

Convex optimization framework for intermediate deadline assignment in soft and

hard real-time distributed systems

Jinkyu Lee , Insik Shin , Arvind Easwaran

ABSTRACT

It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical

approaches suggest the use of intermedi- ate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework

for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints

to assign interme- diate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the

deadline assignment problem while maximizing the aggre- gate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline

assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.

Keywords: Intermediate deadline assignment, Convex optimization, Soft real-time distributed systems, Hard real-time distributed systems

1. Introduction

A distributed task is usually comprised of several subtasks, each one

having processing demands at some node in order, and often requires

end-to-end guarantees on quality-of-service (QoS). For example, a

real-time task is subject to timing constraints typically specified by

deadlines (hard real-time systems) or time-sensitive utility functions

(soft real-time systems) (Wu et al., 2005). The optimization goal of

such a distributed system is often defined as maximizing schedulability

(i.e., maximizing the number of schedu- lable tasks) in hard real-time

systems, or maximizing the collective utilities of individual tasks in soft

real-time systems. Achieving such delay-sensitive optimization goals is

generally difficult, because it is challenging to precisely calculate

maximum end-to-end delays in the presence of resource contention

among tasks.

In a distributed system, tasks potentially compete with each other

for computing resources whenever they go through the same node.

Prioritized scheduling is an effective mechanism to provide bounded

local delays to individual subtasks within a node, while they are subject

to interference from other subtasks. Nonetheless, prioritized scheduling

does not significantly alleviate the difficulty

of computing the maximum end-to-end delay of a task. In many

practical cases, it is computationally intractable to calculate the

maximum local delay of a subtask (Baruah et al., 1990; Leung and

Whitehead, 1982; Palencia and Harbour, 2005).

As a practical solution, many previous studies have commonly

adopted an approach to approximate the maximum end-to-end delay rather

than to compute it exactly (Garcia and Harbour, 1995; Saksena and Hong,

1996; Kao and Garcia-Molina, 1993, 1994; Bettati and Liu, 1992; Natale

and Stankovic, 1994; Jonsson and Shin, 1997). They introduced a local

deadline for each subtask in a node, and used this deadline to upper-

bound the local delay of the sub- task. Then, the end-to-end delay of a

task can be upper-bounded by the sum of local deadlines of all its subtasks.

The problem of finding the task end-to-end delays for some optimization

objectives, is then reduced to the problem of finding local subtask

deadlines for the given objective. Many existing studies proposed

methods to assign local subtask deadlines in order to maximize

schedulability (Garcia and Harbour, 1995; Saksena and Hong, 1996; Kao

and Garcia- Molina, 1993, 1994; Bettati and Liu, 1992; Natale and

Stankovic, 1994; Jonsson and Shin, 1997). We believe that a

perspective of considering the resource contention from other subtasks is

cru- cial to determining local deadlines of subtasks. However, all these

previous studies commonly lack such a perspective.

The difficulty of finding a “right” local subtask deadline for some

optimization objective lies on its seemingly contradicting effects. If the

local deadline of a subtask becomes larger, then it imposes more

stringent timing constraints on the other subtasks that belong to the

same task, given that we naturally want to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

minimize its end-to-end delay. On the other hand, if the local

deadline of a subtask becomes smaller, it can potentially interfere with

more subtasks within the same node that belong to other tasks,

threatening node schedulability. In determining a local subtask

deadline, therefore, it is necessary to investigate its effect on both the

other subtasks of the same task (across nodes) and the other subtasks

within the same node (across tasks). It entails a global approach to the

deadline assignment problem of individual tasks in the presence of

optimization objectives.

We propose a framework to address different QoS-related con- vex

optimization problems for both soft and hard real-time tasks. Our

framework allows global viewpoints to be incorporated into the

formulation of deadline assignment problems, taking resource

contention among tasks into consideration. It derives local solu- tions

through Lagrange duality, wherein nodes can collectively converge to

a global optimum through distributed computation. There has been

little work on maximizing the aggregate QoS of end-to-end real-time

tasks. Our framework can be effectively used to find local deadlines

that maximize the collective QoS, when each soft real-time task has a

utility function that characterizes its QoS. In order to maximize

schedulability of deadline-based hard real-time tasks, many previous

studies proposed heuristics to the deadline assignment problem. We

show that our framework can characterize these heuristics using

closed-form utility functions, thereby providing a precise

mathematical interpretation of the heuristics. We note that the

solutions proposed by those heuris- tics do not necessarily meet end-to-

end deadlines. By incorporating these heuristics in our convex

optimization framework, we provide guarantees on end-to-end deadlines.

Our paper is organized as follows. Section 2 presents related work,

and Section 3 describes the system model. Section 4 provides

these techniques have been applied to solve the problem of guar-

anteeing end-to-end delays in a distributed real-time system (Chen et al.,

2007; Bini and Cervin, 2008; Zhu et al., 2009; Lumezanu et al., 2008).

Some of these techniques use centralized solutions to the optimization

problem (Chen et al., 2007; Bini and Cervin, 2008; Zhu et al., 2009).

Distributed solutions to this optimization problem have been recently

considered (Lumezanu et al., 2008). This study assumes proportional

share scheduling within nodes. Since such a scheduling framework is

not implementable, it must be approxi- mated. However, any

approximation of the scheduling framework will invalidate the proposed

analysis. Distributed optimization has been applied to achieving QoS

maximization for soft real-time tasks through dynamic route and rate

assignments in distributed real-time systems (Shu et al., 2008), and

through bandwidth allo- cation in wireless networks (Jayachandran and

Abdelzaher, 2008). Our previous study (Lee et al., 2010) also provides

a distributed optimization framework for QoS maximization in the

presence of failure. However, this paper is differentiated from those

studies in two aspects: our framework (i) aims at intermediate deadline

assignment and (ii) accommodates both soft and hard real-time

distributed systems.

