optimization framework for soft real-time systems, and 
Section 5 extends the framework toward hard real-time systems, execute in sequence in a pipelined fashion; J(i,k+1) becomes 

+ 

ready 

accommodating existing heuristics with various utility functions. 

Section 6 discusses how to find solutions in our framework in a 

distributed manner. Section 7 presents performance evaluation of our 

framework. Finally, Section 8 concludes this paper with future work. 

for execution when J(i,k) completes. We let C(i,k) denote the worst- 
case (maximum) execution time of subtask J(i,k). Each task ri is a 

sporadic task such that its first subtask J(i,1) is released repeatedly with a 

minimum gap of Ti time units. 

Let d(i,k) denote the maximum local response time that subtask J(i,k) 

experiences in its node; it is a time duration from an instant at which it 
is released in the node to another instant at which it finishes its 
execution. Then, we denote the end-to-end   response 

2.  Related work 
time of a task ri  by di, where di = 

),
 

mi 

k=1 
d(i,k). 

Many studies have focused on the local subtask deadline assign- ment 

problem, with a view to controlling end-to-end delays (Garcia and 

Harbour, 1995; Saksena and Hong, 1996; Kao and Garcia- Molina, 1993, 

1994; Bettati and Liu, 1992; Natale and Stankovic, 1994; Jonsson and 

Shin, 1997). These studies focus on how to divide the end-to-end 

deadline of a task into local deadlines for its subtasks,  but  they  do  

not  consider  the  resource  contention in intermediate nodes between 

subtasks of different tasks. There are some studies on end-to-end delay 

analysis of distributed real- time systems (Jayachandran and 

Abdelzaher, 2008, 2009). These studies focus on reducing the pessimism 

in calculating end-to-end delays for pipelined streams of computations, 

but their approach cannot be used to guarantee schedulability and at 

the same time achieve certain optimization goals such as maximizing QoS. 

A study (Stavrinides and Karatza, 2010) examines some algorithms and 

their alternative versions for guarantees on end-to-end deadline in 

distributed real-time systems, but their goal is to utilize imprecise 

computations (Lin et al., 1987), which is different from our system model. 

Convex optimization theory has been a popular tool to solve many 

global optimization problems for several decades. Tech- niques that 

find optimal solutions either in a centralized manner, or using 

distributed computations (Lagrangian duality), have been developed 

(Bertsekas and Tsitsiklis, 1997; Low, 1999). Many    of 

In this paper, we assume each node consists of a uniprocessor 

platform, and is scheduled by Earliest Deadline First (EDF). How- ever, 

the technique described in this paper can be easily extended to other 

platforms and scheduling algorithms as long as the utilization bound 

(explained in Section 4.2) is provided. 

 
4. Convex optimization framework for soft real-time 

systems 

 
In this section, we develop a convex optimization framework for soft 

real-time systems. To do this, we first explain the characteris- tics of soft 

real-time systems, and then derive a node schedulability condition. Using 

the condition, we formulate a convex optimization problem to determine 

local deadlines for soft real-time systems. 

 
4.1. Soft real-time systems and their goal 

 
Different from hard real-time systems, soft real-time systems 

allows a task to miss its deadline, and there are many notions of soft 

real-time supports, such as QoS depending on delay (Wu et al., 2005), 

satisfying a given tardiness (Devi and Anderson, 2004), prob- abilistic 

guarantees on timing requirements (Tia et al., 1995; Atlas and 

Bestavros, 1998), etc. Among various notions of soft real-time supports, 

in this paper, we focus on maximizing QoS depending 



 

 

(a) Thus the problem of bounding di for each task ri that maximizes Usys, is 

transformed to the problem of finding D(i,k) for each subtask J(i,k) that 

maximizes Usys. Note that it is essential to decompose the end-to-end 
delay into delays (and therefore artificial deadlines) for individual 
subtasks, because of the limitations of existing real-time scheduling 

theory.2 These local deadlines enable us to optimize the global system 
utility while still maintaining the schedulability of individual nodes. 

