
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Designing Real-Time Systems Based on
Mono-Master Profibus-DP Networks

Salvatore MONFORTE
Mário ALVES

Francisco VASQUES (FEUP)
Eduardo TOVAR

HURRAY-TR-0013
July 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THIS WORK IS PARTIALLY SUPPORTED BY THE EUROPEAN COMMISSION UNDER PROJECT IST-1999-11316 R-FIELDBUS

Designing Real-Time Systems Based on Mono-Master
Profibus-DP Networks

Salvatore MONFORTE*, Mário ALVES, Eduardo TOVAR
IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502 Fax: +351.22.8321159
E-mail: { salvo@dei, malves@dee, emt@dei}.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES
Departamento de Engenharia Mecânica e Gestão Industrial
Faculdade de Engenharia da Universidade do Porto
Rua dos Bragas
4099 Porto Codex
Portugal
Tel.: +351.22.2041751 Fax: +351.22.2059125
E-mail: vasques@fe.up.pt

* On leave from the
Institute of Computer Science and Telecommunications (IIT)
V.le A.Doria, 6
95125 Catania
Italy
Tel.:+39 095 738 2362, 7 Fax: :+39 095 738 2397
E-mail: smonforte@iit.unict.it

Abstract:

Profibus networks are widely used as the communication infrastructure for supporting
distributed computer-controlled applications. Most of the times, these applications impose
strict real-time requirements. Profibus-DP has gradually become the preferred Profibus
application profile. It is usually implemented as a mono-master Profibus network, and is
optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour
of this class of Profibus networks. Importantly, we develop a new methodology for evaluating
the worst-case message response time in systems where high-priority and cyclic low-priority
Profibus traffic coexist. The proposed analysis constitutes a powerful tool to guarantee prior to
runtime the real-time behaviour of a distributed computer-controlled system based on a
Profibus network, where the real-time traffic is supported either by high-priority or by cyclic
poll Profibus messages. Copyright © 2000 IFAC

DESIGNING REAL-TIME SYSTEMS BASED ON MONO-MASTER PROFIBUS-DP NETWORKS 1

Salvatore Monforte‡, Mário Alves†, Francisco Vasquesξ, Eduardo Tovar†

‡ IPP-HURRAY Group, on leave from Dept. of Computer Science and
Telecommunications, University of Catania, Italy, E-mail: smonforte@iit.unict.it

† IPP-HURRAY Group, Polytechnic Institute of Porto, Portugal,
E-mail: {malves@dee, emt@dei}.isep.ipp.pt

ξ DEMEGI-FEUP, University of Porto, Portugal, E-mail: vasques@fe.up.pt

Abstract: Profibus networks are widely used as the communication infrastructure for
supporting distributed computer-controlled applications. Most of the times, these
applications impose strict real-time requirements. Profibus-DP has gradually become the
preferred Profibus application profile. It is usually implemented as a mono-master
Profibus network, and is optimised for speed and efficiency. The aim of this paper is to
analyse the real-time behaviour of this class of Profibus networks. Importantly, we
develop a new methodology for evaluating the worst-case message response time in
systems where high-priority and cyclic low-priority Profibus traffic coexist. The proposed
analysis constitutes a powerful tool to guarantee prior to runtime the real-time behaviour
of a distributed computer-controlled system based on a Profibus network, where the real-
time traffic is supported either by high-priority or by cyclic poll Profibus messages.
Copyright © 2000 IFAC

Keywords: Fieldbus Networks, Real-time Communication.

1. INTRODUCTION1

A computer-controlled system can be decomposed into
a set of three subsystems: the controlled object; the
computer system; and the human operator (Kopetz,
1997). Collectively, the controlled object and the
human operator can be referred to as the environment
of the computer system.

The role of the computer system is to react to stimuli
from the controlled object or the operator. Basically,
the computer system should be able to receive, via the
instrumentation interface, information about the status
of the controlled object, compute new commands
according to the references provided by the man-
machine interface, and transmit those new commands
to the actuators, also via the instrumentation interface.
A computer-controlled system can have a centralised

1 This work was partially supported by the European Commission
under the project R-FIELDBUS (IST-1999-11316), by FLAD under
the project SISTER (471/97), and by IDEMEC.

architecture, where the field devices (e.g., sensors and
actuators) are connected to the computer system via
point-to-point links. However, there are several
advantages if a field level communication network is
used as a replacement for the point-to-point links. The
main advantage is an economical one. Naturally, the
use of a bus brings other important advantages, such as
easier installation and maintenance, easier detection
and localisation of cable faults, and easier expansion
due to the modular nature of the network. The ability to
support distributed control algorithms is another
advantage achievable by the use of field level
networks.

