
SETTING TARGET ROTATION TIME IN PROFIBUS BASED REAL-TIME DISTRIBUTED
APPLICATIONS1

Eduardo Tovar‡, Francisco Vasques†

‡ Polytechnic Institute of Porto, ISEP, Rua de São Tomé, 4200 Porto, Portugal,
Tel.: +351.2.8340500, Fax.: +351.2.821159, E-mail: emt@dei.isep.ipp.pt

† University of Porto, FEUP, Rua dos Bragas, 4099 Porto Codex, Portugal
Tel.: +351.2.2041774, Fax.: +351.2.2059278, E-mail: vasques@fe.up.pt

Abstract: In this paper, we analyse the ability of Profibus fieldbus to cope with
the real-time requirements of a Distributed Computer Control System (DCCS),
where messages associated to discrete events must be made available within a
maximum bound time. Our methodology is based on the knowledge of real-time
traffic characteristics, setting the network parameters in order to cope with
timing requirements. Since non-real-time traffic characteristics are usually
unknown at the design stage, we consider an operational profile where,
constraining non-real-time traffic at the application level, we assure that real-
time requirements are met. Copyright © 1998 IFAC

Keywords: Fieldbus Networks, Real-time Communication, Distributed
Computer Control Systems.

1. INTRODUCTION1

Within industrial communication systems, fieldbus
networks are specially devoted for the
interconnection of process controllers, sensors and
actuators, at the lower level of the factory automation
hierarchy.

Among other characteristics, these hierarchical levels
have dissimilar message flows. It is possible to
classify (Prince, and Soloman, 1981) such flows,
carried by the communication systems, according to:

• the required response time, that is, how
quickly messages must be transferred;

• their length, that is, the amount of
information to be transferred;

• the required reliability, which means, for
instance, the importance of error-free or
guaranteed delivery;

1 This work was partially supported by FLAD under the project
SISTER 471/97 and by ISEP under the project REMETER.

• the message rate, in other words, how
frequently an application task sends a
particular type of message, for instance,
from a sensor to the process controller.

In a rough way, one can say that time constraints are
more stringent as we go down in the automation
hierarchy. In the context of this paper, we consider
time constraints or deadlines, as the maximum delay
between sending a request and receiving the related
response at the application level. In other words, we
are emphasising the association of deadlines to
messages cycles (request followed by response at the
application level).

The message cycle delay is made up of multiple
factors, such as transmission time (frame length /
transmission rate), protocol processing time and
propagation, access or queuing delays. As we are
dealing with real-time communication across a
shared transmission medium, the most relevant
factors to our analysis are the access and queuing

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

delays, which heavily depend on the Medium Access
Control mechanism.

Different approaches for the Medium Access Control
mechanism have been adopted by fieldbus
communication systems. As relevant examples, we
can mention the timed token protocol in Profibus
(EN 50170, 1996b), the centralised polling in FIP
(EN 50170, 1996c), the virtual token passing in
P-NET (EN 50170, 1996a) and the CSMA/CA
(Carrier Sense Multiple Access with Collision
Avoidance) in CAN (SAE J1583, 1992).

Recently, several studies on the ability of fieldbus
networks to cope with real-time requirements have
been presented, such as (Tindell, et al., 1994; Zuberi
and Shin, 1997) on CAN, (Pedro and Burns, 1997;
Vasques 1996) on FIP, (Tovar and Vasques, 1998a)
on P-NET and finally (Tovar and Vasques, 1998b) on
Profibus.

In this paper, a methodology to guarantee the real-
time requirements of Profibus based distributed
applications is described. The methodology is based
on the knowledge of the real-time traffic
requirements, allocating enough bandwidth to each
network node in order to cope with it. However,
since non-real-time traffic requirements are usually
not known at the design stage, we consider an
operational profile where, by constraining non-real-
time traffic, we ensure that real-time requirements
are met.

2. ESSENTIALS ON PROFIBUS PROTOCOL

2.1. General Characteristics

The Profibus MAC includes a token passing
procedure used by master stations to communicate
between each other, and a master-slave procedure
used to communicate with slave stations (or generally
to communicate with stations not holding the token).
Figure 1 illustrates this hybrid-operating mode.

PROFIBUS

PLC

Sensor

PLCPC

Sensor Drive Actuator Sensor Actuator

Passive Stations, Slave Devices

Active Stations, Master Devices

LOGICAL TOKEN RING

MASTER-SLAVE
TRANSACTIONS

Fig. 1. Profibus MAC Hybrid Operating Mode.

