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ABSTRACT  

 
 

The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to 

achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred 

at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the 

sensitivities are obtained for each UDM design point, using the max- imum load obtained from optimal design search. Using the UDM design points as 

input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a 

Monte Carlo simulation procedure is implemented and the variability of the struc- tural response based on global sensitivity analysis (GSA) is studied. 

The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. 

The most important sources of uncertainty are  identified. 
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1. Introduction 

 
Composite materials behavior is extremely affected by numer- 

ous uncertainties that should be considered in structural design. 

The problem of design-based uncertainty of laminated composite 

structures can be formulated as an optimization problem or ad- 

dressed as the problem of alleviating the effects of unavoidable 

parameter uncertainties. The first perspective is associated to reli- 

ability-based design optimization (RBDO) and the second one is 

considered in robust design optimization (RDO). Both strategies 

depend on uncertainty propagation analysis of composite struc- 

tures response and different length scales. 

Nowadays the definition of structural design criteria is based on 

ultimate state theory rather than on service stress theory. The 

application of such concepts to composite materials based on reli- 

ability analysis creates new challenges to the designer. A compre- 

hensive review paper on RBDO developments is presented by 

Frangopol and Maute [1]. Recent works in RBDO applied to com- 

posite structures have been presented. Rais-Rohani and Singh [2] 

discuss the development of global and sequential response surface 

techniques for reliability-based optimization of composite struc- 

tures under  axial  compression  and  buckling  instability.  Singh  

et al. [3] investigated the influence of variations of material prop- 

 

erties on the elastic stability of laminated composite panels. Adali  

et al. [4] developed a model for the optimal design of composite 

laminates under buckling load  uncertainty. 

The structural tailoring technique was applied to design lami- 

nated composite structures by searching the stacking  sequence  

that corresponds to the less sensitive performance properties rela- 

tively to uncertainties in the input parameters. This perspective 

follows RDO concepts where the objective is to minimize the ef- 

fects of uncertainty on optimal design. The strategy is based on 

considering the statistical data in objective and constraint func- 

tions [5]. 

Although several methods have been presented for uncertainty 

assessment, their efficiency was not proven, in particular when ap- 

plied to composite structures [6,7]. The almost totality of sensitiv- 

ity analyses in applications with composite structures used local 

importance measures of design parameters [2–10]. In particular 

Rais-Rohani and Singh [2] and Carbillet et al. [9] studied the sensi- 

tivity of reliability index of composite structures with non-linear 

behavior and quantified the importance of the random variables 

using local measures. Although the innovative aspects of joint reli- 

ability and sensitivity analysis, the use of local importance mea- 

sures of uncertainty propagation is limited. So, Global Sensitivity 

Analysis (GSA) on the uncertainty response is still unexplored, 

remaining an open  issue. 

The uncertainty propagation of composite structures is 

investigated in this work considering descriptive statistical mea- 

sures of the response variability and sensitivity analysis of   system 
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responses inside GSA framework [11–13]. A study based on sensi- 

tivity to uncertainty that allows selecting the important parame- 

ters using global sensitivity indices is presented. The uncertainty 

propagation and the importance measure of input parameters are 

analyzed using an Artificial Neural Network-based Monte Carlo 

simulation approach (ANN-MCS). The proposed methodology uses 

a Monte Carlo procedure together an Artificial Neural Network sur- 

rogate model based on supervised evolutionary learning [14]. 

The use of approximate models in reliability analysis has been 

studied. In particular, ANN has been used to approximate the limit 

state function and its derivatives proposed a hybrid technique based 

on ANN in combination with genetic algorithms (GA) for structural 

reliability analysis [15–17]. Following a different procedure, an ap- 

proach based on an ANN model simulating at the same time the limit 

state function, the reliability index and their sensitivities is proposed 

in this paper. The objective is to study the propagation of uncertain- 

ties of mechanical properties on the response of composite laminate 

structures (linear mechanical behavior) under an imposed reliability 

level. Robustness assessment of the reliability-based designed com- 

 
 

posite structures is considered and some criteria are outlined for the  
particular case of angle-ply laminates. The longitudinal elastic mod-  

 
 

 

ulus E1, transversal elastic modulus E2, transversal strength in ten- 

sile Y, and shear strength S are considered the ANN input variables. 

