
1

On the Adaptation of Broadcast Transactions in Token-Passing
Fieldbus Networks with Heterogeneous Transmission Media

Mário Alves, Eduardo Tovar
ISEP, Polytechnic Institute of Porto

R. São Tomé, Porto, Portugal
{malves@dee,emt@dei}.isep.ipp.pt

Francisco Vasques
FEUP, University of Porto

R. Roberto Frias, Porto, Portugal
vasques@fe.up.pt

Abstract

Broadcast networks that are characterised by having
different physical layers (PhL) demand some kind of
traffic adaptation between segments, in order to
avoid traffic congestion in linking devices. In many
LANs, this problem is solved by the actual linking
devices, which use some kind of flow control
mechanism that either tell transmitting stations to
pause (the transmission) or just discard frames. In
this paper, we address the case of token-passing
fieldbus networks operating in a broadcast fashion
and involving message transactions over
heterogeneous (wired or wireless) physical layers.
For the addressed case, real-time and reliability
requirements demand a different solution to the
traffic adaptation problem. Our approach relies on
the insertion of an appropriate idle time before a
station issuing a request frame. In this way, we
guarantee that the linking devices’ queues do not
increase in a way that the timeliness properties of the
overall system turn out to be unsuitable for the
targeted applications.

1. Introduction

A number of local computer networks (LANs)
impose or benefit from the use of multiple segments
interconnected by linking devices such as repeaters
or bridges. This is true since many applications
demand the maximum number of nodes and/or the
maximum bus length to be extended. Moreover, the
same network may include physical layers (PhL)
with different bit rates, PhL protocol data unit
(PDU) formats and even different transmission media
(wired or wireless). The heterogeneity in bit rates and
PhL PDU formats in a broadcast network imposes
the consideration of some kind of traffic adaptation,
in order to have a deterministic behaviour in the
linking devices.

In many kinds of LANs this problem is solved by the
linking devices, either by controlling traffic
generation in transmitting stations (flow control) or
by discarding frames. In a fieldbus network working
in a broadcast fashion (all messages must be received
by all stations) and where there are strict real-time
and reliability requirements, another approach must
be followed. In this paper, we propose a solution

where the responsibility of traffic adaptation is given
to the stations, based on the insertion of additional
idle time between the transmission of consecutive
frames.

We are considering a fieldbus network where the
medium access control (MAC) protocol is based in a
token passing procedure used by master stations to
grant the bus access to each other, and a master-slave
procedure used by master stations to communicate
with slave stations. A master station is able to
perform transactions during the token holding time.
A transaction consists of the request from a master
and the associated response frame. Transactions are
atomic since requests will be followed by a
synchronous response (positive or negative), i.e. the
master will only process another transaction (or pass
the token) upon completion of the ongoing
transaction and waiting a pre-defined idle time. If an
erroneous response frame is received or a timeout
(before receiving any response) occurs, the master
station may retry the request. A master station can
also send unacknowledged requests. In this case, as
there is no associated response frame, it will be able
to start another transaction (or pass the token) just
after a pre-defined idle time. The idle times between
consecutive frames in the network should always be
respected due to physical layer (PhL) requirements
(namely for synchronisation).

In order to have a broadcast network, linking devices
(which interconnect two different physical media)
must act as repeaters. For simplicity we assume that
the linking devices have a store-and-forward
behaviour, i.e. a frame must be completely received
by one port of the linking device before being re-
transmitted to the other port. Obviously, the linking
devices may have to support functionality such as
encapsulation/decapsulation (due to potentially
different PhL PDU formats).

The previously described MAC protocol, the linking
devices’ characteristics and the heterogeneous
characteristics of the interconnected media impose
the need to insert additional idle time between
consecutive transactions, as a means of implementing
traffic adaptation. In section 2 we describe how to
compute the minimum idle time each master station
must wait before issuing a request frame, in a way

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

that we guarantee that no linking device will
experience increasing queue length. The inserted idle
time for a certain master station mainly depends on
the characteristic of the message streams of that
master and on the frame formats and bit rates in the
network. The results achieved in section 2 may be
applied to any fieldbus network that copes with the
previously described characteristics, seamless of the
kind of transmission media that are involved.