Typically, a field level network is a broadcast network,
where several network nodes share a common
communication channel. Messages are transmitted
from a source node to a destination node via the shared
communication medium. A major problem occurs
when at least two nodes attempt to send messages via
the shared medium at about the same time. This

problem is solved by a medium access control (MAC)
mechanism.

Most computer-controlled systems are also real-time
systems. In general, the issue of guaranteeing real-time
requirements is one of checking, prior to run-time, the
feasibility of the system's task set; that is, checking if
the worst-case execution time of the tasks is smaller
than its admissible response time.

In distributed computer-controlled systems, where
some of the application tasks are also communicating
tasks, it is of paramount importance the evaluation of
the messages' response time, since this response time is
one of the components of the end-to-end
communication latencies.

Therefore, a potential leap towards the use of field
level communication networks (fieldbus) in time-
critical applications lies in the evaluation of its
temporal behaviour.

Profibus (Profibus, 1996) is a well-known fieldbus
network that distinguishes between two types of
devices - masters and slaves - and supports both mono-
master and multi-master systems. A Profibus master is
a network device that can send a message on its own
initiative, once it gains the right to access the bus.
Profibus slaves are devices that may only acknowledge
or respond to requests from masters. Generally, they
are peripherals such as I/O devices, valves, drives etc.

A widely-used class of Profibus networks is the
Profibus-DP (Profibus-DP, 2000) profile. It is
generally implemented as a mono-master Profibus
network, optimised for speed and efficiency, since it
does not implement all the usual communication
layers' protocol.

The aim of this paper is to analyse the real-time
behaviour of this class of Profibus networks.
Importantly, we develop a new methodology for
evaluating the worst-case message response time in
systems where high-priority and cyclic low-priority
Profibus traffic coexist. The proposed analysis
constitutes a powerful tool to guarantee prior to
runtime the real-time behaviour of a distributed
computer-controlled system based on a Profibus
network, where the real-time traffic is supported either
by high-priority or by cyclic poll Profibus messages.

In (Vasques and Juanole, 1994) the authors provide a
real-time analysis of Profibus messages. However, do
not consider that Profibus message requests are queued
in a FCFS (First-Come-First-Served) queue. Further
more, their analysis does not provide any estimation of
the worst-case response time of each individual
message. In (Tovar and Vasques, 1999a; Tovar and
Vasques, 1999b), the authors develop a response time
analysis. However, this is intended for multi-master
systems and if applied to the mono-master system it
would lead to very pessimistic results, since the authors
consider always the worst-case token rotation time.
Moreover, none of these works, consider the evaluation
of response time guarantees for the cyclic poll Profibus
messages. This type of messages was analysed in (Li

and Stoeckli, 1993). In this approach, message
deadlines are guaranteed since the token cycle time is
bounded. The major drawback of this approach is that,
in order to evaluate the token cycle time, neither high-
priority traffic nor low-priority traffic (other than
cyclic traffic) is allowed. This is very restrictive in
terms of using Profibus to support real-time distributed
computer-controlled applications.

The remainder of this paper is organised as follows. In
Section 2 we give a brief description of the main
Profibus characteristics. In Section 3 we introduce the
network and message models used in the proposed
real-time analysis. In Section 4 we propose a
methodology to evaluate the Profibus temporal
properties, which will be used as a basis for the
response time analysis performed in Section 5. In
Section 6 a numerical example is given and a realistic
scenario of an industrial computer-controlled system is
analysed, demonstrating the interest of the proposed
analysis. Finally, in Section 7 we draw some
conclusions.

2. BASIC CONCEPTS OF PROFIBUS

2.1. Message Cycle

The MAC protocol of Profibus is a simplified version
of the timed token protocol (Grow, 1982). The bus
access is based on a hybrid method where masters use
a token-passing procedure to grant the bus access and a
master-slave procedure to communicate with slave
stations.