These are the mechanical properties with the most critical devia- 

tions on the composite laminate  strength randomness, according  

to the numerical simulation performed by Conceição António [18] 

and António et al. [19]. Nevertheless, the presented study can be ex- 

tended to other random variables. 

The paper is organized as follows: Section 2 presents the formu- 

lation of the uncertainty propagation analysis describing the main 

features of the ANN-MCS proposed approach, the inverse reliability 

analysis and the ANN developments. GSA proposed model is de- 

scribed in Section 3. The numerical applications are presented in 

Section 4 together with the discussion of the results. Finally the 

conclusions on the performance of the proposed approach are pre- 

sented in Section 5. 

 

 
2. Uncertainty propagation analysis 

 

 
 

2.1. ANN-MC approach 

 
The objective of the proposed approach is to study the propaga- 

tion of uncertainties in input random variables, such as mechanical 

properties, on the response of composite laminate structures for a 

 

specified reliability level. Fig. 1 shows the proposed Artificial   Neu- 

ral Network based Monte Carlo simulation procedure. The pro- 

posed approach for uncertainty propagation analysis in RBDO of 

  

composite structures for the particular case of angle-ply laminates 

is addressed according to the following steps: 
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Fig. 1.  Flowchart of proposed approach for uncertainty propagation analysis. 

 

laminate defined from the macro-mechanical point of view [22]. 

The solution, v*, of the reliability problem in Eq. (2) is referred to, 

in technical literature, as the design point or most probable failure 

point (MPP). The bisection method used to estimate the load factor, 

k, is iteratively used in the external loop [23]. After the minimiza- 

tion of the objective function given in Eq. (1), the structural reliabil- 

ity index is bs � ba with some prescribed error, and the 

corresponding load vector is L(ba). 

 
2.3.  ANN developments 

 
The proposed ANN is organized into three layers of nodes (neu- 

rons): input, hidden and output layers. The linkages between input 

and hidden nodes and between hidden and output nodes are de- 

noted by synapses. These are weighted connections that establish 

the relationship between input data and output   data. 

In the developed ANN, the input data vector Dinp is defined by a 

set of values for random variables p, which are the mechanical 

properties of composite laminates, such as elastic or strength  prop- 

erties. Following the developments performed by Conceição Antó- 

nio [18] and António et al. [19] only the critical mechanical 

properties of composite laminates are selected as ANN input data. 

The objective is to avoid exhaustive calculations with high compu- 

tational costs. Using a modified version of the Monte Carlo analysis 

the referred authors [18,19] proposed a methodology based on a 

parametric study of the influence of the physical properties ran- 

domness in angle-ply laminated composite strength and further- 

more the choice of the most relevant mechanical properties. The 

parametric study concluded that the  most  important  properties 

for angle-ply laminates randomness strength are the longitudinal 

elastic modulus E1, transversal elastic modulus E2, transversal 

strength in tensile Y, and shear strength S. So, this mechanical 

properties are considered as ANN input variables and denoted by 

p = [E1, E2, Y, S]. Nevertheless, the presented study can be extended 

to other random  variables. 

In the proposed ANN-MC approach, each set of input values for 

the random variable vector p is selected using the Uniform   Design 

Method (UDM) [24]. The procedure is based on a UDM table de- 

noted by Un(q
s), where U is the uniform design, n the number of 

samples, q the number of levels of each input variable, and s the 

maximum number of columns of the table. For each UDM table, 

there is a corresponding accessory table, which includes a recom- 

mendation of columns with minimum discrepancy for a given 

number of input variables. Using the UDM a set of design points 

belonging to the interval  p- i     ap- i; p- i     ap- i   is generated, covering     

a domain centered at mean reference values of the random vari- 

ables. This method enables a uniform exploration of the domain 

values necessary in the development of an ANN approximation 

model guarantying better results after learning procedure [25]. 