3. System model

In this paper, we consider a distributed real-time system with VN

nodes and VT tasks. The nodes are numbered 1, . . ., Vn such that each

node has a unique number, and we express a node number n as Nn. Each

task ri ∈ r is comprised of mi subtasks such that each subtask executes

on exactly one node. The kth subtask executing on Nn is denoted as

J(i,k,n); whenever n is irrelevant we omit the third parameter

completely. Adjacent subtasks J(i,k) and J(i,k 1)

our convex optimization framework for soft real-time systems, and
Section 5 extends the framework toward hard real-time systems, execute in sequence in a pipelined fashion; J(i,k+1) becomes

+

ready

accommodating existing heuristics with various utility functions.

Section 6 discusses how to find solutions in our framework in a

distributed manner. Section 7 presents performance evaluation of our

framework. Finally, Section 8 concludes this paper with future work.

for execution when J(i,k) completes. We let C(i,k) denote the worst-
case (maximum) execution time of subtask J(i,k). Each task ri is a

sporadic task such that its first subtask J(i,1) is released repeatedly with a

minimum gap of Ti time units.

Let d(i,k) denote the maximum local response time that subtask J(i,k)

experiences in its node; it is a time duration from an instant at which it
is released in the node to another instant at which it finishes its
execution. Then, we denote the end-to-end response

2. Related work
time of a task ri by di, where di =

),

mi

k=1
d(i,k).

Many studies have focused on the local subtask deadline assign- ment

problem, with a view to controlling end-to-end delays (Garcia and

Harbour, 1995; Saksena and Hong, 1996; Kao and Garcia- Molina, 1993,

1994; Bettati and Liu, 1992; Natale and Stankovic, 1994; Jonsson and

Shin, 1997). These studies focus on how to divide the end-to-end

deadline of a task into local deadlines for its subtasks, but they do

not consider the resource contention in intermediate nodes between

subtasks of different tasks. There are some studies on end-to-end delay

analysis of distributed real- time systems (Jayachandran and

Abdelzaher, 2008, 2009). These studies focus on reducing the pessimism

in calculating end-to-end delays for pipelined streams of computations,

but their approach cannot be used to guarantee schedulability and at

the same time achieve certain optimization goals such as maximizing QoS.

A study (Stavrinides and Karatza, 2010) examines some algorithms and

their alternative versions for guarantees on end-to-end deadline in

distributed real-time systems, but their goal is to utilize imprecise

computations (Lin et al., 1987), which is different from our system model.

Convex optimization theory has been a popular tool to solve many

global optimization problems for several decades. Tech- niques that

find optimal solutions either in a centralized manner, or using

distributed computations (Lagrangian duality), have been developed

(Bertsekas and Tsitsiklis, 1997; Low, 1999). Many of

In this paper, we assume each node consists of a uniprocessor

platform, and is scheduled by Earliest Deadline First (EDF). How- ever,

the technique described in this paper can be easily extended to other

platforms and scheduling algorithms as long as the utilization bound

(explained in Section 4.2) is provided.

4. Convex optimization framework for soft real-time

systems

In this section, we develop a convex optimization framework for soft

real-time systems. To do this, we first explain the characteris- tics of soft

real-time systems, and then derive a node schedulability condition. Using

the condition, we formulate a convex optimization problem to determine

local deadlines for soft real-time systems.

4.1. Soft real-time systems and their goal

Different from hard real-time systems, soft real-time systems

allows a task to miss its deadline, and there are many notions of soft

real-time supports, such as QoS depending on delay (Wu et al., 2005),

satisfying a given tardiness (Devi and Anderson, 2004), prob- abilistic

guarantees on timing requirements (Tia et al., 1995; Atlas and

Bestavros, 1998), etc. Among various notions of soft real-time supports,

in this paper, we focus on maximizing QoS depending

(a) Thus the problem of bounding di for each task ri that maximizes Usys, is

transformed to the problem of finding D(i,k) for each subtask J(i,k) that

maximizes Usys. Note that it is essential to decompose the end-to-end
delay into delays (and therefore artificial deadlines) for individual
subtasks, because of the limitations of existing real-time scheduling

theory.2 These local deadlines enable us to optimize the global system
utility while still maintaining the schedulability of individual nodes.

4.2. Node schedulability condition

A function capturing a soft deadline

(b)

We now consider a node Nn with subtasks {J(i,k,x)|x = n}, and derive

schedulability conditions under the preemptive EDF sched- uler, i.e.,

conditions which guarantee d(i,k) ≤ D(i,k). We first define a density of

subtask J(i,k) as follows:

.

Then, we guarantee that all subtasks executed in Nn finish their

execution within their local deadlines, if the sum of density values of the

subtasks is no larger than a given utilization bound as follows (Liu and

Layland, 1973):

A differentiable function

Fig. 1. Utility functions.

on delay. That is, we assume that each task has its own utility

function Ui, which is a function of its end-to-end delay di. Util- ity

functions can be viewed as characterizing different QoS levels. We

consider concave and non-increasing utility functions to cap- ture that

a greater QoS comes with a shorter end-to-end delay and

degradation of QoS gets more severe as delay gets longer. Then,

such a QoS based soft real-time support can also capture a situation

where degradation of QoS is smooth before a certain point (i.e., a soft

deadline), but becomes rapid after this point, as shown in Fig. 1.

Examples of tasks subject to such soft deadlines (i.e., Fig. 1(a))

include plot correlation and track maintenance of a coastal air defense

system (see Fig. 2(b) in Wu et al. (2005)). In this

where UBn represents the utilization bound of the scheduling algo- rithm

used by node Nn, and UBn = 1 when the preemptive EDF scheduler is

deployed on a uniprocessor platform (Liu and Layland, 1973). Since a

local deadline D(i,k) is no larger than its period, the above schedulability

condition holds, but it is only sufficient and not necessary.