Section 3 introduces a hybrid wired/wireless fieldbus
system based on the EN50170 Profibus profile [1]
that is under development - the RFieldbus system [2].
The wired and wireless PhL PDUs are also described.
Then, in Section 4, the idle time parameters are
computed, taking into account the particular
characteristics of the RFieldbus system. The last
section draws some conclusions about this paper,
namely on the interest of the inserted idle time
approach in the scope of the RFieldbus system.

2. Computation of the idle time

There are some particular conditions that must be
satisfied in order to guarantee a correct behaviour of
the overall token-passing fieldbus networks involving
broadcast message transactions over heterogeneous
transmission media. In this section, we show how
traffic congestion can be avoided by inserting idle
time before issuing request frames.

2.1 PhL PDU Length and Duration

In a broadcast fieldbus network, linking devices
interconnect domains that use the same data link
layer (DLL) protocol, but may have different
physical layer (PhL). Therefore, we have to define
some parameters for each domain:

Parameter Description Units

L Length of the DLL PDU Chars

ka Length of a char in the PhL of domain
a

bits/char

la+ PhL overhead of domain a (header,
preamble, SFD)

Bits

ra Bit rate in domain a Mbit/s

Table 1: Parameters for frame length and duration

A character (char) may be defined as the smallest
unit of information in the DLL. A DLL PDU
(Protocol Data Unit) is a set of chars delivered to the
PhL for transmission. In order to proceed with this
transmission, the PhL may have to introduce
additional information (header) or synchronisation
(preamble, start frame delimiter) bits. Moreover, a
character of the DLL may have different lengths at
the PhL, depending on the type of PhL.

Taking into account the parameters outlined in Table
1, we can define Ca as the duration of a PhL PDU in
domain a:

a

aa
a r

lkL
C ++⋅

=

2.2 Traffic Congestion in Linking Devices

When interconnecting domains with different PhL
frame formats and data rates, the queuing delay in the
linking devices may increase, from one transaction to
the next. The timing diagram depicted in Figure 1
illustrates a sequence of transactions between an
initiator and a responder both in the same domain
(Da), and the resulting frames in the other domain
(Db). One linking device interconnects the two
domains and it is assumed that the frame duration in
Db is twice the frame duration in Da.

Da

Db

queuing delay

idle time

I I IR R R

queuing delay

Figure 1: Increasing queuing delay in a linking device

Note that since the idle time is usually defined as the
duration of a predefined number of (idle) bits
separating consecutive frames in the network, its
duration may be different for the two domains.

Clearly, if a request from an initiator in Da and a
responder in Db appears after the last response shown
in Figure 1, this transaction will be affected by the
cumulative queuing delay in the linking device. The
queuing delay in such a linking device depends on
the number and duration of consecutive transactions
where initiator and responder belong to Da. Even a
sequence of short frames may lead to very long
message response times. For instance, a sequence of
token passing between master stations that have
nothing to transmit may also cause traffic congestion.

A way to avoid traffic congestion in linking devices
(and long message response times) is through the
insertion of an additional idle time before initiating a
transaction. Obviously, the insertion of this
additional idle time reduces the number of
transactions per time unit when the responder is not
in the same domain as the initiator. Nevertheless, the
advantage of avoiding traffic congestion is enormous.
It leads to a better responsiveness to failure (when an
error occurs, retransmissions are undertaken sooner)
and to smaller worst-case message response times.

2.3 Two Different Idle Time Parameters

In every master station, two different DLL idle time
parameters should be defined - TID1 and TID2, related
to acknowledged and unacknowledged requests,
respectively. TID1 is the time that expires at the
initiator after receipt of a response frame’s last bit,
until a new frame’s bit is transmitted on the medium.
TID2 is the time that expires between transmitting the
last bit of an unacknowledged frame and transmitting

3

the first bit of the next frame. The need for having
these two distinct idle time parameters is explained
next.