The corresponding output data vector Dout contains the critical Tsai 

number, R, structural reliability index, bs, and relative sensitivities 

Spi 
of reliability index with respect to random variables. The con- 

cept of relative sensitivity [26] of the reliability index is defined   as 
 
 
 
 

and its analysis aims to compare the relative importance of input 

parameters on the response. Fig. 2 shows the  topology  of  the  

ANN, showing the input and output parameters. 

Each pattern, consisting of an input and output vector, needs to 

be normalized to avoid numerical error propagation during the 

ANN learning process [25]. The activation of the kth node of the 

hidden layer (p = 1) and output layer (p = 2) is obtained through 

sigmoid functions. The error between predefined output data and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.  Artificial Neural Network topology. 

ANN simulated results is used to supervise the learning process, which 

is aimed at obtaining a complete model of the process. As a set of input 

data are introduced to the ANN, it adapts the weights of the synapses 

and values of the biases to produce consistent simulated results 

through  a process  known  as learning.  The  weights  of the synapses, 
m

ðpÞ
, and biases in the neurons at the hidden and output layers,    rðpÞ

, 

 

3.1. Global variance-based method 

 
Among GSA techniques the variance-based methods are the 

most appropriate [12,13,28]. GSA studies the effects of input vari- 

ations on model outputs in the entire allowable ranges of the  input 
space. Global Sensitivity Analysis (GSA) has an advantage over  lo- 

ij k 

are controlled during the learning process. For each set of input data 

and any configuration of the weight matrix and biases, a set of output 

results is obtained. These simulated output results are compared with 

the predefined values to evaluate the difference (error), which is then 

minimized during the learning procedure. 

The adopted supervised learning process of the ANN based on a 

Genetic Algorithm (GA) [27] uses the weights of synapses and 

biases of neural nodes at the hidden and output layers as design 

variables. A binary code format is used for these variables. The 

number of digits of each variable can be different depending on 

the connection between the input-hidden layers or hidden-output 

layers. A GA is an optimization technique based on the survival of 

the fittest and natural selection theory proposed by Charles Dar- 

win. The genetic algorithm [27] basically performs on three parts: 

(1) coding and decoding random variables into strings; (2) evaluat- 

ing the fitness of each solution string; and (3) applying genetic 

operators to generate the next generation of solution strings in a 

new population. Three basic genetic operators, namely selection, 

crossover, and mutation are used in this paper. An elitist strategy 

based on conservation of the best-fit transfers the best-fitted solu- 

tion into a new population for the next generation. Once the new 

population is created, the search process performed by the three 

genetic operators is repeated and the process continues until the 

average fitness of the elite group of the current generation no long- 

er shows significant improvement over the previous generation. 

Further details on creating and using a genetic algorithm for ANN 

learning can be found in the reference [27]. 

 
3. Global sensitivity analysis 

 
The local measures of sensitivity are not enough for a full eval- 

uation of the influence of input parameters on structural response 

uncertainty [12–14]. The uncertainty analysis on response in the 

neighborhood of mean values of input parameters is of limited va- 

lue. To obtain the influence of individual parameters on the uncer- 

tainty at the output structural response Wm Global Sensitivity 

Analysis (GSA) techniques must be used. Global Sensitivity Analy- 

sis denotes the set of methods that consider the whole variation 

range of inputs and tries to share the output response uncertainty 

among the input  parameters. 