In order to formulate the convex optimization problem to be

developed in Section 4.3, all the constraints used in the optimiza- tion

problem must be concave functions of the variables. In our framework,

local subtask deadlines D(i,k) are the variables, and the schedulability

conditions for each node (Eq. (4)) are used as con- straints. We test the

concavity of the schedulability conditions, and the following statement

is true for all D(i0 ,k0)
> 0:

paper, we consider utility functions to be differentiable in order to

incorporate them into the proposed optimization framework. If an

original function is not differentiable as shown in Fig. 1(a), it can be

approximated as the one shown in Fig. 1(b). We then define the

.
system utility as

Given a set of QoS-sensitive tasks as above, informally, our aim is to

provide QoS guarantees as much as possible. We capture it by

maximizing the system utility function Usys. Then our goal is to bound

the delay di of each task ri ∈ r that maximizes Usys. However,

computing this bound exactly in general distributed sys- tems is

computationally intractable (Baruah et al., 1990; Palencia and

Harbour, 2005). Hence we approximate the bound on di as fol-

Hence each constraint is a concave function of deadline vari- ables,

and it can be used in our convex optimization framework.

4.3. Primal problem

The deadline assignment problem aims to determine the local

deadline (D(i,k)) of every subtask (J(i,k)) in order to provide a guar-

anteed maximum system utility. Thus the optimization problem

(primal problem) can be formulated as

(Primal problem)

lows. For each subtask J(i,k), we define a local (artificial) deadline D(i,k)

such that D(i,k) ≤ Ti. We derive conditions which guarantee that every
occurrence of each subtask finishes by its local deadline, i.e.,

we enforce the condition d(i,k) ≤ D(i,k) for each subtask J(i,k). Then

we can upper-bound di as
2 Current real-time scheduling theories are mostly developed for node-level

schedulability analysis, and the system-level analysis is achieved by assembling

individual node-level analysis results. Therefore, it is hard to directly support a task model in

which (i) a series of subtasks sequentially go through multiple nodes with one end-to-end

deadline, and (ii) the sets of nodes which subtasks of different tasks use are different.

),mi

mi

5.2. Utility function decision

Many previous studies proposed heuristic principles to the deadline

assignment problem, and such heuristics can be incorpo-
By Eq. (5) and our assumption of concavity of Ui(·), the above

primal problem is a convex optimization problem.

5. Convex optimization framework for hard real-time

systems

rated in our framework using carefully designed utility functions. We

now discuss two such existing heuristics (Jonsson and Shin, 1997; Kao

and Garcia-Molina, 1993). Let laxity of a task denote the difference

between its end-to-end deadline and the sum of
its subtask execution times; laxity of task ri is Di −

),
j:1 j m

C(i,j).
≤ ≤ i

In this section, we extend the convex optimization framework

developed in the previous section toward hard real-time systems. We

first explain the characteristics of hard real-time systems, and then

formulate the convex optimization framework for such sys- tems.

While hard real-time systems do not have any utility function by nature,

we present how to decide utility functions to accommo- date existing

heuristic approaches.

Heuristics in (Jonsson and Shin, 1997; Kao and Garcia-Molina, 1993)

distribute this laxity between subtasks to solve the deadline assign- ment

problem.

Under the pure laxity ratio approach (Jonsson and Shin, 1997; Kao

and Garcia-Molina, 1993), a laxity of each task is assigned to subtasks

as follows:

5.1. Hard real-time systems, their goal, and primal problem

For hard real-time systems, task ri has its relative end-to-end

deadline Di such that the execution of task ri should be finished

within Di time units after its release as follows: The principle of this approach, which is uniform laxity dis-
tribution, ignores node level schedulability, and hence it can be

mi

equivalently expressed by our primal problem using the follow- ing

utility function for task ri with constraint (11) (end-to-end deadline)

and without constraint (10) (node-level schedulability):

Here we assume that it holds Di ≤ Ti for each task ri ∈ r.

Hard real-time tasks typically require schedulability guarantees, i.e.,

satisfaction of end-to-end task deadline. As long as task delays are

shorter than or equal to the respective deadlines, there is no incentive

to reduce those delays any further. This means there is no utility

function in hard real-time systems by nature, and instead we are

interested in how to distribute a deadline of a task to each

subtask. Therefore, we design utility functions for hard real-time

systems in order to implement certain policies of distributing dead-
where E is a small value that prevents an undesirable situation (lim
log(x) = −∞). Since Ui(·) is independent of Uj(·) (i =/ j), Ui (·) =

lines. We will present how to design utility functions for existing

deadline assignment policies (Jonsson and Shin, 1997; Kao and Garcia-

Molina, 1993) in Section 5.2, and now we present the primal problem for

hard real-time systems for given utility functions.

The deadline assignment problem for determining local dead-

x→0

k=1
log(D(i,k) − C(i,k) + E) = log (

n

mized when

k=1
(D(i,k) − C(i,k) + E)) is maxi-

lines of subtasks for hard real-time systems can be formulated by

adding end-to-end deadline constraints (Eq. (11)) to the problem in

Section 4.3 as follows:

(Primal problem)

where E → 0. Therefore, our framework using the utility function of Eq.

(14) with constraint (11) and without constraint (10) gives the same

results as the pure laxity ratio approach. Note that this is a convex

optimization problem since the utility function (14) is

 concave.