The MAC protocol, implemented at the layer 2 of the
OSI reference model, is called Field bus Data Link
(FDL). In addition to controlling the token cycle time
and the bus access, the FDL is also responsible for
the provision of data transmission services for the
FDL user (user of the link layer, e. g. the application

layer). Profibus supports four basic non-cyclic data
transmission services: Send Data with No
acknowledge (SDN); Send Data with Acknowledge
(SDA); Request Data with Reply (RDR) and Send
and Request Data (SRD).

The SDN is an unacknowledged service mainly used
for broadcasts from an active station to all the other
bus stations. Conversely, all the other services are
based on a real dual relationship between the initiator
(master station holding the token) and the responder
(passive or active station not holding the token).
Another important characteristic of these services is
that they must be immediately answered, with an
acknowledge or a response. This feature, which is
particularly important for the real-time bus operation,
is also called “immediate-response”.

In addition to these non-cyclical services, industrial
applications often require the use of cyclical
transmission methods. A centrally controlled polling
method (cyclical polling) is a suitable transmission
method to scan basic field devices, such as sensors or
actuators. Profibus enables a polling list to be created
in the FDL layer, and can thus carry out a cyclical
polling based on the non-cyclical RDR and SDR
services.

An important Profibus concept is the message cycle.
A message cycle consists of a master station’s action
frame (request or send/request frame) and the
associated acknowledgement or response frame. User
data may be transmitted in the action frame (send) as
well as in the response frame (response).

All stations, except the token holder (initiator) shall
in general monitor all requests. The
acknowledgement or response shall arrive within a
predefined time, the slot time, otherwise the initiator
repeats the request. The initiator shall not issue a
retry or a new request before the expiration of a
waiting period (Idle Time).

All the real-time properties of the Profibus protocol
presented in this paper are based on the knowledge of
the messages cycle time length. This time includes
the time needed to issue the action frame and receive
the associated response and also should include
possible message retries.

2.2. Behaviour of the Access Control

After receiving the token, the measurement of the
token rotation time begins. This measurement expires
at the next token arrival and results in the real token
rotation time (TRR). TRR is of significance for carrying
out non-high priority message cycles. In order to
keep the system reaction time, the token target
rotation time (TTR) must be set at the start-up.

Independently of the real token rotation time (TRR),
each master station may always execute one high
priority message cycle per token arrival. In order to
perform non-high priority message cycles, TRR must
be lower than TTR at the execution instant, otherwise
the station retains non-high priority message cycles
and only transmits them at the following token
arrival. Once a message cycle is started it is always
completed, including any required retries, even if TRR

reaches or exceeds the value of TTR during the
execution.

Apart from distinguishing high and low priority
message cycles, the Profibus MAC differentiates
three subtypes of low priority message cycles: poll
list, non-cyclic low priority (application layer and
remote management services) and GAP list message
cycles. The GAP is the address range between two
consecutive master stations addresses. Each master
must periodically check the GAP addresses for
supporting dynamic changes in the logical ring.

As a basis, when holding the token, a master station
will successively handle:

1. high priority non-cyclic message cycles;
2.1 poll list message cycles;
2.2 low priority non-cyclic message cycles;
2.3 GAP list management (logical ring

maintenance).

The Profibus standard specifies that these three
subtypes underlain with the following rules. After
receiving the token, the poll list is handled after all
high priority messages have been carried out. If the
poll cycle is completed within TTH, the requested low
priority messages are then carried out and a new poll
cycle will start at the next token arrival with available
TTH. If a poll cycle takes several token visits, the poll
list is processed in segments, without inserting
requested low priority messages. Low priority
message cycles are carried out at the end of a
complete poll cycle. At most one GAP address is
checked per token visit, interleaved with poll cycles
and non-cyclical low priority messages.

Figure 2 synthesises the Profibus MAC priority
mechanism, where pl_len stands for the poll list
length.

3. TIMING ANALYSIS ASSUMPTIONS

In this section, we provide the basis for the proposed
Profibus real-time analysis.

3.1. Network and Message Models

We consider a bus topology with n master stations. A
special frame (the token) circulates around the logical
ring formed by the masters (from node k to nodes k +

1, k + 2, … until node n, then to nodes 1, 2, …). We
denote the logical ring latency (token walk time,
including node latency delay, media propagation
delay, etc) as τ.

Message cycles generated at run-time may be
classified as either high priority or low priority
messages. To each k master node we assume that
there are nh(k) high priority and nl(k) low priority
messages streams. A message stream corresponds to
a sequence of message cycles related with, for
example, the reading of a process variable.