 
4.2. Node schedulability condition 

 
 

A function capturing a soft deadline 

 
(b) 

We now consider a node Nn with subtasks {J(i,k,x)|x = n}, and derive 

schedulability conditions under the preemptive EDF sched- uler, i.e., 

conditions which guarantee d(i,k) ≤ D(i,k). We first define a density of 

subtask J(i,k)  as  follows: 
 

.  

 

Then, we guarantee that all subtasks executed in Nn finish their 

execution within their local deadlines, if the sum of density values of the 

subtasks is no larger than a given utilization bound as follows (Liu and 

Layland, 1973): 
 

 

A differentiable function 
 

 
Fig. 1.  Utility functions. 

 

 

on delay. That is, we assume that each task has its own utility 

function Ui, which is a function of its end-to-end delay di. Util- ity 

functions can be viewed as characterizing different QoS levels. We 

consider concave and non-increasing utility functions to cap- ture that 

a greater QoS comes with a shorter end-to-end delay and 

degradation of QoS gets more severe as delay gets longer. Then, 

such a QoS based soft real-time support can also   capture a situation 

where degradation of QoS is smooth before a certain point (i.e., a soft 

deadline), but becomes rapid after this point, as shown in Fig. 1. 

Examples of tasks subject to such soft deadlines (i.e., Fig. 1(a)) 

include plot correlation and track maintenance of a coastal air defense 

system (see Fig. 2(b) in Wu et al. (2005)). In this 

 

 

where UBn represents the utilization bound of the scheduling algo- rithm 

used by node Nn, and UBn = 1 when the preemptive EDF scheduler is 

deployed on a uniprocessor platform (Liu and Layland, 1973). Since a 

local deadline D(i,k) is no larger than its period, the above schedulability 

condition holds, but it is only sufficient and not necessary. 

In order to formulate the convex optimization problem to be 

developed in Section 4.3, all the constraints used in the optimiza- tion 

problem must be concave functions of the variables. In our framework, 

local subtask deadlines D(i,k) are the variables, and the schedulability 

conditions for each node (Eq. (4)) are used as con- straints. We test the 

concavity of the schedulability conditions, and the following statement 

is true for all D(i0 ,k0 ) 
> 0: 

paper, we consider utility functions to be differentiable in order to 

incorporate them into the proposed optimization framework. If an 

original function is not differentiable as shown in Fig. 1(a), it can be 

approximated as the one shown in Fig. 1(b). We then define the 

 

 
 

.  
system utility as 

 

  
 

Given a set of QoS-sensitive tasks as above, informally, our aim is to 

provide QoS guarantees as much as possible. We capture it by 

maximizing the system utility function Usys. Then our goal is to bound 

the delay di of each task ri ∈ r that maximizes Usys. However, 

computing this bound exactly in general distributed sys- tems is 

computationally intractable (Baruah et al., 1990; Palencia and 

Harbour, 2005). Hence we approximate the bound on di as fol- 

Hence each constraint is a concave function of deadline vari- ables, 

and it can be used in our convex optimization framework. 

 
4.3. Primal problem 

 
The deadline assignment problem aims to determine the local 

deadline (D(i,k)) of every subtask (J(i,k)) in order to provide a guar- 

anteed maximum system utility. Thus the optimization problem 

(primal problem) can be formulated as 

(Primal problem) 
 

  
lows. For each subtask J(i,k), we define a local (artificial) deadline D(i,k) 

such that D(i,k) ≤ Ti. We derive conditions which guarantee that every 
occurrence of each subtask finishes by its local deadline, i.e., 

we enforce the condition d(i,k) ≤ D(i,k)  for each subtask J(i,k). Then            

 

we can upper-bound di as 
2   Current  real-time  scheduling  theories  are  mostly  developed  for node-level 

schedulability analysis, and the system-level analysis is achieved by assembling 

 

 

 

 

  
 

 
  

individual node-level analysis results. Therefore, it is hard to directly support a task model in 

which (i) a series of subtasks sequentially go through multiple nodes with one end-to-end 

deadline, and (ii) the sets of nodes which subtasks of different tasks use are different. 