Under the normalized laxity ratio approach, existing heuristics assign

laxity in proportion to subtask execution time as follows (Jonsson and

Shin, 1997; Kao and Garcia-Molina, 1993):

Similar to Eq. (5), the following inequality regarding Eq. (11) is

.

true for all D(i0 ,k0)
> 0:

The normalized laxity ratio distributes the laxity of each task

proportional to the execution time of its subtasks, and we also
Therefore by Eqs. (5) and (12), the primal problem for hard real-

time systems is a convex optimization problem as long as Ui(·) for all ri

∈ r is concave.

express this principle by our primal problem using the following utility

function for task ri with constraint (11) and without con- straint (10):

In this formulation, node price pn is the Lagrange multiplier for the

schedulability constraint of node Nn. Likewise, task price qi is

the Lagrange multiplier for the end-to-end deadline constraint of

task ri. Suppose each utility function Ui is concave. Then, forcing

node prices pn and task prices qi to be non-negative guarantees

where E is a small value that prevents an undesirable situation (lim log(x)

= −∞). Similar to the pure laxity ratio approach, the
x→0

normalized laxity ratio approach also does not consider node

schedulability. Hence, we can incorporate this approach in our framework

by maximizing the utility function of Eq. (17), subject to only the end-

to-end deadline constraints given by Eq. (11). With a similar reasoning

to that of the pure laxity ratio approach, we can show that the utility

functions of Eq. (17) enforce the principle specified in Eq. (16).
We note that both the pure and normalized laxity ratio approach

strong duality (see Chapter 5 in Boyd and Vandenberghe (2004)). This

means that (i) there is no duality gap between the primal and Lagrange

dual problems (i.e., optimal dual solution is equivalent to the optimal

primal solution), and (ii) dual optimal node and task prices exist. In this

case, we can solve the dual problem using the gradient projection

algorithm (Bertsekas and Tsitsiklis, 1997; Low, 1999). That is, we can

find the optimal solution in an iterative man- ner (i.e., A(t + 1) = f(A(t)),

where A(t) means the value of A at the tth iteration). Node prices pn

and task prices qi can be iterated as follows:

themselves do not consider the schedulability of subtasks within a

node. This means we cannot guarantee that the local delay d(i,k) is

less than or equal to the local deadline D(i,k), resulting in no guar- antee

on end-to-end delays. To guarantee such end-to-end delays
for hard real-time systems, our framework can easily extend these

approaches with node schedulability by incorporating the con- straint

of Eq. (10) in the optimization problem. Then, we can find

the local subtask deadlines according to the principle of heuristics,

subject to node schedulability. We will explain this feature in detail in

Section 7.

6. Distributed solution framework

While our framework in Sections 4 and 5 support soft and hard

real-time distributed systems, respectively, the framework requires a

coordinator node. That is, whenever tasks are in and out

where [x]+ means max (0, x).

The constants y n and ıi are step sizes and determine the rate of

convergence of the iteration. These constants guarantee convergence

of the iteration whenever they satisfy Lipschitz conti- nuity (Bertsekas

and Tsitsiklis, 1997). We can then obtain deadline D(i,k)(t + 1) of subtask

J(i,k,n), by solving the differential equation given below in which D(i,x)

= D(i,x)(t) for all x:

or task specifications are modified, the coordinator node should

receive the information about such changes, re-compute all inter-

mediate deadlines of each subtask, and distribute the deadlines.

Therefore, such a centralized approach may require a lot of mes-

.

sage exchanges and high computing power of the coordinator node,

and therefore it may not be suitable for some environments where

explicit message exchanges are neither possible nor inex- pensive or

no node has enough computing capability. This entails the need of a

distributed framework. In this section, we propose a distributed solution

framework, which corresponds to the primal problems in Sections 4.3

and 5.1. Then, we discuss implementation issues.

6.1. Dual problem and distributed computation

Any optimization problem can be re-written in its dual form

using Lagrange multipliers (see Chapter 5 in Boyd and Vandenberghe

(2004)). This formulation is called the Lagrange dual problem. For the

optimization problem presented in the previous sections, its Lagrange

dual problem can be defined as follows:

(Dual problem)

Note that the only variable in this equation is D(i,k)(t + 1), and

therefore it can be computed.

The optimal solution to the dual problem can be obtained

through distributed computation. Each node Nn needs to compute its

node price pn in Eq. (19), and this requires knowledge of all the

subtask deadlines in Nn. Each task ri needs to compute its task price qi in

Eq. (20), and this requires knowledge of deadlines of ri’s subtasks. Thus,

to compute qi, information needs to be exchanged between nodes that

execute ri’s subtasks. The computation of sub- task deadline D(i,k) in Eq.

(21) always requires knowledge of pn and qi, and may also sometimes

require knowledge of deadlines of ri’s other subtasks. This means that

solving Eqs. (20) and (21) will in general require cross-node

communication. This information exchange can be effectively

implemented with little extra commu- nication cost. For example, many

approaches to the network utility maximization problem employ

efficient mechanisms to exchange

 implicit information (e.g., congestion price marked in packets, loss

·

rate, or some piggybacked values) with no extra packet delivery

(Athuraliya et al., 2001; Athuraliya and Low, 2000).

Although in general solving the dual problem requires com-

munication between nodes, we characterize a domain in which no

information needs to be exchanged. Consider a soft real-

=

1 k m

time

system

such that

the

utility

function

for each

task can

be

decompo

sed into

functions

of its

subtask

deadlines

, i.e.,
mi

where D = {D(i,k)}, ∀(i, k) ∈ {(s, w)|rs ∈ r, w = 1, . . . , ms}, p = {pn},

∀ n = 1, . . ., VN and q = {qt}, ∀ t = 1, . . ., VT.
Note that for soft real-time systems, the last term in Eq. (18) and

Ui (D(i,1), . . . , D(i,mi)
) =

),
k 1

U(i,k)(D(i,k)). Since it is a soft real-time
system, as shown in Section 4.3, the end-to-end task deadline con-

straint
),

D(i,k) ≤ Di can be ignored. Therefore, in this case the
≤ ≤ i

related values (e.g., q) are removed. subtask deadlines are independent of each other, because (i) task

i i

Table 2

Local deadlines and density for the pure laxity ratio approach.

Fig. 2. Topology of a toy example.

price q is not used, and (ii) ∂ U is independent of all subtask
∂D(i,k)

PLR

PO

Na Nb Nc Nd Ne

deadlines except D(i,k).