For a single segment network, all stations may set
their idle time parameters to a minimum value,
usually big enough to cope with synchronisation
requirements. In the following subsections, we are
going to assume that all stations set these “minimum”
idle time parameters to the same value1, i.e.
TID1=TID2=TID. Then, we compute the additional idle
time each station must insert, in order to perform
traffic adaptation. These inserted idle times are
represented by tID1+ and tID2+. Finally, we merge the
corresponding components into single parameters –
T’ID1 and T’ID2.

As we will see, a master station could hold a unique
idle time, i.e. wait the same idle time after receiving
response frames or sending unacknowledged
requests. Nevertheless, this would demand this
unique idle time to be the maximum between T’ID1

and T’ID2. Obviously, this would lead to a non-
optimal situation. Indeed, previous results say that
T’ID2 is usually smaller than T’ID1. If we considered a
unique idle time (that is the maximum between the
two), we would penalise unacknowledged requests
(inserting more idle time than needed). The following
sections show how to set both idle times.

2.4 Computing tID1

In order to compute the inserted idle time after
receiving a response frame (tID1a+), we will refer to
Figure 2. A sequence of message cycles similar to the
one shown in Figure 1 is presented, but now
including the inserted idle time. For the sake of
simplicity, the timing diagram depicted in Figure 2
assumes that the frame duration in Db is twice the
frame duration in Da.

Da

Db

∆b

∆a

I IR R R

trr

t ID1b

tID1a tID1a+Cp
respa

Cp
respb Cc

reqb

Cc
reqa

Figure 2: Inserting additional idle time (acknowledged
request sequence)

The responder’s reaction time is represented by trr

(assumed to be constant for every station) and the
superscript indexes p and c correspond to previous
and current (transaction), respectively.

Clearly, the increase in idle time (tID1a+) guarantees
that there will be at most two messages in a linking

1 Note that this is the idle time all hopping devices will use, when
relaying traffic from one port to the other.

device’s queue, one being processed and the other
one waiting to be served.

Reporting to Figure 2, we can state that ∆a should be
greater or equal to ∆b, in order to be able to avoid the
increase in the queue. That is, considering that

rr
c
reqaaIDaID

p
respaa tCttC ++++=∆ +11 and

bID
c
reqbbID

p
respbb tCtC 11 +++=∆ , then:

() ()
() rraIDbID

c
reqa

c
reqb

p
respa

p
respbaID

ttt

CCCCt

−−⋅+

+−+−≥+

11

1

2
(1)

In order to compute the value for tID1+ for a given
master station, there is the need to know the
characteristics of the message streams related to that
master. Therefore, we must know the length of the
different DLL request/response PDUs for every
acknowledged request and of the different DLL
unacknowledged request PDUs for that master.

2.5 Computing tID2

The condition expressed in (1) is just related to
acknowledged request frames, though. The case of a
sequence of non-acknowledged request (or token)
frames must also be analysed. Figure 3 shows a
sequence of unacknowledged requests and the
variables that are necessary to evaluate this second
idle time.

Da

Db

δ b

δa

I I I

tID2a

tID2b

tID2a+

Figure 3: Inserting additional idle time
(unacknowledged request sequence)

In this case, δa should be greater or equal to δb. That

is, considering +++= aIDaIDreqaa ttC 22δ and

bIDreqbb tC 2+=δ , then:

() ()aIDbIDreqareqbaID ttCCt 222 −+−≥+ (2)

Again, the different DLL unacknowledged request
PDUs lengths for that master must be known, in
order to compute tID2+.

Finally, assuming only one register for TID1 and one
register for TID2, there is the need to merge both the
“conventional” idle time with the inserted idle time
in one variable, i.e.:

++ +=∧+= aIDaIDaIDaIDaIDaID tttttt 222111 ''

Or, in bit times:

4

++ +=∧+= aIDaIDaIDaIDaIDaID TTTTTT 222111 ''

We are considering also that a master station will
insert T’ID2 after receiving a token frame2. This is true
since a sequence of token passing between master
stations that have nothing to transmit may also “jam”
the linking device.