 

),mi
 

mi 

 

 
 

 
 

 
 

 

 

  
5.2.   Utility function decision 

 

Many previous studies proposed heuristic principles to the deadline 

assignment problem, and such heuristics can be incorpo- 
By Eq. (5) and our assumption of concavity of Ui(·), the above 

primal problem is a convex optimization problem. 

 
5. Convex optimization framework for hard real-time 

systems 

rated in our framework using carefully designed utility functions. We 

now discuss two such existing heuristics (Jonsson and Shin, 1997; Kao 

and Garcia-Molina, 1993). Let  laxity  of  a  task  denote the  difference  

between  its  end-to-end  deadline  and  the  sum  of 
its subtask execution times; laxity of task ri  is Di − 

),
j:1   j  m 

C(i,j). 
≤ ≤  i 

In this section, we extend the convex optimization framework 

developed in the previous section toward hard real-time systems. We 

first explain the characteristics of hard real-time systems, and then 

formulate the convex optimization framework for such sys- tems. 

While hard real-time systems do not have any utility function by nature, 

we present how to decide utility functions to accommo- date existing 

heuristic approaches. 

Heuristics in (Jonsson and Shin, 1997; Kao and Garcia-Molina, 1993) 

distribute this laxity between subtasks to solve the deadline assign- ment 

problem. 

Under the pure laxity ratio approach (Jonsson and Shin,  1997; Kao 

and Garcia-Molina, 1993), a laxity of each task is assigned to subtasks  

as follows: 

 

 
5.1. Hard real-time systems, their goal, and primal problem 

 
For hard real-time systems, task ri has its relative end-to-end 

deadline Di  such that the execution of task ri  should be  finished 

 
 

  

within Di time units after its release as follows: The  principle  of  this  approach,  which  is  uniform  laxity  dis- 
tribution, ignores node level schedulability, and hence it can   be 

 

 

mi 

  
 

  
equivalently expressed by our primal problem using the follow- ing 

utility function for task ri with constraint (11) (end-to-end deadline) 

and without constraint (10) (node-level schedulability): 

Here we assume that it holds Di  ≤ Ti  for each task ri ∈ r. 

Hard real-time tasks typically require schedulability guarantees, i.e., 

satisfaction of end-to-end task deadline. As long as task delays are 

shorter than or equal to the respective deadlines, there is no incentive 

to reduce those delays any further. This means there is no utility 

function in hard real-time systems by nature, and instead we are 

interested in how to distribute a deadline of a task to each 

 

 

  

subtask. Therefore, we design utility functions for hard real-time 

systems in order to implement certain policies of distributing dead- 
where  E is  a  small  value  that  prevents  an  undesirable  situation (lim 
log(x) = −∞). Since Ui(·) is independent of Uj(·) (i  =/  j), Ui ( · ) = 

lines. We will present how to design utility functions for existing 

deadline assignment policies (Jonsson and Shin, 1997; Kao and Garcia-

Molina, 1993) in Section 5.2, and now we present the primal problem for 

hard real-time systems for given utility   functions. 

The deadline assignment problem for determining local     dead- 

x→0 

k=1 
log(D(i,k) − C(i,k) + E) = log (

n
 

mized when 

k=1
(D(i,k) − C(i,k) + E)) is maxi- 

 

 

  

lines of subtasks for hard real-time systems can be formulated by 

adding end-to-end deadline constraints (Eq. (11)) to the problem in 

Section 4.3 as follows: 

(Primal problem) 

 

  

  
where E → 0. Therefore, our framework using the utility function of Eq. 

(14) with constraint (11) and without constraint (10) gives the same 

results as the pure laxity ratio approach. Note that this is a convex 

optimization problem since the utility function (14) is 

 
 

 
 

 

 
   

  concave. 

Under the normalized laxity ratio approach, existing heuristics assign 

laxity in proportion to subtask execution time as follows (Jonsson and 

Shin, 1997; Kao and Garcia-Molina,    1993): 

  

Similar to Eq. (5), the following inequality regarding Eq. (11) is 

 

.
 