We denote the ith high priority message stream
associated to a master node k as Shi

(k). Similarly low
priority message streams are denoted as Slj

(k).

A high priority message stream Shi is characterised as
ShI = (Chi, Dhi). Chi is the maximum amount of time
required to transmit a message in stream i. In
Profibus this time should include the message cycle
duration and also all possible messages retries. Dhi is
the messages relative deadline, which is the
maximum amount of time that may elapse between a
message arrival and the completion of its
transmission. We consider that, in the worst case, the
deadline can be seen as the minimum inter-arrival
time between two consecutive messages in the same
stream.

Token Receipt

Reset and Release TRR (up)
TTH ← TTR - TRR

Release TTH (down)

m = pl_len ?

m = m + 1

poll Poll_List
member

process high
priority message

high priority
 message ?

y

n

low priority
 message ?

process low
priority message

TTH < 0 ?

gap update

Token Pass

y

n

y

TTH < 0 ?

y

n

TTH < 0 ?

m = pl_len ?

y

n

y

n

y n

m = 1
n

n

y

TTH < 0 ?

process high
priority message

high priority
 message ?

y

n

Fig. 2. Profibus MAC Priority Mechanisms.

The following high priority message stream notation
will be used:

() () ()()k
i

k
i

k
i DhChSh ,= (1)

As for low priority message streams, we assume that
only one message stream per station k, grouping all
non-real-time traffic issued by the station, is
characterised as Sl(k) = (Cl(k), nlp(k)). Cl(k) is the
maximum amount of time required to transmit low
priority messages in station k. nlp(k) is the maximum
number of non-high priority message cycles that a
station k is allowed to perform at each token visit.

The following low priority message stream notation
will be used:

() () ()()kkk nlpClSl ,= (2)

3.2. Timing Analysis Approach

Real-time approaches for timed token based
protocols, such as for FDDI (Agrawal, et al., 1994;
Zheng and Shin, 1995) or for IEEE802.4 Token Bus
(Montuschi, et al., 1992), rely on the possibility of
allocating specific bandwidth for real-time traffic.
This means that a minimum amount of time is always
available, at each token visit, to transmit real-time
messages. The above-referred solutions formulate
allocation schemes according to real-time message
requirements. Conversely, in the Profibus protocol it
is not possible to allocate real-time bandwidth to
stations.

As a consequence, and considering that real-time
traffic is supported by high priority message cycles,
the non-real-time traffic may drastically affect
Profibus real-time capabilities. In fact, if a station
receives an early token (TTR -TRR > 0) and uses the
available time to transmit non-high-priority message
cycles, the subsequent stations may receive a late
token (see Profibus token passing algorithm in §2.2).

The proposed Profibus timing analysis is based on a
constrained low priority traffic profile where, by
controlling low priority traffic, for instance at the
application level, it is possible to guarantee the high
priority traffic requirements. This analysis provides a
pre-run-time schedulability condition, which is the
basis for setting the Target Rotation Time (TTR)
parameter.

Another approach, based on an unconstrained low
priority traffic profile, that is considering that in the
worst case only one high priority message cycle is
executed per token arrival, has also been proposed in
(Tovar and Vasques, 1998b). Such kind of approach,
leading to smaller TTR parameters, is intended to
support message streams with shorter deadlines.

However, reducing the TTR parameter value will also
reduce the network ability to support low-priority
traffic, which may lead to an undesirable operation
mode on DCCS applications.

4. PROFIBUS TIMING ANALYSIS

The proposed Profibus timing analysis is based on
the following assumption:

• at each token arrival, any station must be
able to execute, at least, all pending high-
priority message cycles.

The proposed analysis is based on the evaluation of a
Deadline Constraint and the associated maximum
bound of the TTR parameter. In this context, the
Deadline Constraint is defined as the condition that
must be satisfied in order to guarantee that all real-
time messages are transmitted before their deadlines,
i.e., before the end of the minimum inter arrival time
between two consecutive message arrivals.

4.1. Deadline Constraint

Considering that all real-time pending messages are
to be sent at each token arrival, a deadline constraint
may be defined as:

()
k

kk
i

i
TcycleDh ∀≥

,min)(

(3)

where Tcycle(k) stands for the maximum elapsed time
between two consecutive token arrivals.