Concerning the idle time used by the linking devices
when relaying frames, they only insert the
“conventional” idle times, i.e. TID1 and TID2. In order
to avoid the need for the linking devices to decode
the DLL PDU (to know if it is a acknowledged or
unacknowledged request), both “conventional idle
times should be set to the same value.

2.6 Algorithm for the computation of the idle
times

The methodology presented in sections 2.4 and 2.5
permits to set both idle time parameters in a per-
station basis, taking into account all possible
transactions (message streams) for that master
station. In this sense, each master station in the
network would have a unique pair (T’ID1, T’ID2) of
idle time parameter values.

For the sake of simplicity, we present a simplified
algorithm that returns the same idle time parameter
values for all masters stations in a given domain
(therefore, in a per-domain basis). Therefore, instead
of considering the particular set of message streams
for each master station, we opt for a worst-case
scenario where maximum and minimum frame
lengths for the overall network are considered. This
requires the definition of some additional network
parameters:

Description Symbol

Maximum length of DLL request PDU max
reqL

Maximum length of DLL response PDU max
respL

Minimum length of DLL request PDU min
reqL

Minimum length of DLL response PDU min
respL

Table 2: Additional parameters

Moreover, the maximum length of acknowledged and
unacknowledged DLL request PDUs is considered to
be the same. The following algorithm for the
computation of T’ID1 and T’ID2 is proposed:

2 This demands the decoding of the DLL PDU, in order for the
master station to know if it received a token frame.

Define values for network-specific parameters:
max
reqL ,

max
respL ,

min
reqL ,

min
respL

trr

For every domain i, define values for domain-
specific parameters

Li+ , ki , ri

TID1i = TID2I = TID

For every domain i

Computation of the idle time after receiving
response frame (T’ID1i)

For every domain j≠i

Choose reqL and respL , such as

maxminmaxmin
respresprespreqreqreq LLLLLL ≤≤∧≤≤

and in order to maximise the ratio

i

j

C

C

Compute tID1i+ using the formula

() () () rriIDjIDreqireqjrespirespjiID tttCCCCt −−⋅+−+−≥+ 111 2

Choose the highest idle time (considering all
domains)

Set

++ +=∧+= iIDiIDiIDiIDiIDiID TTTttt 111111 ''

Computation of the idle time after sending
unacknowledged request or receiving the token
(T’ID2i)

For every domain j≠i

Choose reqL such as3

maxmin
reqreqreq LLL ≤≤

and in order to maximise the ratio

i

j

C

C

Compute tID2i+ using the formulas

() ()iIDjIDreqireqjiID ttCCt 222 −+−≥+

Choose the highest idle time

Set

++ +=∧+= iIDiIDiIDiIDiIDiID TTTttt 222222 ''

end

3. The RFieldbus System

The RFieldbus System is being specified in the scope
of the European Union Project IST-1999-11316
RFieldbus - High Performance Wireless Fieldbus in
Industrial Multimedia-Related Environment [2].
Within this project, Profibus [1] was chosen as the
fieldbus platform. Essentially, extensions to the
current Profibus standard are being developed in
order to provide Profibus with wireless, mobility and
industrial-multimedia capabilities. In fact, providing
these extensions means fulfilling strong
requirements, namely to encompass the
communication between wired (currently available)
and wireless/mobile devices and to support real-time

3 While the maximum length of acknowledged and
unacknowledged DLL request PDUs was considered to be the
same, we present a more general algorithm, since it allows having
two different values.

5

control traffic and multimedia traffic in the same
network.