 

 

 

true for all D(i0 ,k0 ) 
> 0:  

 

 
 

 
  

 

 
The normalized laxity ratio distributes the laxity of each task 

proportional to the execution time of its subtasks, and we also 
Therefore by Eqs. (5) and (12), the primal problem for hard real- 

time systems is a convex optimization problem as long as Ui(·) for all ri 

∈ r is concave. 

express this principle by our primal problem using the following utility 

function for task ri with constraint (11) and without con- straint (10): 



 

 

In this formulation, node price pn is the Lagrange multiplier for the 

schedulability constraint of node Nn. Likewise, task price qi  is 

 

   
     

the Lagrange multiplier for the end-to-end deadline constraint of 

task ri. Suppose each utility function Ui  is concave. Then, forcing 

  
node prices pn and task prices qi to be non-negative guarantees 

where E is a small value that prevents an  undesirable situation (lim log(x) 

= −∞).  Similar  to  the  pure  laxity  ratio  approach, the 
x→0 

normalized laxity ratio approach also does not consider node 

schedulability. Hence, we can incorporate this approach in our framework 

by maximizing the utility function of Eq. (17), subject to only the end-

to-end deadline constraints given by Eq. (11). With a similar reasoning 

to that of the pure laxity ratio approach, we can show that the utility 

functions of Eq. (17) enforce the principle specified in Eq. (16). 
We note that both the pure and normalized laxity ratio approach 

strong duality (see Chapter 5 in Boyd and Vandenberghe (2004)). This 

means that (i) there is no duality gap between the primal and Lagrange 

dual problems (i.e., optimal dual solution is equivalent to the optimal 

primal solution), and (ii) dual optimal node and task prices exist. In this 

case, we can solve the dual problem using the gradient projection 

algorithm (Bertsekas and Tsitsiklis, 1997; Low, 1999). That is, we can 

find the optimal solution in an iterative man- ner (i.e., A(t + 1) = f(A(t)), 

where A(t) means the value of A at the tth iteration). Node prices pn 

and task prices qi can be iterated as follows: 

themselves do not consider the schedulability of subtasks within a 

  

node. This means we cannot guarantee that the local delay d(i,k) is  
 

 

  
less than or equal to the local deadline D(i,k), resulting in no guar- antee 

on end-to-end delays. To guarantee such end-to-end delays 
for hard real-time systems, our framework can easily extend these   

approaches with node schedulability by incorporating the con- straint 

of Eq. (10) in the optimization problem. Then, we can find 

    

the local subtask deadlines according to the principle of heuristics, 

subject to node schedulability. We will explain this feature in detail in 

Section 7. 

 
6. Distributed solution framework 

 
While our framework in Sections 4 and 5 support soft and hard 

real-time distributed systems, respectively, the framework requires a 

coordinator node. That is, whenever tasks are in and out 

where [x]+ means max (0, x). 

The constants y n and ıi are step sizes and determine the rate of 

convergence of the iteration. These constants guarantee convergence 

of the iteration whenever they satisfy Lipschitz conti- nuity (Bertsekas 

and Tsitsiklis, 1997). We can then obtain deadline D(i,k)(t + 1) of subtask 

J(i,k,n), by solving the differential equation given below in which D(i,x) 

= D(i,x)(t) for all x: 

 

or task specifications are modified, the coordinator node  should  

   

receive the information about such changes, re-compute all inter- 

mediate deadlines of each subtask, and distribute the deadlines. 

Therefore, such a centralized approach may require a lot of mes- 

  

.  

sage exchanges and high computing power of the coordinator node, 

and therefore it may not be suitable for some environments where 

explicit message exchanges are neither possible nor inex- pensive or 

no node has enough computing capability. This entails the need of a 

distributed framework. In this section, we propose a distributed solution 

framework, which corresponds to the primal problems in Sections 4.3 

and 5.1. Then, we discuss implementation issues. 

 
6.1. Dual problem and distributed computation 

 
Any  optimization  problem  can  be  re-written  in  its  dual form 

using Lagrange multipliers (see Chapter 5 in Boyd and Vandenberghe 

(2004)). This formulation is called the Lagrange dual problem. For the 

optimization problem presented in the previous sections, its Lagrange 

dual problem can be defined as   follows: 

(Dual problem) 

 

Note that the only variable in this equation is D(i,k)(t + 1), and 

therefore it can be  computed. 