cal sensitivity analysis in that GSA does not require strong model 

assumptions such as linearity or monotonicity [13,28]. However 

its application for composite structures is complex and expensive 

from the computational point of view. In this work the variance- 

based methods is applied to a group of input parameters namely 

the physical properties of composites and then compared with lo- 

cal importance measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2. GSA evaluation  using Monte Carlo  simulation 

 
One of the problems using global sensitivity indices is the com- 

putational cost. Due to the large number of input parameters in the 

uncertainty propagation analysis on composite structures, Finite 

Element Method evaluations become very expensive. In this work 

the ANN-based Monte Carlo simulation approach is used for the 

estimation of GSA indices. To reduce the computational costs the 



 

 

analysis is implemented using groups of input parameters and con- 

sidering only the Sobol first-order sensitivity  index. 

The proposed methodology is based on the following algorithm 
[14]: 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
  

 
 

  

 
 

 

  

 

 

    

 

  
 

 

 

Fig. 3.  Geometric and loading definition of cylindrical composite  shell. 
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Table 1 

Mean reference values of mechanical properties of composite    layers. 
 

Material E1 (GPa) E2 (GPa) G12 (GPa) m X; X0 (MPa) Y; Y0 (MPa) S (MPa) q (kg/m
3
) 

T300/N5208 181.0 10.3 7.17 0.28 1500; 1500 40; 246 68 1600 

 

To assess reliability, the longitudinal elastic modulus, E1, trans- 

versal elastic modulus, E2, transversal strength in tensile, Y, and 

shear strength, S, are the considered random variables and denoted 

by p = [E1, E2, Y, S]. All random variables are non-correlated, and 

follow a normal probability distribution function defined by their 

respective mean and standard deviation. The present study can 

be further extended to other random variables. To obtain the max- 

imum reference load, the inverse RBDO problem defined in Eq. (1) 

is solved. The structural reliability index is bs � ba with some pre- 

scribed error, and the corresponding maximum load vector, L(ba), 

can be obtained. The reliability assessment follows the procedure 

described in Eqs. (2)–(6). A target reliability index ba = 3 for the 

composite structure is considered. The mean values of the mechan- 

ical properties are assumed to be random variables and are defined 

in Table 1, and the coefficient of variation of each random variable 

is set to CV(p) = 6%, relative to the mean  value. 

The Most Probable failure Point (MPP) values are obtained 

based on the Hasofer- Lind method. After obtaining these values, 

the inverse RBDO, formulated in Eq. (1), is solved for ba = 3 and 

the maximum load is outlined depending on ply angle, a. The cor- 

responding maximum load is plotted as a function of ply angle, a, 

and shown in Fig. 4. This load is used as the reference load for fur- 

ther uncertainty propagation analysis in the ANN-MCS and sup- 

ported by UDM and GA developments. 

The UDM points are considered as experimental input values to 

be used in the ANN learning procedure. A number of 27 training 

data  sets  is  selected  inside  the  interval  ½p- i - 0:06p- i; p- i þ 0:06p- i], 

with  mean  reference  value p- i  set  as  a  random  variable  for  each 

mechanical property and defined in Table 1. 

In Uniform Design Method (UDM) originally proposed by Fang 

et al. [24] a set of design points is generated over a domain cen- 

tered at mean values of random variables, aimed at studying the 

space variability. Obtaining points that are most uniformly scat- 

tered in the s-dimensional unit cube Cs is the key of UDM, which 

 
60000 

is based on a quasi-Monte Carlo method. In this context, the dis- 

crepancy is used as a measure of uniformity that is universally ac- 

cepted. As referred in Section 2.3, for each UDM table there is a 

corresponding accessory table, which includes a recommendation 

of columns with minimum discrepancy for a given number of input 

variables. 