3.1 RFieldbus Network Topology

The RFieldbus network topology [3] is exemplified
in Figure 4:

S1 M1 S2 S3 S4H1 H2 M2

M4

M5

S7

S5 M3 S6H3

M – Master

S – Slave Wired
Domain 1

Hopping Device

Wireless
Domain 1

Wired
Domain 2

Wireless
Domain 1

Wireless
Station

Figure 4: RFieldbus network topology and components

A domain consists of a set of stations communicating
between them via a shared communication channel.
Note that no registering mechanisms are needed since
we assume that wireless domains operate in different
radio channels. It is also important to note that inter-
domain mobility is supported if in each wireless
domain messages are relayed through a base station
(with up-link and down-link channels instead of
direct communication between the wireless nodes)
and mobile stations are able to perform channel
assessment and channel switching [4].

3.2 Wired and Wireless PhL Parameters

In the wired domains, the asynchronous version of
Profibus (RS485) is used. Each PhL PDU consists of
a number of characters – the UART characters, that
are composed of 11 bits each (8+3). The wired PhL
adds no overhead. When relaying a Profibus PhL
PDU to a wireless domain, the linking device
removes every extra 3 bits and encapsulates the
entire data octets in the data part of the wireless
PDU, adding a specific header. Also, there is the
need to insert a preamble and a start frame delimiter
(SFD) to the wireless PhL PDU, in order to allow its
correct reception. Considering a 10 bytes header plus
53 µs preamble and SFD (resulting in a total
overhead of 186 bit times) in the wireless PhL PDU,
and referring to Table 1, we get:

Wired domain Wireless domain

kwr=11 bits/char kwl=8 bits/char

lwl+=0 bits lwl+=186 bits

rwl=1,5 Mbit/s rwl=2 Mbit/s

Table 3: Parameter values in the RFieldbus system

Thus, the duration of wired and wireless PhL PDUs
can be computed as:

 s)(934
2

1868
 s)(

3

22

5,1

11
µµ +⋅=

+⋅
=∧⋅=

⋅
= L

L
CL

L
C wlwr

Table 4 presents the PhL PDU duration of some DLL
PDUs:

PDU Type L (chars) Cwr (µµs) Cwl (µµs)

Short acknowledge 1 7.3 97

Token 3 22 105

Fixed length no data 6 44 117

50 data octets 59 432.7 329

100 data octets 109 799.3 529

150 data octets 159 1166 729

246 data octets 255 1870 1113

Table 4: Frame length and duration

From Table 4, it is clear that short frames have a
longer duration in wireless domains while long
frames take longer to transmit in wired domains.

4. Evaluating the Idle Time for the
RFieldbus System

If the number of bits in the wireless and wired PhL
PDUs was the same, there would be only need for
inserting idle time in the stations belonging to the
wireless domains (assuming 2 Mbit/s for wireless and
1,5 Mbit/s for wired). As this does not happen
(different PhL PDU formats), wired stations also
need to insert idle time (due to the sequence of short
frames). The idle time parameters of wired and
wireless stations are going to be computed taking
into account the RFieldbus characteristics defined in
Section 3. Additionally, the following values are
assumed:

TID1 = TID2 = TID = 50 bit times trr = 100 µs

4.1 Computation of T’ID1

4.1.1 For the wired stations

In order to see if there is need for additional idle time
in the wired stations, we must consider the smallest
frames possible. This is true since as the frames are
shorter, the wireless frame duration gets increasingly
higher than the wired frame duration. Thus, (1) turns
into:

() ()
() rrWRIDWLID

reqWRreqWLrespWRrespWLWRID

ttt

CCCCt

−−⋅+

+−+−≥+

11

1

2

Now considering that in Profibus:

- The shortest response/acknowledgement frame is
1 character long (short ack frame).