The optimal solution to the dual problem can be obtained 

through distributed computation. Each node Nn needs to compute its 

node price pn in Eq. (19), and this requires knowledge of all the 

subtask deadlines in Nn. Each task ri needs to compute its task price qi in 

Eq. (20), and this requires knowledge of deadlines of ri’s subtasks. Thus, 

to compute qi, information needs to be exchanged between nodes that 

execute ri’s subtasks. The computation of sub- task deadline D(i,k) in Eq. 

(21) always requires knowledge of pn and qi, and may also sometimes 

require knowledge of deadlines of ri’s other subtasks. This means that 

solving Eqs. (20) and (21) will in general require cross-node 

communication. This information exchange can be effectively 

implemented with little extra commu- nication cost. For example, many 

approaches to the network utility maximization problem employ 

efficient mechanisms to exchange 

   implicit information (e.g., congestion price marked in packets, loss 

 

 
 

  

 
· 

 
 

 

 

 
    

rate, or some piggybacked values) with no extra packet delivery 

(Athuraliya et al., 2001; Athuraliya and Low,   2000). 

Although in general solving the dual problem requires   com- 

munication between nodes, we characterize a domain in which no  

information  needs  to  be  exchanged.  Consider  a  soft  real- 
   



 

= 

1   k   m 

 
time 

system 

such  that  

the  

utility  

function  

for  each  

task  can 

be  

decompo

sed  into  

functions  

of  its  

subtask  

deadlines

,     i.e., 
mi 

where D = {D(i,k)}, ∀(i, k) ∈ {(s, w)|rs ∈ r, w = 1, . . . , ms}, p = {pn}, 

∀ n = 1, . . ., VN and q = {qt}, ∀ t = 1, . . ., VT. 
Note that for soft real-time systems, the last term in Eq. (18) and 

Ui (D(i,1), . . . , D(i,mi )
) = 

),
k  1

U(i,k)(D(i,k)). Since it is a soft real-time 
system, as shown in Section 4.3, the end-to-end task deadline con- 

straint  
), 

D(i,k)  ≤ Di can be ignored. Therefore, in this case the 
≤  ≤  i 

related values (e.g., q) are removed. subtask deadlines are independent of each other, because (i) task 



 

i i 

 

Table 2 

Local deadlines and density for the pure laxity ratio approach. 

 

 

 

 

Fig. 2. Topology of a toy example. 

 
 

price q  is not used, and (ii)     ∂    U  is independent of all subtask 
∂D(i,k) 
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deadlines except D(i,k). 

 

6.2. Implementation issues 
 

For many practical environments, exchange of control messages can 

also fail, and one may wonder the effect of such failures on our 

distributed computations. Fortunately, our optimization frame- works can 

converge to an optimal solution, even in the presence of such control 

message losses. For example, when a control message is lost at some 

iteration step, the frameworks can use the con- trol message from the 

previous step. This asynchronous iteration reduces the rate of 

convergence, but still guarantees convergence (Bertsekas and Tsitsiklis, 

1997). A key idea of the proof (Bertsekas and Tsitsiklis, 1997) is to set a 

worst-case period by which the con- trol messages become outdated, 

and the rest of the proof is similar to the case of synchronous iterations. 

Another implementation issue is how to determine when the 

iterative computation of Eq. (21) converges. We define our conver- 

gence criteria if the following condition holds for all D(i,k): 

 
 

 

 
 

 

As expected, the deadline distribution of PO is exactly the same 

as that of PLR. However, in PLR and PO, the density (
),

jC(i,j) /D(i,j)) 

of node Nc exceeds 1.0, which means subtasks in Nc may not be 

schedulable. If we add the schedulability constraints of Eq. (10) to our 

formulation, then the resulting deadlines guarantee the schedulability 

of node Nc, as shown in Table 2 under POS. We note that the increase to 

local deadlines in Nc comes from the laxity of other subtasks, in 

particular, taking the laxity equally out of those subtasks. For instance, 

in POS, the local deadline D(1,3,c)  is 6.898, 
which is an increase from 6.000 in PLR and PO. Such an increase 

|D(i,k)(t + 1) − D(i,k)(t)| < ED, (22) by 0.898 comes equally from the decrease of D(1,1,a) and D(1,2,b) by 

where ED is a sufficiently small positive real number; this generates a 

trade-off between accuracy and rate of convergence. Many gradi- ent 

algorithms employ this kind of convergence criteria (Bertsekas and 

Tsitsiklis, 1997). 