An important Profibus concept is the Message Cycle,
which comprises the Action Frame sent by the initiator
(always a master) and the associated Acknowledge or
Response Frame sent by the responder. Profibus
allows distinguishing between high-priority, cyclic
low-priority (execution of the requests contained in the
poll-list) and acyclic low-priority messages. Once the
action frame has been transmitted, the initiator waits
for the response during a Slot Time (TSL). If a response
is not received within TSL, the initiator will try again up
to a number of max_retry_limit retries.

Profibus provides a service to poll a list of sensors and
actuators, by means of a pre-defined sequence of
requests. This sequence is called the Poll List. The
processing of all the Poll List entries is said to be a
Poll Cycle. The Poll Cycle duration depends on the
length of each message cycle, on the number of
message cycles processed at each token arrival and on
the token rotation time. Hence, it is obvious that a Poll
Cycle may last for several token-holding periods. If the
Poll Cycle is completed within a token holding period,
the next Poll Cycle may only start at the next receipt of
the token. Otherwise, the Poll List is processed in
segments, without inserting acyclic low-priority
message cycles.

2.2. Token Transmission and Reception

The token is passed between masters in ascending
order of addresses. To close the logical ring, the master
with the highest address passes the token back to the
master with the smallest one. In the case of Profibus
mono-master networks (Profibus-DP, 2000), the station
just passes the token to itself. The advantage of
preserving the same token-passing procedure is that
they allow for an unambiguous scheduling of different
classes of traffic (high-priority and cyclic/acyclic low-
priority), preserving all the properties found in multi-
master Profibus networks.

2.3. Message Dispatching

At token reception, the period during which the master
station is allowed to perform message cycles (Token
Holding Time) is computed as TTH = TTR - TRR, where
TRR (Real Rotation Time) is the time between two
consecutive token arrivals and TTR (Target Rotation
Time) is the expected time for a token cycle.

When a master station receives the token, it processes
at least one high-priority message (even if TTH < 0).
After that, the other pending high-priority message
cycles are processed if and while TTH ≥ 0. It should be
pointed out that once a message cycle is started, it is
always completed, including any retry (retries), even if
meanwhile TTH gets smaller than 0.

The processing of the Poll List is only started after all
requested high-priority message cycles have been
processed. After each complete Poll Cycle (all entries
of the Poll List processed), the requested low-priority
message cycles are performed in turn. A new Poll
Cycle starts at the next receipt of the token.

3. NETWORK AND MESSAGE MODELS

Requests for message cycles are placed in high-
priority, cyclic low-priority or acyclic low-priority
outgoing queues. Let Shi

k = (Chi
k, Dhi

k, Thi
k), Sci

k =
(Cci

k, Dci
k, Tci

k) and Sai
k = (Cai

k, Dai
k, Tai

k) be high-
priority, cyclic and acyclic low-priority message
streams in master k, respectively. A message stream is
a temporal sequence of requests for message cycles
concerning, for instance, the remote reading of a
specific process variable.

Chi
k, Cci

k and Cai
k are maximum message cycle

duration for a request of message stream Shi
k, Sci

k and
Sai

k, respectively. This duration includes the time
needed to transmit the request frame and completely
receive the related response, and also the time needed
to perform the allowed number of message retries. Thi

k

and Tci
k are the periodicity of streams Shi

k and Sci
k

requests, respectively. We assume that this periodicity
is the minimum interval between two consecutive
arrivals of the related requests to the outgoing queue.
Dhi

k and Dci
k are the relative deadline of the related

message cycle; that is, the maximum admissible time
interval between the instant when the message request
is placed in the outgoing queue and the instant when

the related response is completely received at the
master's incoming queue. Finally, nhk and nck are the
number of high-priority and cyclic low-priority
message streams, respectively. We also consider that
there is just one acyclic low-priority message stream
per station.

4. TIMING PROPERTIES OF PROFIBUS

4.1. Token Cycle Properties

In this section, some token cycle properties will be
analysed, for the case of Profibus mono-master
networks. Namely it will be proved that the real token
rotation time TRR is generally smaller than TTR in spite
of knowing that once a message cycle is started, it is
always completed. More formally, let us introduce the
following definitions.

Definition 1 – Overrun – We define an overrun as the
occurrence of a TTH expiration while a message cycle
is being processed.

Definition 2 – Overrun Window – We define an
overrun window as the time window during which TTH

is exceeded due to the completion of a message cycle,
added with the subsequent token passing interval.