The UDM values are selected according to the approach pro- 

posed by Cheng et al. [16]. After selecting Table U27(2710) of the 

UDM [16], where columns 1, 4, 6 and 9 must be selected according 

to the respective accessory Table for four variables and discrepancy 

W(n, P) = 0.1189, the resulting integer code format is presented in 

Table 2. The UDM table must be transformed into a hyper-rectan- 

gle region corresponding to the input variable domain by linear 

transformation.   Then   the   interval   p- i     0:06p- i; p- i     0:06p- i     is 

equally discretized with 27 points and, using the integer code for- 

mat from Table 2, the actual composition for p = [E1, E2, Y, S] is ob- 

tained [25]. 

Reliability analysis is performed for the input values from Ta- 

ble 2 and 27 input/output patterns are obtained and used in ANN 

development. For each UDM design point, the most critical Tsai 

number, R, associated with the most probable failure point 

(MPP); reliability index of structure, bs; and relative sensitivities 

are obtained by using the maximum load previously calculated 

for each ply angle, a considering the respective domain, as a refer- 

ence and solving the inverse RBDO formulation of Eq. (1). A fixed 

standard deviation rpi      
0:06p- i is used in the reliability index eval- 

uation for all UDM design points, based on Hasofer–Lind    method. 

The sensitivities are calculated based on the adjoint variable meth- 

od  [18,20]. 

A number of 10 neurons are considered for the hidden layer of 

the ANN topology. The ANN learning process is formulated as an 

optimization problem with 116 design variables corresponding to 

 
Table 2 

UDM design points for discrepancy W(n, P) = 0.1189. 

 

 
50000 

 

 
40000 

 

 
30000 

 

 
20000 

 

 
10000 

 

 
0 

 
Angle, a [º] 

 
Fig. 4. Maximum load for ba = 3, solving the inverse RBDO problem for clamped 

composite shell. 
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100 weights of synapses and 16 biases of neural nodes [25]. The 

ANN-based GA learning process is performed using a population    

of 21 individuals/solutions. The elite and mutation groups have 7 

and 4 solutions, respectively [27]. The binary code format with 5 

digits is adopted for both designing the values of the weights of 

synapses and biases of neural nodes at the hidden and output lay- 

ers. The learning process is concluded after 15,000 generations of 

the GA. The mean values in Table 1 (point 14 of UDM Table 2)    

are used for ANN testing. The relative errors in learning and testing 

processes corresponding to the optimal ANN are less than   1%. 

Using the proposed ANN-MCS approach 5000 simulations are 

obtained aiming to analyze the behavior of structural response 

parameters as the critical Tsai number, the reliability index and   

its relative sensitivities. An example of the implemented analysis 

Fig. 7 shows the interval of variation for the relative sensitivities 

obtained from Eq. (7). The objective is to compare the relative 

importance of the input parameters on structural response, in par- 

ticular for the inverse RBDO solutions. The reliability index bs, is 

very sensitive to  transversal strength, Y, over the  entire domain   

of angle a except for a = 45°. The sensitivity relative to the shear 

strength, S, is high for ply angle values equal to 45° and 60°. The 

relative sensitivities of other parameters as longitudinal elastic 

modulus and transversal elastic modulus are not so    important. 

The global variance-based method proposed in Section 3.2 and 

ANN-based Monte Carlo simulation is applied to the same shell 

structure shown in Fig. 1 with all laminates built using the   CFRP, 

T300/N5208 composite system.  Then,  let  us  consider  the  vector 
of input parameter p = [E1, E2, Y, S] following a normal  distribution 

is shown in Fig. 5 with the relative sensitivities of the reliability in- N   with   mean p- i   and   standard   deviation  ri    represented   by 

dex bs calculated for ply angle a = 60°. The histograms show that  

the response do not follow a Normal probability distribution 

function. 
Descriptive statistics of the structural response parameters  cal- 

pi      N p- i; ri  . In particular the statistical values of non-correlated 

input parameters are: 

culated for ply angle a = 60° are presented in Table 3. Supported by 

the statistical analysis it can be concluded that all response param- 

eters, except the critical Tsai number, show large variations. The 
coefficients of    variation (C.V.) are very high when compared to 

  
 

the coefficient of variation for the input random variables, which 

has a predefined value of 6% of the mean values. This is confirmed 

also by box plot analysis in Fig. 6. 