 
7. Performance evaluation 

 
In this section, we evaluate the performance of our framework. To do 

this, we first present an intuitive  example,  which shows how our utility 

function decisions presented in Section 5.2 accom- modate and improve 

the existing heuristics (Jonsson and  Shin, 1997; Kao and Garcia-Molina, 

1993). Then, we present quantitative results through simulations, and 

discuss  them. 

 
7.1. A toy example 

 
We devise a simple topology that consists of two tasks and five 

nodes, as shown in Fig. 2. Only the node Nc has multiple subtasks, and 

other node has one subtask. For the two tasks, Table 1 lists the execution 

times of their subtasks and their end-to-end deadlines. 

For the same topology in Fig. 2, we simulate three approaches: PLR, 

PO, and POS. Here PLR stands for the Pure Laxity Ratio approach, 

which equally divides the laxity as shown in Eq. (13). Here PO 

represents our framework in Section 5.1 using the utility 

0.449, respectively. Thus, we can see that our approach (POS)  is 

able to find a schedulable solution while being able to follow the 

principle of the pure laxity ratio as much as possible. 

For the same example shown in Fig. 2, we simulate another three 

approaches: NLR, NO, and NOS. NLR (the Normalized Laxity Ratio 

approach) corresponds to PLR, but it divides the laxity proportion- ally to 

the subtask’s execution time as shown in Eq. (16). Here NO and NOS 

correspond to PO and POS, but they use the utility func- tion of Eq. (17). 

Table 3 compares the deadline assignment of the three approaches. It 

shows that NO produces the same result as that of NLR. Similar to POS, 

NOS guarantees the node’s schedulability by increasing the deadlines of 

subtasks in Nc and by decreasing those in Na, Nb, Nd  and Ne. 

In summary, our approach not only accommodates the previ- 

ous heuristics precisely, but it also improves them by guaranteeing the 

schedulability of subtasks within nodes. Since node schedu- lability 

ensures that each subtask can meet its local deadline, we can guarantee 

that the proposed solutions will meet end-to-end deadlines. 

 
 

 

Table 3 

Local deadlines and density for the normalized laxity ratio approach. 

functions of Eq. (14) and the constraints of Eq. (11), but   without  Na Nb Nc Nd Ne 

the node schedulability constraints (Eq. (10)). POS also represents 
NLR      

our framework using the utility functions of Eq. (14) and the con- r1 3.400 6.800 6.800 – – 

straints of Eq. (11) along with the schedulability constraints of Eq. r2 – – 1.200 2.400 2.400 

(10). Table 2 lists the deadline assignment for the three approaches. Density 0.294 0.294 1.127 0.833 0.833 

 NO      
Table 1 

Subtask execution times and task end-to-end deadline for the example shown in Fig. 2. 
 

 

Na Nb Nc Nd Ne Deadline (Di ) 

r1 3.400 6.800 6.800 – – 

r2 – – 1.200 2.400 2.400 

Density 0.294 0.294 1.127 0.833 0.833 

NOS 
 

 

r1 5.000 6.000 6.000 – – 

r2 – – 1.333 2.333 2.333 

Density 0.200 0.333 1.083 0.857 0.857 

 
r1 5.000 6.000 6.000 – – 

r2 – – 1.333 2.333 2.333 

Density 0.200 0.333 1.083 0.857 0.857 

      POS      
r1 4.551 5.551 6.898 – – 

r2 – – 1.408 2.296 2.296 

Density 0.219 0.360 1.000 0.871 0.871 

 

 r1 3.391 6.791 6.817 – – 

r1 1.0 2.0 2.0 – – 17.0  r2 – – 1.415 2.292 2.292 

r2 – – 1.0 2.0 2.0 6.0  Density 0.294 0.294 1.000 0.872 0.872 
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(a) Sequential structure 
 

 

(b) Tree structure 
 

Fig. 3. Topology of simulations. 