- The shortest request frame is 6 characters long
(fixed length with no data field)

This results in (refer to Table 4):

() () s 80100
5.1

50

2

50
2441173.7971 µ≈−






 −⋅+−+−≥+WRIDt

6

For a 1,5 Mbit/s data rate, this would imply an
inserted idle of 120 bit times. Therefore, the idle time
is:

bit times 17012050' 111 =+=+= +WRIDWRIDWRID TTT

4.1.2 For the wireless stations

In this case, the longest request/response frames
should be considered (255 characters each) to
compute the worst-case idle time. Equation (1) turns
into:

() ()
()

() () s 1556100
2

50

5.1

50
21113187011131870

2 11

1

µ≈−





 −⋅+−+−=

=−−⋅+

+−+−≥+

rrWLIDWRID

reqWLreqWRrespWLrespWRWLID

ttt

CCCCt

For a 2 Mbit/s data rate, this would imply an inserted
idle of 3112 bit times. Therefore, the idle time is:

bit times 3162311250' 1 =+=WLIDT

4.2 Computation of T’ID2

4.2.1 For the wired stations

Equation (2) results in:

() ()WRIDWLIDreqWRreqWLWRID ttCCt 222 −+−≥+

Considering that the smallest unacknowledged frame
is the token frame (3 characters):

() s 75
5.1

50

2

50
221052 µ≈






 −+−≥+WRIDt

For a 1,5 Mbit/s data rate, this would imply an
inserted idle of 113 bit times. Therefore, the idle time
is:

bit times 16311350' 2 =+=WRIDT

4.2.2 For the wireless stations

Equation (2) results in:

() ()WLIDWRIDreqWLreqWRWLID ttCCt 222 −+−≥+

Considering the longest unacknowledged frame (255
characters):

() s 766
2

50

5.1

50
111318702 µ≈





 −+−≥+WLIDt

For a 2 Mbit/s data rate, this would imply an inserted
idle of 1532 bit times. Therefore, the idle time is:

bit times 1582153250' 2 =+=WLIDT

4.3 Summarising table

The following table summarises the values (in bit
times) for the idle times:

Station Type T’ID1 (bit times) T’ID2 (bit times)

Wired Master 170 163

Wireless Master 3162 1582

Linking Device 50 50

Table 5: Idle time values for the RFieldbus system

5. Conclusion

This paper addresses the problem of traffic
adaptation in broadcast fieldbus networks sharing
the same DLL but containing different physical
layers. In some LANs, linking devices solve the
problem of traffic adaptation. They use flow control
mechanisms to tell transmitting stations to pause or
just discard frames, when an overflow situation
occurs (or is predicted). However, we assumed a
fieldbus network working in a broadcast fashion and
with real-time and reliability requirements.
Therefore, another solution to the traffic adaptation
was proposed which principle is to force master
stations to insert additional idle time before
transmitting frames. Two different idle time
parameters were defined – T’ID1, T’ID2. The former
must be inserted when a master station has received a
response frame. The latter must be respected after
issuing an unacknowledged request. An algorithm for
the computation of both idle times was presented.
Then, we present a very basic description of the
RFieldbus system, with its specific data rates and
frame formats in the wired and wireless domains.
Finally, section 4 is devoted to the computation of
the idle time parameters considering the RFieldbus
case.

The methodology to evaluate the idle time
parameters is not only important for the traffic
adaptation between wired and wireless domains (or
generally between heterogeneous PhLs), but also to
determine the duration of a message transaction [5], a
relevant parameter in any real-time system’s analysis.

6. References
[1] “General Purpose Field Communication System, Volume 2” –

Profibus, European Norm EN 50170, 1996.

[2] Haehniche, J., Rauchhaupt, L., “Radio Communication in
Automation Systems: the R-Fieldbus Approach”, in
Proceedings of the 2000 IEEE International Workshop on
Factory Communication Systems, pp. 319-326, September
2000.

[3] RFieldbus Deliverable D1.3, “General System Architecture of
the RFieldbus”, Technical Report, June 2000

[4] RFieldbus White Paper, “Mobility Management in
RFieldbus”, RFieldbus Technical Report, January 2001.

[5] Alves, M., Tovar, E., Vasques, F., “Evaluating the Duration of
Message Transactions in Broadcast Wired/Wireless Fieldbus”,
HURRAY-TR-0121, May 2001.