Considering that each station is able to transmit all
the high-priority pending traffic, Tcycle(k) is bounded
by:

() τ+×+≤ ∑∑ ∑
== =

n

k

k
n

k

nh

i

k
i nlpClChTcycle

k

1

)(

1 1

)(

(4)

which is equal for all the stations since it corresponds
to the maximum allowed amount of traffic
transferred by all the stations.

Expressions (3) and (4) can be re-written as:

() τ+×+≥

 ∑∑ ∑

== =

n

k

k
n

k

nh

i

k
i

k
i

ki
nlpClChDh

k

1

)(

1 1

)(

 ,

)(

min (5)

which means that Tcycle must be smaller than the
smallest real-time message deadline.

4.2. Setting the Target Rotation Time (TTR)

Considering that when the token arrives at a station k,
this station must still have enough time to transfer, at
least, its real-time traffic (as at the token arrival, the

token holding time is TTR-TRR), a minimum bound for
TTR is:

()

+≥ ∑
==

)(

1
..1

max
knh

i

k
i

nk
TR ChTcycleT

(6)

since Tcycle is a maximum bound of TRR. We may
now rewrite (6) as,

()

−≤ ∑
=

=

)(

1
..1

max
knh

i

k
i

nk
TR ChTTcycle (7)

which is clearly shown at figure 3 (a scenario with
nh(1)=2, nh(2)=2, nh(3)=2, nlp(1)=3, nlp(2)=1 and
nlp(3)=4).

Combining (4) and (6), a minimum bound for TTR

may be given by,

() ()

++×+≥ ∑∑∑ ∑
=

=
== =

)()(

1
..1

1

)(

1 1

max
kk nh

i

k
i

nk

n

k

k
n

k

nh

i

k
iTR ChnlpClChT τ

(8)

These two expressions (5) and (8) are the basis of the
proposed methodology to set the Target Rotation
Time (TTR) in Profibus based applications, in order to
guarantee its real-time requirements.

Ch1
(1)

Minimum TTR

Station 1

Station 2

Station 3

Maximum Cycle Time

Ch2
(1) Cl(1) Cl(1) Cl(1)

TRR
(1)=0

TRR
(2)=0

TRR
(3)=0

Ch1
(2) Ch2

(2) Cl(2)

Ch1
(3) Ch2

(3) Cl(3) Cl(3) Cl(3) Cl(3)

Ch1
(1) Ch2

(1)

Instant of Token Arrival

Token Transmission

Fig. 3. Determining the PROFIBUS TTR Parameter.

5. SOME IMPLEMENTATION
CONSIDERATIONS

In this section, we give some guidelines concerning
implementation issues. We propose two different
alternatives:

1. The first one, based on a Profibus protocol
modification, intends to control the number of
transferred low priority messages at the MAC
level.

2. The second one, based on the application
level control of low priority services, such as
application layer non-cyclical low priority
services, remote management services and a
specific remote management service (Live
List service).

5.1. Controlling Low Priority Traffic at the MAC
 Level

We define at each station k the maximum number of
low priority messages to be transferred (nlp(k)), per
token arrival. The low priority traffic is then
controlled by means of a low priority messages
counter (nlp_c). Figure 4 illustrates the proposed
protocol modification. Please refer to figure 2 for the
original protocol, where p_len stands for the poll list
length.

Token Receipt

Reset and Release TRR (up)
TTH ← TTR - TRR

Release TTH (down)

m = pl_len ?

m = m + 1

poll Poll_List
member

process high
priority message

high priority
 message ?

y

n

low priority
 message ?

process low
priority message

TTH < 0 ?

gap update

Token Pass

y

n

y

TTH < 0 ?

y

n

TTH < 0 ?

m = pl_len ?

y

n

y

n

y n

m = 1
n

n

y

TTH < 0 ?

process high
priority message

high priority
 message ?

y

n npl_c=0

nlp_c=nlp_c+1

y

n

nlp_c=nlp ?

nlp_c=nlp_c+1

y

n

nlp_c=nlp ?

y

n

nlp_c=nlp ?

Fig. 4. Proposed Modifications of the Profibus MAC
Priority Mechanisms, at the MAC level.

5.2. Controlling Low Priority Traffic at the
 Application Layer Level

Concerning the user explicitly generated traffic, we
opt for not supporting the live list management
service. The Live List service requests the FDL status
of all stations (masters and slaves) and thus will
generate multiple frames in the network. If, in the

worst case, every master station requests a live list,
the expression for Tcycle should then be written as
follows:

() () ()() ∑∑∑ ∑
+

=== =

×++×+≤
sn

k
live

n

k

kk
n

k

nh

i

k
icycle CnClnlpChT

k

111 1

)(

τ (9)

where Clive stands for a request status message cycle
length and n+s corresponds to the sum of masters
and slave stations.