The importance of input parameters on uncertainty propagation 

on structural response is shown in Figs. 6 and 7 based on box-plot 

analysis. In particular, the variability of the reliability index in 

RBDO and associated relative sensitivities indices must be consid- 

ered for robust design of composite    structures. 

The formulation presented in Section 3.2 is implemented for 

critical Tsai number R and reliability index bs, denoted here  by 

Wm, and using the above mechanical properties as input parame- 

ters. To provide the fraction of the global variance var(Wm) due  

to each input parameter and further to calculated the respective 

importance measure the global Sobol first-order sensitivity index 

defined in Eq. (16) is used. This means that the global variance 

var(Wm) is explained by the contribution of partial variances as de- 

fined in Section 3.1. 
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Fig. 5.  Histograms of relative sensitivities of the reliability index bs, with respect to p = [E1, E2, Y, S] for clamped composite shell and ply angle, a = 60°. 
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Table 3 

Descriptive statistics of the structural response parameters, using data from the ANN-based MCS approach for clamped composite shell. 
 

 Tsai number Reliability index Rel. sensi. of reliab. 

index  to E1 

Rel. sensi. of reliab. 

index  to E2 

Rel. sensi. of reliab. 

index to Y 

Rel. sensi. of reliab. 

index to  S 
 

Angle = 60°       
Mean 1.154 2.959 1.671 0.412 1.852 5.082  
Std. deviation 0.022 0.533 0.349 0.034 0.281 0.884  
C.V. (%) 1.89 18.02 20.91 8.22 15.19 17.40  
Minimum 1.110 1.935 1.133 0.355 1.429 3.797  
Maximum 1.190 3.873 2.465 0.507 2.475 7.165  
N 5000 5000 5000 5000 5000 5000  
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Fig. 6.  Box plot of the critical Tsai number R, and reliability index bs, for clamped composite shell on ply angle   domain. 
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Fig. 7.  Box plot of relative sensitivities of the reliability index bs, with respect to p = [E1, E2, Y, S] for clamped composite shell on ply angle  domain. 

 

 

 

 

 

 

 

 

 

Fig. 8.  Global variance varðR-Þ, explained by Sobol first-order sensitivity index Si with 

respect to p = [E1, E2, Y, S] for clamped composite shell on ply angle domain. 

Fig. 9. Global variance var(b s), explained by Sobol first-order sensitivity index Si with 

respect to p = [E1, E2, Y, S] for clamped composite shell on ply angle domain. 

 

the reference coordinate, as detailed in Fig. 11. All plies have same 

thickness. 

The same shell finite element referred in previous example is 

used  here  for structural  analysis. To  assess  reliability the  previ- 

ously described procedure in Eq. (2)–(6) is applied considering 
the vector of random variables p = [E1, E2, Y, S]. The target reliabil- 

ity index is ba = 3 and the coefficient of variation of each  random 

variable is set to CV(p) = 6%, relatively to the mean value. The cor- 

responding maximum load is plotted in Fig. 12 and it is used as the 

reference load for further development of the ANN supported by 

UDM and GA-based learning procedure. 

The ANN is developed using the same UDM points defined in 

Table 2. After obtaining the new optimal ANN for aircraft wing-like 

composite  panel,   the  uncertainty  propagation   analysis  is    per- 
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Fig. 10.  Relative sensitivities of the reliability index bs, with respect to p = [E1, E2,-  

Y, S] for clamped composite shell on ply angle domain. 
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Fig. 12. Maximum load for ba = 3, solving the inverse RBDO problem for aircraft 

wing-like composite panel. 
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Fig. 11.  Geometric definition of aircraft wing-like composite  panel. 