6.2. Implementation issues

For many practical environments, exchange of control messages can

also fail, and one may wonder the effect of such failures on our

distributed computations. Fortunately, our optimization frame- works can

converge to an optimal solution, even in the presence of such control

message losses. For example, when a control message is lost at some

iteration step, the frameworks can use the con- trol message from the

previous step. This asynchronous iteration reduces the rate of

convergence, but still guarantees convergence (Bertsekas and Tsitsiklis,

1997). A key idea of the proof (Bertsekas and Tsitsiklis, 1997) is to set a

worst-case period by which the con- trol messages become outdated,

and the rest of the proof is similar to the case of synchronous iterations.

Another implementation issue is how to determine when the

iterative computation of Eq. (21) converges. We define our conver-

gence criteria if the following condition holds for all D(i,k):

As expected, the deadline distribution of PO is exactly the same

as that of PLR. However, in PLR and PO, the density (
),

jC(i,j) /D(i,j))

of node Nc exceeds 1.0, which means subtasks in Nc may not be

schedulable. If we add the schedulability constraints of Eq. (10) to our

formulation, then the resulting deadlines guarantee the schedulability

of node Nc, as shown in Table 2 under POS. We note that the increase to

local deadlines in Nc comes from the laxity of other subtasks, in

particular, taking the laxity equally out of those subtasks. For instance,

in POS, the local deadline D(1,3,c) is 6.898,
which is an increase from 6.000 in PLR and PO. Such an increase

|D(i,k)(t + 1) − D(i,k)(t)| < ED, (22) by 0.898 comes equally from the decrease of D(1,1,a) and D(1,2,b) by

where ED is a sufficiently small positive real number; this generates a

trade-off between accuracy and rate of convergence. Many gradi- ent

algorithms employ this kind of convergence criteria (Bertsekas and

Tsitsiklis, 1997).

7. Performance evaluation

In this section, we evaluate the performance of our framework. To do

this, we first present an intuitive example, which shows how our utility

function decisions presented in Section 5.2 accom- modate and improve

the existing heuristics (Jonsson and Shin, 1997; Kao and Garcia-Molina,

1993). Then, we present quantitative results through simulations, and

discuss them.

7.1. A toy example

We devise a simple topology that consists of two tasks and five

nodes, as shown in Fig. 2. Only the node Nc has multiple subtasks, and

other node has one subtask. For the two tasks, Table 1 lists the execution

times of their subtasks and their end-to-end deadlines.

For the same topology in Fig. 2, we simulate three approaches: PLR,

PO, and POS. Here PLR stands for the Pure Laxity Ratio approach,

which equally divides the laxity as shown in Eq. (13). Here PO

represents our framework in Section 5.1 using the utility

0.449, respectively. Thus, we can see that our approach (POS) is

able to find a schedulable solution while being able to follow the

principle of the pure laxity ratio as much as possible.

For the same example shown in Fig. 2, we simulate another three

approaches: NLR, NO, and NOS. NLR (the Normalized Laxity Ratio

approach) corresponds to PLR, but it divides the laxity proportion- ally to

the subtask’s execution time as shown in Eq. (16). Here NO and NOS

correspond to PO and POS, but they use the utility func- tion of Eq. (17).

Table 3 compares the deadline assignment of the three approaches. It

shows that NO produces the same result as that of NLR. Similar to POS,

NOS guarantees the node’s schedulability by increasing the deadlines of

subtasks in Nc and by decreasing those in Na, Nb, Nd and Ne.

In summary, our approach not only accommodates the previ-

ous heuristics precisely, but it also improves them by guaranteeing the

schedulability of subtasks within nodes. Since node schedu- lability

ensures that each subtask can meet its local deadline, we can guarantee

that the proposed solutions will meet end-to-end deadlines.

Table 3

Local deadlines and density for the normalized laxity ratio approach.

functions of Eq. (14) and the constraints of Eq. (11), but without Na Nb Nc Nd Ne

the node schedulability constraints (Eq. (10)). POS also represents
NLR

our framework using the utility functions of Eq. (14) and the con- r1 3.400 6.800 6.800 – –

straints of Eq. (11) along with the schedulability constraints of Eq. r2 – – 1.200 2.400 2.400

(10). Table 2 lists the deadline assignment for the three approaches. Density 0.294 0.294 1.127 0.833 0.833

 NO
Table 1

Subtask execution times and task end-to-end deadline for the example shown in Fig. 2.

Na Nb Nc Nd Ne Deadline (Di)

r1 3.400 6.800 6.800 – –

r2 – – 1.200 2.400 2.400

Density 0.294 0.294 1.127 0.833 0.833

NOS

r1 5.000 6.000 6.000 – –

r2 – – 1.333 2.333 2.333

Density 0.200 0.333 1.083 0.857 0.857

r1 5.000 6.000 6.000 – –

r2 – – 1.333 2.333 2.333

Density 0.200 0.333 1.083 0.857 0.857

 POS
r1 4.551 5.551 6.898 – –

r2 – – 1.408 2.296 2.296

Density 0.219 0.360 1.000 0.871 0.871

 r1 3.391 6.791 6.817 – –

r1 1.0 2.0 2.0 – – 17.0 r2 – – 1.415 2.292 2.292

r2 – – 1.0 2.0 2.0 6.0 Density 0.294 0.294 1.000 0.872 0.872

POS=NOS

NLR

PLR

}
k=1

T
h
e

n
u
m

b
er

 o
f

sc
h
ed

u
la

b
le

 t
as

k
 s

et
s

(a) Sequential structure

(b) Tree structure

Fig. 3. Topology of simulations.