Definition 3 – Late Token – A token is defined as
being late if, at its arrival, the real token rotation TRR is
greater than the target token rotation time TTR.

A late token arrival implies that at most one high-
priority message can be processed by the related
master station. It should also be noted that an overrun
in a given token arrival, does not usually imply a late
token on the next arrival.

Let us denote A(l) as the token arrival instant for the lth

token visit. At the time instant A(l), Tl
TH is assigned

with the value TTR - Tl-1
RR. Therefore, there will be a

late token arrival only if Tl-1
RR > TTR. Note that the real

token rotation time is measured between token arrivals.

As depicted in Fig. 1, it is clear that the token is neither
late in the lth token visit nor in the (l +1)th visit, after
the one where an overrun has occurred (as TTR > Tl

RR).
However, in some particular conditions the token can
be late.

high / low-priority

overrun window

À
0=THT

l
THT

l
RRT

1−l
RRT

TRT

A (l+1)

token latency

À TTH expiration

A (l-1) A (l)

Fig. 1. Overrun and late token.

Theorem 1 – In a mono-master Profibus system, if in
the lth token visit an overrun occurs, then there will be
a late token arrival if and only if the overrun window is
greater than the value of Tl-1

RR.

Proof
Let us assume that in the lth token visit an overrun
occurs, and let ω be the overrun window. As shown in
Fig. 1, T1

RR = T1
TH + ω. As T1

TH = TTR - Tl-1
RR, then:

ω+−= −1l
RRTR

l
RR TTT (1)

We must prove that the token will be late at (l + 1)th

token arrival, that is, Tl
RR > TTR if and only if ω > Tl-1

RR.
Since all quantities involved in expression (1) are
positive, if Tl

RR > TTR then 0 < Tl
RR - TTR = -Tl-1

RR + ω
→ Tl

RR < ω; vice-versa if ω > Tl-1
RR then obviously

follows Tl
RR > TTR. Hence:

1−>⇔> l
RRTR

l
RR TTT ω

That is, a late token arrives at the (l + 1)th token visit if
and only if the length of the overrun window is greater
than the value of TRR computed at the beginning of the
lth cycle, that is, is greater that Tl-1

RR. q

Corollary 1 – A low-priority overrun induces a late
token if and only if in the previous token visit no low-
priority and at most one high-priority message has
been processed.

Proof
For a low-priority overrun the length of the longest
overrun window is ω = Clmax + τ, where Clmax > Chmax.

If in the previous token visit, no low-priority messages
and at most one high-priority message were processed,
at the token arrival TRR ≤ Chmax + τ, that is smaller than
ω and thus a late token will be induced on next visit. q

4.2. Basic Response Time Analysis

In (Liu and Layland, 1973), the author introduced the
concept of critical instant as being the time instant at
which a request for a given task has the longest
response time, that is, the longest time interval till the
end of the response for that request. Moreover, a
critical instant for any task occurs whenever the task is
requested simultaneously with requests for all higher
priority tasks (Liu and Layland, 1973).

In a Profibus network, we must consider that, due to
the FCFS behaviour of the outgoing queues, a given
message request can be delayed by requests from all
the other message streams (contrarily to the task
scheduling case where it would be delayed only by
high priority message stream requests). Therefore, a
critical instant will occur when, for a given priority
(i.e. high- or acyclic low-priority) every message
stream simultaneously issue a message request.

Moreover, due to the non pre-emptive context of
messages processing, high-priority request may suffer
some additional delay before starting being processed.
Let us introduce the following definitions:

Definition 4 – Profibus Critical Instant – Considering
that requests for all high-priority, cyclic and acyclic
low-priority message streams are simultaneously
placed on the respective outgoing queues. We define a
Profibus critical instant as the time instant at which a
request for a given message stream has the longest
response time.

Definition 5 – Initial Blocking – We define the initial
blocking as the delay that the first request made at the
critical instant may suffer until starting to be processed.

Definition 6 – Critical Load – We define the critical
load for a given priority class, as the time interval
between a critical instant and the time instant when the
last request (made at the critical instant) for that
priority class has been completely processed.

As far as the evaluation of the worst-case response
time is concerned, two factors must be taken into
account: the initial blocking and the high-priority
critical load. The worst-case response time for both
high-priority and low-priority messages stream made at
the critical instant results from the simultaneous
occurrence of:
1. the longest initial blocking, that is, the first high-

priority request suffers the longest possible delay
before being processed;

2. the longest high-priority critical load, that is, it
takes the maximum number of token visits to
process all high-priority requests.