 

formed based on the procedure defined in Section 3.2. A set of ran- 

dom numbers, Nf = 50, following a normal distribution N(0, 1) and 

a sample matrix Ma with dimension Nr   (p - 1) = 100    3 are used 

in GSA algorithm for a total of twenty thousand simulations fol- 

lowing Eq. (15). The GSA is implemented and the Sobol first-order 

sensitivity index Si is calculated as a function of ply angle, a. Figs. 13 

and 14 show the contribution of each random variable for global 

variance var(Wm) using two responses functions of the composite 

structure. The Sobol first-order sensitivity index [11,29] is used as 

importance measure and the contribution is represented as a frac- 

tion of the total values at each ply angle. Fig. 13 plots the results for 
 

 

structural response analysis based on critical Tsai number R. Similar 

analysis is performed using the reliability index bs as response 

functional of the structure and plotted in Fig.   14. 

The most important random variable in global variance expla- 

nation of R is the transversal strength Y for whole domain of ply an- 

gle as shown in Fig. 13. Also the shear strength S is important in 

interval [15°, 45°]. The longitudinal elastic modulus E1 has relevant 

importance in interval [45°, 75°] and the elastic transversal modu- 

lus E2 is important for whole domain of ply angle a, except for 75°. 

Analyzing the results plotted in Fig. 14 it can be concluded that the 

most important random variable to explain global variance var(b s) 

is the transversal strength Y except for ply angle a equal 

 
 
 

  

Fig. 13.  Global variance varðR-Þ, explained by Sobol first-order sensitivity index Si for 

input parameters p = [E1, E2, Y, S],  aircraft  wing-like composite  panel. 

 
 

to 30° where the shear strength S is the most important. Further- 

more the shear strength has important contribution to explain 

var(bs) in the interval [15°, 45°]. The balanced contribution of the 

four random variables p = [E1, E2, Y, S] for ply angle a equal to 45° 
is another relevant  observation.    

The global variance of critical Tsai number R and of the reliability 

index bs can be explained by Sobol indices in different manner 

when the ply angle a 2 ½150; 450]. Since R is associated to a deter- 

ministic analysis and bs is associated to a probabilistic analysis of 
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Fig. 14. Global variance var(bs), explained by Sobol first-order sensitivity index Si for 

input parameters p = [E1, E2, Y, S], aircraft wing-like composite panel. 

 

 
 

failure a different behavior in uncertainty propagation was 

expected. 

 
4. Conclusions 

 
The problem of uncertainty propagation in RBDO of composite 

laminate structures was studied. In particular, the effects of 

mechanical property deviations from the RBDO results were ana- 

lyzed. The proposed ANN-based MCS approach shown that varia- 

tions in the mean values of mechanical properties propagate and 

are even amplified in reliability index results in RBDO of composite 

structures. The objective of the proposed approach is to evaluate 

the variance of the structural response based on sensitivity indices, 

identifying the most important sources of uncertainty and to re- 

duce the large number of input parameters involved in uncertainty 

analysis of laminated composite structures. In particular normal- 

ized indices can be established using the conditional expectation 

as named Sobol first-order sensitivity   indices. 

A  study  of  the  anisotropy  influence on  uncertainties propaga- 

tion of composites is carried out based on the proposed methodol- 

ogies. The study proves that the variability of the structural 

response as a function of uncertainty of the mean values can be 

very high. This high variability is also corroborated by evaluated 

relative sensitivity measures. These aspects must be considered 

for robust design since high structural response variability may in- 

duce a drastic reduction in the quality of the optimal design solu- 

tions for composite structures. 

Based on the numerical results, the importance of measuring in- 

put parameters on structural response are established and dis- 

cussed as a function of the anisotropy of  composite  materials.  

Some difference was found depending on a deterministic or a prob- 

abilistic analysis of structural failure. The uncertainty analysis 

propagation is very useful in designing laminated composite struc- 

tures minimizing the unavoidable effects of input parameter 

uncertainties on structural reliability. 
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