7.2. Simulation results and discussion

This subsection aims at showing how our framework in Section

5.2 improves the existing heuristics (Jonsson and Shin, 1997; Kao and

Garcia-Molina, 1993) in different environments. To do this, we choose

two general topologies with various synthetic task sets. The first topology

is a sequential structure in Fig. 3(a), and some control systems have such a

topology. The topology contains five process- ing nodes, and each task

is executed from the leftmost node to the rightmost node in a

sequential manner, and therefore it has five subtasks. The second

topology is a tree structure in Fig. 3(b), which is shown in sensor

networks that collect sensor data at leaf nodes and relays/processes the

data through intermediate nodes to the root node. The topology has 29

nodes forming a tree structure including 16 leaf nodes. Each task is

executed from one of the leaf nodes to the root node in a sequential

manner, and thus it has four subtasks.

We generate synthetic task sets for the two topologies, with one

input parameter: the number of tasks in each task set. For the

sequential-structure topology in Fig. 3(a), the number of tasks is set to

2, 3, 4, 5, 6, 7, 8, 9 and 10, and for the tree-structure topology

in Fig. 3(b), the number is set to 2, 4, 6, 8, 10, 12, 14 and 16. And,
each task is randomly generated as follows: Di is uniformly chosen in

[100, 10,000), and the execution time of its subtasks {C(i,k)
mi is chosen

according to the exponential distribution of C(i,k)/Di where

the probability density function is A · exp (− A · x) with A = 30. Note

For each combination of the type of topologies and the number of

tasks, we generate 1000 task sets. For each task set, we assign

intermediate deadlines according to our framework (in Section 5.1) using

the utility function of Eqs. (14) and (17) (POS and NOS, respectively)

and corresponding existing heuristic approaches PLR and NLR. To solve

the convex optimization problem for POS and NOS, we use the

optimization tools in MATLAB.

Fig. 4(a) and (b) plots the number of schedulable task sets when

intermediate deadlines are determined by POS, NOS, PLR and NLR.

Here we deem a task set schedulable, if Eqs. (10) and

(11) are satisfied, i.e., the density of each node is no larger than its

utilization bound, and each end-to-end timing requirement is satisfied.

We observe that the number of schedulable task sets by each approach

becomes smaller as the number of tasks gets larger, which is intuitive.

We also observe that POS and NOS schedule more task sets than both

PLR and NLR. Actually POS and NOS dominate both PLR and NLR,

which means there is no task set which is schedulable by PLR or NLR,

but unschedulable by POS or NOS. This is because, while PLR and NLR

employ heuristic approaches to assign intermediate deadlines without

considering the node schedulability, POS and NOS solve an optimization

prob- lem so that they find a proper intermediate deadline assignment

that makes the task set schedulable as long as such an assignment is

feasible.

Another observation is that the scheduling performance gap between

POS and NOS, and PLR and NLR varies with the type of topologies. In

Fig. 4(a), the scheduling performance of PLR and NLR is not poor, and in

particular, the difference between the number of schedulable sets by NLR

and that of POS and NOS is upper-bounded by 270 in any case. However,

when the number of tasks is 10 in Fig. 4(b), PLR and NLR result in only

a limited number of schedu- lable task sets, while almost all task sets

are schedulable by POS and NOS. This is because, for some topologies

where all tasks are executed in the same nodes such as Fig. 3(a), PLR

and NLR can be effective since they evenly or proportionally

distribute inter- mediate deadlines. However, the same cannot be said

for another type of topologies such as Fig. 3(b) since the heuristics,

which do not consider which node has larger demands, do not assign

longer deadlines for subtasks executed in the root node. This results in

violating the root node schedulability.

One more observation is that NLR is better than PLR when all tasks

are executed in the same nodes in Fig. 3(a) since it can equally distribute

the contribution of each subtask to the node schedulabil- ity (i.e.,

C(i,k)/D(i,k) is the same for all 1 ≤ k ≤ mi.). However, as shown in Fig. 3(b),

this cannot be generalized because NLR cannot consider each node’s

demand from other tasks.

that we remove and re-generate a task with
),mi

k=1

C(i,k) > Di since Fig. 5(a) and (b) plot the average standard deviation between

it is impossible to meet the end-to-end deadline of the task. POS and PLR, and NOS and NLR for task sets which are schedulable

(a) (b)
1000 1000

800 800

600 600

400 400

200 200

0
2 3 4 5 6 7 8 9 10

The number of tasks

Sequential-structure topology

0
2 4 6 8 10 12 14 16

The number of tasks

Tree-structure topology

Fig. 4. Schedulability.

POS=NOS

NLR

PLR

T
h
e

n
u
m

b
er

 o
f

sc
h
ed

u
la

b
le

 t
as

k
 s

et
s

sigma(POS,PLR)

sigma(NOS,NLR)

sigma(POS,PLR)
sigma(NOS,NLR)

(a)350 (b)600

300

500

250

200

150

100

50

400

300

200

100

0
2 3 4 5 6 7 8 9

The number of tasks

Sequential-structure topology

0
2 4 6 8 10 12 14 16

The number of tasks

Tree-structure topology

Fig. 5. Standard deviation.

by PLR and NLR.3 These figures represent how the intermediate

deadline assignment by POS and NOS is deviated from that by PLR and

NLR, respectively. As shown in the figures, when the number of tasks is

small, the standard deviation is almost zero, which means the assignment

of POS and NOS is almost the same as PLR and NLR, respectively. This

demonstrates that our choice of utility functions properly accommodate

the corresponding heuristics. However, as the number of task sets gets

larger, the standard deviation gets increased. This is because, at the

expense of large deviation, POS and NOS make an unschedulable

intermediate deadline assignment schedulable.

In summary, POS and NOS significantly improve the schedul- ing

performance of PLR and NLR while they respectively emulate the

intermediate deadline assignment of PLR and NLR as much as possible.

While there is significant improvement in terms of schedul- ing

performance, the limitation of our framework is related to its time-

complexity. A convex optimization problem, to which our framework

belongs, is known to be solvable and has less time- complexity than

that of a general non-linear optimization problem, but its time-complexity

depends on the algorithm that is employed by the optimization problem

solver (Boyd and Vandenberghe, 2004). For example, the gradient

method needs O(1/E) iterations to find a feasible solution with an error

E (i.e., a solution X which satisfies |X − X* | ≤ E, where X* is the optimal

solution.) (Boyd and Vandenberghe, 2004). Therefore, for some

environments where time-complexity really matters, we can adjust the

tradeoff between accuracy (e.g., how accurately our framework follows

heuristics) and time-complexity (e.g., the number of iterations).