 

 

7.2. Simulation results and discussion 

 
This subsection aims at showing how our framework in Section 

5.2 improves the existing heuristics (Jonsson and Shin, 1997; Kao and 

Garcia-Molina, 1993) in different environments. To do this, we choose 

two general topologies with various synthetic task sets. The first topology 

is a sequential structure in Fig. 3(a), and some control systems have such a 

topology. The topology contains five process- ing nodes, and each task 

is executed from the leftmost node to the rightmost node in a 

sequential manner, and therefore it has five subtasks. The second 

topology is a tree structure in Fig. 3(b), which is shown in sensor 

networks that collect sensor data at leaf nodes and relays/processes the 

data through intermediate nodes to the root node. The topology has 29 

nodes forming a tree structure including 16 leaf nodes. Each task is 

executed from one of the leaf nodes to the root node in a sequential 

manner, and thus it has four subtasks. 

We generate synthetic task sets for the two topologies, with one 

input parameter: the number of tasks in each task set. For the 

sequential-structure topology in Fig. 3(a), the number of tasks is set to 

2, 3, 4, 5, 6, 7, 8, 9 and 10, and for the tree-structure topology 

in Fig. 3(b), the number is set to 2, 4, 6, 8, 10, 12, 14 and 16. And, 
each task is randomly generated as follows: Di is uniformly chosen in 

[100, 10,000), and the execution time of its subtasks {C(i,k) 
mi is chosen 

according to the exponential distribution of C(i,k)/Di where 

the probability density function is A · exp (− A · x) with A = 30.  Note 

For each combination of the type of topologies and the number of 

tasks, we generate 1000 task sets. For each task set, we assign 

intermediate deadlines according to our framework (in  Section 5.1) using 

the utility function of Eqs. (14) and (17) (POS and NOS, respectively) 

and corresponding existing heuristic approaches PLR and NLR. To solve 

the convex optimization problem for POS and NOS, we use the 

optimization tools in MATLAB. 

Fig. 4(a) and (b) plots the number of  schedulable  task  sets when 

intermediate deadlines are determined by POS, NOS, PLR and NLR. 

Here we deem a task set schedulable, if Eqs. (10) and 

(11) are satisfied, i.e., the density of each node is no larger than its 

utilization bound, and each end-to-end timing requirement is satisfied. 

We observe that the number of schedulable task sets by each approach 

becomes smaller as the number of tasks gets larger, which is intuitive. 

We also observe that POS and NOS schedule more task sets than both 

PLR and NLR. Actually POS and NOS dominate both PLR and NLR, 

which means there is no task set which is schedulable by PLR or NLR, 

but unschedulable by POS or NOS. This is because, while PLR and NLR 

employ heuristic approaches to assign intermediate deadlines without 

considering the node schedulability, POS and NOS solve an optimization 

prob- lem so that they find a proper intermediate deadline assignment 

that makes the task set schedulable as long as such an assignment is 

feasible. 

Another observation is that the scheduling performance gap between 

POS and NOS, and PLR and NLR varies with the type of topologies. In 

Fig. 4(a), the scheduling performance of PLR and NLR is not poor, and in 

particular, the difference between the number of schedulable sets by NLR 

and that of POS and NOS is upper-bounded by 270 in any case. However, 

when the number of tasks is 10 in Fig. 4(b), PLR and NLR result in only 

a limited number of schedu- lable task sets, while almost all task sets 

are schedulable by POS and NOS. This is because, for some topologies 

where all tasks are executed in the same nodes such as Fig. 3(a), PLR 

and NLR can be effective since they evenly or proportionally 

distribute inter- mediate deadlines. However, the same cannot be said 

for another type of topologies such as Fig. 3(b) since the heuristics, 

which do not consider which node has larger demands, do not assign 

longer deadlines for subtasks executed in the root node. This results in 

violating the root node  schedulability. 