The following two theorems prove that the
simultaneous occurrence of both conditions leads to the
worst-case response time for the last message request
to be processed.

Theorem 2 – The longest initial blocking occurs when
all requests are issued simultaneously with the
occurrence of a low-priority overrun.

high priority
message

low priority
messages

token
latency τ

Ch
high-priority queue
not empty Cl

low-priority
queue not empty

Master’s Critical Instant

Ch

Cl

À0=THT

Fig. 2. Master’s Critical Instant.

Proof of Theorem 2
Considering that the initial blocking depends on the
position of the critical instant itself, the theorem is
proved if a shifting of its position leads either to a
deadline violation or to a smaller blocking.

Profibus Critical Instant

τω += maxCl

high priority
messages

 low priority
messages

token latency τ À TTH expiration ⌫ late token

À0=THT

����

�� ��
⌫

À0=THT À0=THT

⌫

TRT

τ+= maxChTTR

τ−−= maxChTT TRTH

τω += maxChτω += maxCl

Fig. 5. Evaluation of the 1-n high-priority processing pattern.

Referring to Fig. 2, if the position of the critical instant
is anticipated (shifted to the left), this leads to a
deadline violation, since it means that requests were
issued while the queue was not empty (either for low-
priority or high-priority).

Finally, if the critical instant is postponed (shifted to
the right), this leads to a smaller blocking. q

Corollary 2 – The longest initial blocking is
B = Clmax + τ.

Proof
From Fig. 2, it is clear that the longest low-priority
overrun is Clmax + τ. q

The length of the high-priority critical load interval
depends not only on the occurrence of the longest
initial blocking, but also on the traffic processed on the
previous token cycle.

Theorem 3 – A Profibus critical instant occurs when
the longest initial blocking is preceded by a token visit
where no low-priority and at most one high-priority
message is processed.

Proof
As depicted in Fig. 3, a late token arriving after a
Profibus critical instant leads to a longer high-priority
critical load, since the second high-priority request to
be processed will suffer a delay of τ. Taking into
account that the maximum initial blocking is equal to
the longest low-priority overrun window (Corollary 2);
and in view of Corollary 1, after the critical instant a
late token arrives if no low-priority message and at
most one high-priority message is processed in the
previous token visit. q

Critical Load

Critical Instant

Critical Load

⌫

Critical Instant

Fig. 3. Late token and high-priority critical load.

Corollary 3 – The maximum high-priority load interval
leads to the worst-case response time for both cyclic
and acyclic low-priority message streams.

Proof
Considering that low-priority message cycles are
performed in turn only after all high-priority message
have been processed, its is clear that the maximum
high-priority load interval leads to the maximum span
of time between the critical instant and the time instant
at which the last low-priority message (either cyclic or
acyclic) is processed; and thus to the worst-case
response time evaluation. q

4.3. Processing of High Priority Messages

Since all the possible requests are issued at the critical
instant and due to the non pre-emptive context of
Profibus, a master may need several token visits to
process all high-priority messages, before processing
any low-priority request. Thus, there will be a well-
defined pattern when processing all those requests
(Fig. 4).

Critical Instant

High-priority processing pattern

11 nn 11 nn 11 nn

Fig. 4. The 1-n processing pattern.

This processing pattern is characterised by a late token
arrival, where just one high-priority message is
processed, followed by an early token arrival, where n
high-priority messages are processed.

Theorem 4 – The occurrence of a Profibus critical
instant induces a 1-n processing pattern for high-
priority messages.

Proof
From the analysis, it follows that after the occurrence
of a critical instant, a late token arrives. Thus, as
depicted in Fig. 5, only one high-priority message can
be processed (�) and on next token visit TTH is
assigned with a maximum values equal to (TTR - Chmax