8. Conclusion

This paper presented a convex optimization framework for both soft

and hard distributed real-time systems, particularly, to effec- tively

address the deadline assignment problem. The presented framework is

suitable for finding the maximum delay-sensitive system utility for

soft real-time tasks. It also provides mathe- matical foundation to

existing heuristic solutions to the deadline assignment problem in hard

real-time systems, fostering the understanding of these solutions and

facilitating their improve- ment toward schedulability guarantees.

Several aspects of the framework are directions for further

research. Our framework mainly accepts convex constraints. How- ever,

most efficient schedulability conditions do not satisfy this

3 We do not present the case of 10 tasks in Fig. 5(a), since the number of sample task

sets which are scheudlable by PLR and NLR is too small.

property. Hence, one direction is to develop a new tight, con- vex

schedulability condition. Our framework involves distributed

computation to find an optimal solution, requiring information

exchange across nodes. While such information exchange can be

efficiently implemented with little extra communication cost

(Athuraliya et al., 2001; Athuraliya and Low, 2000) in most cases, it

could nevertheless incur some communication cost in some cases.

Therefore, another interesting direction is to develop a way to

obtain solutions with reasonable performance with only a little or even

no information exchange, and we plan to consider a game- theoretic

approach to address this problem. Another direction for future work is

to extend our optimization framework toward dif- ferent wireless

network environments, such as sensor networks (Raazi and Lee, 2010;

Akyildiz et al., 2002) and mobile ad hoc net- works (Hieu and Hong,

2010). For example, since such networks are often bandwidth-limited,

it is generally necessary to employ some resource-efficient techniques,

such as selective packet drop (Lee and Shin, 2007), and we plan to

explore incorporating such techniques into our optimization framework

for adaptive QoS man- agement (Kim et al., 2010) and sustainable real-

time guarantees (Burns and Baruah, 2008).

Acknowledgements

This work was supported in part by Basic Research Lab- oratory

Program (BRL, 2009-0086964), Basic Science Research Program

(2010-0006650), P3 DigiCar Research Center (NCRC, 2012-0000980),

IT/SW Creative research program(NIPA-2010- C1810-1102-0003), SW

Computing R&D Program of KEIT(2011- 10041313), and Global

Collaborative R&D program of KIAT (M002300089) funded by the Korea

Government (MEST/MKE), and KAIST-Microsoft Research Collaboration

Center.

References

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. A survey on sensor

networks. IEEE Communications Magazine 40 (8), 102–114.

Athuraliya, S., Low, S.H. 2000. Optimization flow control II: implementation, Tech. rep.,

Caltech.

Athuraliya, S., Li, V.H., Low, S.H., Yin, Q., 2001. REM: active queue management. IEEE

Network, 48–53.

Atlas, A., Bestavros, A., 1998. Statistical rate monotonic scheduling. In: Proceedings of

IEEE Real-Time Systems Symposium (RTSS), pp. 123–132.

Baruah, S., Howell, R., Rosier, L., 1990. Algorithms and complexity concerning the

preemptive scheduling of periodic, real-time tasks on one processor. Real-Time

Systems 2 (4), 301–324.

Bertsekas, D.P., Tsitsiklis, J.N., 1997. Parallel and Distributed Computation: Numer- ical

Methods. Athena Scientific.

Bettati, R., Liu, J., 1992. End-to-end scheduling to meet deadlines in distributed sys- tems.

In: Proceedings of International Conference on Distributed Computing Systems, pp.

452–459.

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

Bini, E., Cervin, A., 2008. Delay-aware period assignment in control systems. In:

Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 291–300.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press. Burns,

A., Baruah, S., 2008. Sustainability in real-time scheduling. Journal of Com-

puting Science and Engineering 2 (1), 74–97.

Chen, Y., Lu, C., Koutsoukos, X., 2007. Optimal discrete rate adaptation for distributed real-

time systems. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp.

181–192.

Devi, U.C., Anderson, J.H., 2004. Fair integrated scheduling of soft real-time tardiness classes

on multiprocessors. In: Proceedings of IEEE Real-Time Technology and Applications

Symposium (RTAS), pp. 554–561.

Garcia, J., Harbour, M., 1995. Optimized priority assignment for tasks and messages in

distributed hard real-time systems. In: Proceedings of IEEE Workshop on Parallel

and Distributed Real-Time Systems, pp. 124–132.

Hieu, C.T., Hong, C.S., 2010. A connection entropy-based multi-rate routing protocol for

mobile ad hoc networks. Journal of Computing Science and Engineering 4 (3), 225–

239.

Jayachandran, P., Abdelzaher, T., 2008. Bandwidth allocation for elastic real-time flows

in multihop wireless networks based on network utility maximization. In: Proceedings

of International Conference on Distributed Computing Systems, pp. 752–759.

Jayachandran, P., Abdelzaher, T., 2008. Delay composition algebra: a reduction- based

schedulability algebra for distributed real-time systems. In: Proceedings of IEEE Real-

Time Systems Symposium (RTSS), pp. 259–269.

Jayachandran, P., Abdelzaher, T., 2009. End-to-end delay analysis of distributed sys- tems

with cycles in the task graph. In: Proceedings of Euromicro Conference on Real-Time

Systems, pp. 13–22.

Jonsson, J., Shin, K., 1997. Deadline assignment in distributed hard real-time systems with

relaxed locality constraints. In: Proceedings of International Conference on Distributed

Computing Systems, pp. 432–440.

Kao, B., Garcia-Molina, H., 1993. Deadline assignment in a distributed soft real-time

system. In: Proceedings of International Conference on Distributed Computing

Systems, pp. 428–437.