Concerning low priority non-cyclical services, the
application process software must be able to accept a
Tcycle parameter, in order to control the number of
low-priority messages (nlp(k)) generated in the
station.

The expression for Tcycle must include the influence
of the GAP updating. We denote Cgap as the length of
a GAP maintenance message cycle. Expression (10)
includes such influence, considering that, in the worst
case, each station generates one GAP maintenance
message at each token arrival.

In order to support Poll List, an additional term must
be added. Notice that one should only consider small
length Poll Lists. In fact, as the user is not able to
control the Poll List messages schedule, the whole
list length must be included in the Tcycle evaluation.

() () ()()

∑

∑∑ ∑

=

== =

+×++

+×+≤

n

k

k
pollgap

n

k

kk
n

k

nh

i

k
icycle

CCn

ClnlpChT
k

1

)(

11 1

)(

τ (10)

where Cpoll
(k) stands for the station k Poll List length.

6. CONCLUSIONS

In this paper we have provided a comprehensive
study on how to use Profibus networks to support
real-time communication.

We have derived an operational profile within which
real-time behaviour is guaranteed constraining low
priority traffic at the application layer.

The major contribution is to provide a methodology
on how to set the Target Rotation Time parameter.

REFERENCES

Agrawal, G., B. Chen, W. Zhao and S. Davari
(1994). Guaranteeing Synchronous Message
Deadline with the Timed Token Medium
Access Control Protocol. In: IEEE Transactions
on Computers, Vol. 43, No. 3, pp. 327-339.

EN 50170 (1996a). General Purpose Field
Communication System. Vol. 1/3 (P-NET),
CENELEC, Brussels.

EN 50170 (1996b). General Purpose Field
Communication System. Vol. 2/3 (PROFIBUS),
CENELEC, Brussels.

EN 50170 (1996c). General Purpose Field
Communication System. Vol. 3/3 (FIP),
CENELEC, Brussels.

Montuschi, P., L. Ciminiera and A. Valenzano
(1992). Time Characteristics of IEE802.4 Token
Bus Protocol. In: IEE Proceedings, Vol. 139,
No. 1, pp. 81-87.

Pedro, P. and A. Burns (1997). Worst Case Response
Time Analysis of Hard Real-Time Sporadic
Traffic in FIP Networks. In: Proceedings of 9th

Euromicro Workshop on Real-time Systems,
IEEE Press, pp. 3-10.

Prince, S. M. and M. S. Soloman (1981).
Communication Requirements of a Distributed
Computer Control System. IEE Proceedings,
Vol. 128, No. 1, pp. 21-34.

SAE J1583 (1992). Controller Area Network CAN,
an In-Vehicle Serial Communication Protocol.
SAE-Handbook, pp. 20341-20355.

Tindell, K., H. Hansson and A. Wellings (1994).
Analysing Real-Time Communications:
Controller Area Network (CAN). In:
Proceedings of the IEEE Real Time Systems
Symposium (RTSS’94), IEEE Press, pp. 259-
263.

Tovar, E, and F. Vasques (1998a). Enhancing P-NET
Real-Time Properties Using Priority Queuing
Mechanisms. In: Proceedings of the 4th IEEE
Real-Time Technologies and Applications
Symposium, WIP Session, available as
Technical Report from Boston University,
Computer Science Department BUCS-TR-98-
013, pp. 27-30.

Tovar, E, and F. Vasques (1998b). Guaranteeing
Real-Time Message Deadlines in Profibus
Networks. In: Proceedings of the 10th

Euromicro Workshop on Real-time Systems,
IEEE Press, pp. 79-86.

Vasques, F. (1996). Sur L’Intégration de Mécanismes
d’Ordonnancement et de Communication dans
la Sous-Couche MAC de Réseaux Locaux
Temps-Réel. PhD Thesis, available as technical
Report LAAS Nº 96229, Toulouse, France.

Zheng, Q. and K. G. Shin (1995). Synchronous
Bandwidth Allocation in FDDI Networks. In:
IEEE Transactions on Parallel and Distributed
Systems, Vol. 6, No. 12, pp. 1332-1338.

Zuberi, K. M. and K. G. Shin (1997). Scheduling
Messages on Controller Area Network for Real-
Time CIM Applications. In: IEEE Transactions
on Robotics and Automation.Proceedings,
Vol. 15, No. 2, pp. 310-314.