- τ). Therefore, if the number of high-priority requests
issued at the critical instant is greater than the number
of high-priority messages which can be processed

during TTH, then a high-priority overrun occurs, and, in
the worst case, the length of the overrun window is
(Chmax + τ). Consequently, the token real rotation (TRR)
equals the target token rotation time (TTR) (�), and on
next token visit only one message cycle will be carried
out (�). The 1-n is clearly defined, where (n -1)
messages are processed before the expiration of TTH

and the last of the n messages is processed in overrun.
The maximum time spent processing these n messages
is equal to (TTR - Chmax - τ) for processing (n -1)
messages, plus (Chmax + τ) to process the message in
overrun, that is, is equal to TTR. It is also clear that if:
- the smallest token cycle always comprises one

high-priority message cycle; and
- in a token cycle where at least one low-priority

message is processed the token is never released
before the expiration of the token holding time
timer (TTH);

then, in the last token cycle where there are still high-
priority request pending, the token holding timer is
assigned with TTH = TTR - Chmax - τ (�), and this occurs
after a token cycle which comprise no low-priority and
exactly one high-priority message cycle (�, �).
Moreover, if an overrun of TTH occurs then in the next
token cycle no low-priority and at most one high-
priority message can be processed (�). q

5. WORST-CASE RESPONSE TIME

5.1. High-priority Message Streams

The worst-case response time for high-priority
message can be computed taking into account the
following 4 components:
1. the initial blocking;
2. the time spent processing requests in token visits

where n high-priority messages can be processed,
plus the time spent to pass the token, that is,
nh/n × TTR;

3. the time spent processing requests in token visits
where just 1 high-priority message can be
processed, plus the time spent to pass the token,
that is, nh/n × (Chmax + τ);

4. a component Ψh, which is related to the finishing
of the 1-n processing pattern. We consider that at
the end of the last complete cycle of n messages,
there are three possible cases:
a) there are no more pending requests, and thus

the computation of the response time ends
before releasing the token in the previous
token cycle;

b) there is just one pending request, and thus the
time needed to process the pending requests is
exactly Chmax;

c) there are more than one pending request, and
thus one more token cycle is needed to
process the pending requests.

Hence, the worst-case response time for Profibus high-
priority messages is:

() () hTRh ChTnnhBR ψτ +++⋅++= max1 (2)

where:

() ()
() ()

() ()()

+⋅+⋅+−

++⋅+=

+⋅+=−

=

otherwiseChnnnhnh

nnnhnhifCh

nnnhnhif

h

,11

111,

11,

max

max

τ

τ

ψ

and

() () maxmaxmax 1 ChTChChTn TRTR ττ −=+−−=

5.2. Cyclic Low-Priority Message Streams

The processing of low-priority requests issued at the
critical instant, is alternated by periods where new
(those requested during the processing of low-priority
messages) high-priority message requests are carried
out (Fig. 6).

Critical Instant

II11 ∆∆cc11 II22 ∆∆cc22 II33 ∆∆cc33

hR

Rc

Fig. 6. Interleaving of interference intervals and cyclic
processing intervals.

Definition 7 – Interference Interval – We define an
interference interval Ii as the ith time window during
which only high-priority messages are processed.

Definition 8 – Cyclic Processing Interval – We define a
cyclic processing interval ∆Ci as the ith time window
during which low-priority traffic is processed.

It is clear that considering both cyclic processing
intervals and interference intervals it is possible to
evaluate the worst-case response time for cyclic-low
priority message streams.

The length of the ith cyclic processing interval can be
computed as the difference between the value of
TTR = TTR - Chmax - τ and the maximum amount of time
used to process the remaining high-priority messages,
that is:

()
() ()()() τ

τ

++⋅−+⋅+−

−−−=∆

maxmax

max

111,0max ClChnnnn-

ChTc
j

i
h
i

TRi

where ni
h is the number of high-priority messages

processed in Ii.

It should be noticed that every high-priority request
which arrives within ∆Ci will be pending on next token
cycle (start of Ii.). Moreover, there is a mutual
dependence between the evaluation of the number ni

h

of high-priority messages processed in the ith

interference interval and the length of this interval
itself:

()∑ ∑
=

−

=

+∆++

nh

j
j

i

m
mmi ThBcII

1

1

1

(3)

The interference imposed by the processing of ni
h

high-priority messages is:

()

() max

maxmax

11
1

,0max

1

Chn
n

n
nh

ChChT
n

n
I

h
i

i

TR

h
i

i

⋅

−

+⋅

+
−+

+++++⋅

+
= ττ

Finally the worst-case response time for cyclic low-
priority message streams can be expressed as follows:

() max

1

1

1

1

ClnncIIcBR
m

i

c
im

m

i
iic ⋅

−+++∆+= ∑∑

−

=

−

=

(4)

where ni
c = (∆Ci - τ) / Clmax is the number of cyclic

low-priority messages in ∆Ci and m = min{n ∈ℵ:
∑i=1,...,n ni

c ≥ nc}.