Kao, B., Garcia-Molina, H., 1994. Subtask deadline assignment for complex dis-

tributed soft real-time tasks. In: Proceedings of International Conference on

Distributed Computing Systems, pp. 172–181.

Kim, K., Uno, S., Kim, M., 2010. Adaptive qos mechanism for wireless mobile network.

Journal of Computing Science and Engineering 4 (2), 153–172.

Lee, J.K., Shin, K.G., 2007. NetDraino: saving network resources via selective packet

drops. Journal of Computing Science and Engineering 1 (1), 31–55.

Lee, J., Shin, I., Easwaran, A., 2010. Online robust optimization framework for qos

guarantees in distributed soft real-time systems. In: Proceedings of the 10th ACM

International Conference on Embedded Software (EMSOFT), pp. 89–98.

Leung, J., Whitehead, J., 1982. On the complexity of fixed-priority scheduling of

periodic real-time tasks. Performance Evaluation 2, 237–250.

Lin, K.-J., Natarajan, S., Liu, J.W.-S., 1987. Imprecise results: utilizing partial com-

putations in real-time systems. In: Proceedings of IEEE Real-Time Systems

Symposium (RTSS), pp. 210–217.

Liu, C., Layland, J., 1973. Scheduling algorithms for multi-programming in a hard- real-

time environment. Journal of the ACM 20 (1), 46–61.

Low, S.H., 1999. Optimization flow control, I: basic algorithm and convergence.

IEEE/ACM Transactions on Networking, 861–874.

Lumezanu, C., Bhola, S., Astley, M., 2008. Online optimization for latency assignment in

distributed real-time systems. In: Proceedings of International Conference on

Distributed Computing Systems, pp. 752–759.

MATLAB: The Language of Technical Computing, http://www.mathworks.com/

products/matlab/.

Natale, M.D., Stankovic, J., 1994. Dynamic end-to-end guarantees in distributed real- time

systems. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 216–227.

Palencia, J., Harbour, M., 2005. Response time analysis of EDF distributed Real-time

Systems. Journal of Embedded Computing 1 (2), 225–237.

Raazi, S.M.K., Lee, S., 2010. A survey on key management strategies for different

applications of wireless sensor networks. Journal of Computing Science and

Engineering 4 (1), 23–51.

Saksena, M., Hong, S., 1996. An engineering approach to decomposing end-to-end delays

on a distributed real-time system. In: Proceedings of IEEE Interna- tional Workshop

on Parallel and Distributed Real-Time Systems, pp. 244– 251.

Shu, W., Liu, X., Gu, Z., Gopalakrishnan, S., 2008. Optimal sampling rate assign- ment

with dynamic route selection for real-time wireless sensor networks. In:

Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 431– 441.

Stavrinides, G.L., Karatza, H.D., 2010. Scheduling multiple task graphs with end-to-end

deadlines in distributed real-time systems utilizing imprecise com- putations. Journal

of Systems and Software 83 (6), 1004–1014.

Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.-C., Liu, J.W.-S., 1995. Prob-

abilistic performance guarantee for real-time tasks with varying computation times. In:

Proceedings of IEEE Real-Time Technology and Applications Sympo- sium (RTAS),

pp. 164–173.

Wu, H., Ravindran, B., Jensen, E.D., Li, P., 2005. Time/utility function decomposi- tion

techniques for utility accrual scheduling algorithms in real-time distributed systems.

IEEE Transactions on Computers 54 (9), 1138–1153.

Zhu, Q., Yang, Y., Scholte, E., Natale, M.D., Sangiovanni-Vincentelli, A., 2009.

Optimizing extensibility in hard real-time distributed systems. In: Proceed- ings of

IEEE Real-Time Technology and Applications Symposium (RTAS), pp. 275–284.

Jinkyu Lee received B.S., M.S. and Ph.D. degrees in Computer Science in 2004, 2006 and

2011, respectively, from KAIST (Korea Advanced Institute of Science and Tech- nology),

South Korea. Since October 2011, he is a visiting scholar in Department of Electrical

Engineering and Computer Science, University of Michigan, USA. His research interests

include reliability, power management and timing guarantees in real-time embedded

systems and cyber-physical systems. He won the best stu- dent paper award from the 17th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) in

2011.

Insik Shin is currently an associate professor in Dept. of Computer Science at KAIST, South

Korea, where he joined in 2008. He received a B.S. from Korea University, an M.S.

from Stanford University, and a Ph.D. from University of Pennsylvania all in Computer

Science in 1994, 1998, and 2006, respectively. He has been a post- doctoral research

fellow at Malardalen University, Sweden, and a visiting scholar at University of Illinois,

Urbana-Champaign until 2008. His research interests lie in cyber-physical systems and

real-time embedded systems. He is currently a member of Editorial Boards of Journal of

Computing Science and Engineering. He has been co-chairs of various workshops

including satellite workshops of RTSS, CPSWeek and RTCSA and has served various

program committees in real-time embedded sys- tems, including RTSS, RTAS, ECRTS, and

EMSOFT. He received best paper awards, including the Best Paper award from RTSS in

2003 and the Best Student Paper Award from RTAS in 2011, and Best Paper runner-

ups at ECRTS and RTSS in 2008.

Arvind Easwaran received a Ph.D. from the University of Pennsylvania, USA, in 2008 on

Advances in Hierarchical Real-Time Systems: Incrementality, Optimality, and

Multiprocessor Clustering. From January 2009 to October 2010, he was a Invited Sci- entist

in CISTER lab, at the Polytechnic Institute of Porto, Portugal. Since November 2010, he is

working as a R&D Scientist in Honeywell Aerospace, Advanced Tech- nology. He was

nominated for the best paper award in Euromicro Conference on Real-Time Systems

(ECRTS) in 2008 and won the best student paper award in IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS) 2011. His research interests lie in real-

time embedded systems.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