One more observation is that NLR is better than PLR when all tasks 

are executed in the same nodes in Fig. 3(a) since it can equally distribute 

the contribution of each subtask to the node schedulabil- ity (i.e., 

C(i,k)/D(i,k) is the same for all 1 ≤ k ≤ mi.). However, as shown in Fig. 3(b), 

this cannot be generalized because NLR cannot consider each node’s 

demand from other tasks. 

that we remove and re-generate a task with 
),mi

 
k=1 

C(i,k) > Di since Fig. 5(a) and (b) plot the average standard deviation between 

it is impossible to meet the end-to-end deadline of the task. POS and PLR, and NOS and NLR for task sets which are schedulable 
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by PLR and NLR.3 These figures represent how the intermediate 

deadline assignment by POS and NOS is deviated from that by PLR and 

NLR, respectively. As shown in the figures, when the number of tasks is 

small, the standard deviation is almost zero, which means the assignment 

of POS and NOS is almost the same as PLR and NLR, respectively. This 

demonstrates that our choice of utility functions properly accommodate 

the corresponding heuristics. However, as the number of task sets gets 

larger, the standard deviation gets increased. This is because, at the 

expense of large deviation, POS and NOS make an unschedulable 

intermediate deadline  assignment schedulable. 

In summary, POS and NOS significantly improve the schedul- ing 

performance of PLR and NLR while they respectively emulate the 

intermediate deadline assignment of PLR and NLR as much as possible. 

While  there  is  significant  improvement  in  terms  of  schedul- ing 

performance, the limitation of our framework is related to its time-

complexity.  A  convex  optimization  problem,  to  which  our framework  

belongs,  is  known  to  be  solvable  and  has  less  time- complexity than 

that of a general non-linear optimization problem, but its time-complexity 

depends on the algorithm that is employed by  the  optimization  problem  

solver  (Boyd  and  Vandenberghe, 2004). For example, the gradient 

method needs O(1/E) iterations to find a feasible solution with an error 

E (i.e., a solution X which satisfies |X − X* | ≤ E, where X*  is the optimal 

solution.) (Boyd and Vandenberghe,  2004).  Therefore,  for  some  

environments  where time-complexity really matters, we can adjust the 

tradeoff between accuracy (e.g., how accurately our framework follows 

heuristics) and time-complexity (e.g., the number of iterations). 

 
8. Conclusion 

 
This paper presented a convex optimization framework for both soft 

and hard distributed real-time systems, particularly, to effec- tively 

address the deadline assignment problem. The presented framework is 

suitable for finding the maximum delay-sensitive system utility for 

soft real-time tasks. It also provides mathe- matical foundation to 

existing heuristic solutions to the deadline assignment problem in hard 

real-time systems, fostering the understanding of these solutions and 

facilitating their improve- ment toward schedulability guarantees. 

Several aspects of the framework are directions for further 

research. Our framework mainly accepts convex constraints. How- ever, 

most efficient schedulability conditions do not satisfy   this 

 
 

 

3 We do not present the case of 10 tasks in Fig. 5(a), since the number of sample task 

sets which are scheudlable by PLR and NLR is too small. 

property. Hence, one direction is to develop a new tight, con- vex 

schedulability condition. Our framework involves distributed 

computation to find an optimal solution, requiring information 

exchange across nodes. While  such  information  exchange can be 

efficiently implemented with little extra communication cost 

(Athuraliya et al., 2001; Athuraliya and Low, 2000) in most cases, it 

could nevertheless incur some communication cost in some cases. 

Therefore, another interesting direction is to develop a way to 

obtain solutions with reasonable performance with only a little or even 

no information exchange, and we plan to consider a game- theoretic 

approach to address this problem. Another direction for future work is 

to extend our optimization framework toward dif- ferent wireless 

network environments, such as sensor networks (Raazi and Lee, 2010; 

Akyildiz et al., 2002) and mobile ad hoc net- works (Hieu and Hong, 

2010). For example, since such networks are often bandwidth-limited, 

it is generally necessary to employ some resource-efficient techniques, 

such as selective packet drop (Lee and Shin, 2007), and we plan to 

explore incorporating such techniques into our optimization framework 

for adaptive QoS man- agement (Kim et al., 2010) and sustainable real-

time guarantees (Burns and Baruah, 2008). 
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