6. NUMERICAL EXAMPLE

In this section a realistic scenario for an industrial
computer-controlled system is utilised to demonstrate
the interest of the proposed analysis.

Consider a mono-master Profibus network in an
industrial environment, where a decentralised
computer-controlled system integrates video message
streams, computer-generated audio messages and
control-related message streams. The supported
application controls an assembly production line where
parts must be assembled and checked. Both
completeness tests (i.e. check if all parts are complete
and in position) and dimension tests (i.e. verifying if
parts are within the prescribed tolerance for diameters,
distances, radii, angles etc.) are required for the
assembly process. An intelligent stand-alone vision
systems is used to directly evaluate images according
to the stored testing program. Thus, only the data
resulting from the video inspection operation will be
sent through the Profibus interface.

The control-related message streams, which
interconnect sensors and actuators to controllers, are
mapped on the high-priority message streams. Table 1,
summarises the characterisation of the high-priority
message streams considered in this example, where set
x represents a set of message streams with the same
periodicity.

Table 1 Summary of high-priority message streams

Set 1 Set 2 Set 3 Set 4
nh=20 3 5 7 5

Thi 20 ms 25 ms 50 ms 60 ms

In order to meet realistic requirements, a value for the
Slot Time (TSL) and for the target token rotation time
(TTR) has been fixed to 100µs and 8ms, respectively.
Moreover, a 1.5Mbps data transfer rate and no retry
(ρ = 0) are considered in the example. Therefore, the
bit period is equal to 0.667µs and the computation for

the token-passing latency, yields: τ = 3 × (TTF + TSL) =
3 × (22 + 100) = 0.366µs, where TTF is the token frame
length and 3 is the maximum number of retries
predefined for the case of the token frame.

Concerning message streams to support the video
inspection capabilities, we assume that the maximum
data size for the result of an image evaluation is 246
bytes (equal to the maximum length for cyclic low-
priority messages) and the image shutter rate is 20
picture/s. These requirements leads to polling each
camera device every 50ms.

Concerning the multimedia services, which are also
mapped over cyclic low-priority message streams, we
assume 128Kbps as the bandwidth requirement. Hence,
for a multimedia video stream application with
352x288 frame format at 10 frames/s, each video
device must be polled every 15ms.

Table 2 summarises the cyclic low-priority message
streams characterisation considering the utilisation of
both 5 intelligent Profibus cameras for part inspection
and 2 surveillance video cameras.

Table 2 Summary of cyclic message streams

Set 1 Set 2
nc=7 2 5
Tci 15 ms 50 ms

Table 3 Message cycles length

bytes length
Chmax 20 bytes 0.433ms
Clmax 246 bytes 1.569ms

Considering the length for cyclic low-priority message
cycle presented in Table 3, the maximum initial
blocking is: B = Clmax + τ = 1.935ms. Thus, the number
of high-priority message processed in a 1-n processing
pattern is: n + 1 = (TTR+Chmax - τ) / Chmax = 18.617
= 18. Therefore, the worst-case response time for high-
priority message streams is:

()

msmsmsms

ChT
n

nh
BR hTRh

967.11232.1799.8
18

20
935.1

1 max

=+×

+=

=+++⋅

+
+= ψτ

Thus, the high-priority message stream set is
schedulable as Rh < 15ms = min{Thi}.

Let us now compute the worst-case response time for
cyclic low-priority message streams. The first
interference interval is the one imposed by processing
the nh high-priority requests made at the critical
instant:

()

()

ms

Chn
n

nh
nh

ChChT
n

nh
I TR

032.10

11
1

,0max

1

max

maxmax1

=

=⋅

−

+⋅

+
−+

+++++⋅

+
= ττ

The length of the first cyclic processing interval is:

()

()

msCl

Chn
n

nh
nh

ChTc TR

703.8

11
1

,0max

max

max

max1

=++

+⋅

−

+⋅

+
−−

−−−=∆

τ

τ

The number of cyclic low-priority requests that can be
accomplished in ∆Ci is then:

 5312.5
569.1

366.0703.8

max

1
1 ==

 −
=

 −∆
=

ms

msms

Cl

c
nc τ

Hence, there are still 2 cyclic pending requests. It
should be reminded that there is a mutual dependence
between the evaluation of the number ni

h of high-
priority messages processed in the ith interference
interval and the length of the interval itself. Hence, in
order to compute n2

h we need to know the value of I2

and vice versa. From equation (3), it follows that:

()

∑

∑

=

=

 +
=

=−

 +∆+++=

nh

j j

nh

j j

h

Th

msI

nh
Th

BcII
nhn

1

2

1

112
2

67.20

Hence:

ms
n

n

msms
n

I

h
h

h

433.0118
18

,0max

799.0799.8
18

2
2

2
2

×

−

×

−+

++×

=

The easiest way to solve such dependence is to form a
recurrence relationship:

[]

[]

[]
[]

−

×

−=Θ

+×Θ++×

= ∑
=

+

118
18

,0max

,

67.2043.079.079.8
18

2
2

1

2

1
2

mh
mh

nh

j j

mh

mh

n
n

Th

n

n

It follows that n2
h[0]=0, n2

h[1]=3 and n2
h[2]=3. The

iteration stops since n2
h[1]=n2

h[2] and thus, I2 = 0.799 + 2
× 0.433 = 1.666ms. The length of the second cyclic
processing interval is ∆C2 = (TTR - Chmax - τ) + 2 ×
Chmax + Clmax + τ = 8.269ms, which allows the
processing of a number of cyclic low-priority messages
is given by: n2

c = (∆C2 - τ) / Clmax = (8.269 - 0.366)
/ 1.569 = 5.036 = 5. Therefore, considering that ncc

< n1
c + n2

c the computation of worst-case response time
for cyclic low-priority message streams is over and
yields:

()
msmsmsms

ClnncIIcBR c
c

475.25139.3666.167.20
max1211

=++=

=⋅−+++∆+=

7. CONCLUSIONS

Profibus networks are often used as the communication
infrastructure for supporting distributed computer-
controlled applications. Generally, these applications
impose strict real-time requirements. A potential leap
towards the use of Profibus in time-critical applications
lies in the evaluation of its temporal behaviour.

A widely-used class of Profibus networks is the
Profibus-DP profile, usually implemented as a mono-
master Profibus network. In this paper we analysed the
real-time behaviour of this class of Profibus networks.
Importantly, we developed a new methodology for
evaluating the worst-case message response time in
systems where high-priority and cyclic low-priority
Profibus traffic coexist. The results presented in this
paper constitute an important advance concerning the
state-of-the-art in the sense that previous relevant
works neither could be applied to the mono-master
case nor considered the response time analysis for
systems supporting both high priority and cyclic poll
Profibus messages.

Work is now being carried out in order to extend the
approach followed in this paper to multi-master
Profibus networks.

8. REFERENCES

Grow, R. (1982). A Timed Token Protocol for Local
Area Networks. In: Proceedings of Electro’82,
Token Access Protocols, paper 17/3.

Kopetz, H. (1997). Real-Time Systems: Design
Principles for Distributed Embedded
Applications. Kluwer Academic Publishers.

Li, M. and L. Stoeckli (1993). The Time
Characteristics of Cyclic Service in Profibus. In:
Proceedings of the EURISCON'94, Vol. 3, pp.
1781-1786.

Liu, C. and J. Layland (1973). Scheduling Algorithms
for Multiprogramming in a Hard Real-time
Environment. In: Journal of the Association for
Computer Machinery, (20)1, pp. 46-61.

Profibus (1996). General Purpose Field
Communication System, Volume 2, EN 50170.

Profibus-DP (2000). Profibus Technical Overview.
http://www.profibus.com.

Tovar, E. and F. Vasques (1999a). Cycle Time
Properties of the PROFIBUS Timed Token
Protocol. In: Computer Communications, Elsevier
Science, 22(13), pp. 1206-1216.

Tovar, E. and F. Vasques (1999a). Real-Time Fieldbus
Communications Using PROFIBUS Networks.
In: IEEE Transactions on Industrial Electronics,
46(6), pp. 1241-1251.

Vasques, F. and G. Juanole (1994). Pre-run-time
Schedulability Analysis in Fieldbus Networks. In
Proceedings of IECON’94, Bologna, Italy, pp.
1200-1204.

