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based on global sensitivity indices
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ABSTRACT

The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to

achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred

at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the
sensitivities are obtained for each UDM design point, using the max- imum load obtained from optimal design search. Using the UDM design points as
input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a
Monte Carlo simulation procedure is implemented and the variability of the struc- tural response based on global sensitivity analysis (GSA) is studied.
The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed.

The most important sources of uncertainty are identified.
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1. Introduction

Composite materials behavior is extremely affected by numer-
ous uncertainties that should be considered in structural design.
The problem of design-based uncertainty of laminated composite
structures can be formulated as an optimization problem or ad-
dressed as the problem of alleviating the effects of unavoidable
parameter uncertainties. The first perspective is associated to reli-
ability-based design optimization (RBDO) and the second one is
considered in robust design optimization (RDO). Both strategies
depend on uncertainty propagation analysis of composite struc-
tures response and different length scales.

Nowadays the definition of structural design criteria is based on
ultimate state theory rather than on service stress theory. The
application of such concepts to composite materials based on reli-
ability analysis creates new challenges to the designer. A compre-
hensive review paper on RBDO developments is presented by
Frangopol and Maute [1]. Recent works in RBDO applied to com-
posite structures have been presented. Rais-Rohani and Singh [2]
discuss the development of global and sequential response surface
techniques for reliability-based optimization of composite struc-
tures under axial compression and buckling instability. Singh
et al. [3] investigated the influence of variations of material prop-

erties on the elastic stability of laminated composite panels. Adali
et al. [4] developed a model for the optimal design of composite
laminates under buckling load uncertainty.

The structural tailoring technique was applied to design lami-
nated composite structures by searching the stacking sequence
that corresponds to the less sensitive performance properties rela-
tively to uncertainties in the input parameters. This perspective
follows RDO concepts where the objective is to minimize the ef-
fects of uncertainty on optimal design. The strategy is based on
considering the statistical data in objective and constraint func-
tions [5].

Although several methods have been presented for uncertainty
assessment, their efficiency was not proven, in particular when ap-
plied to composite structures [6,7]. The almost totality of sensitiv-
ity analyses in applications with composite structures used local
importance measures of design parameters [2-10]. In particular
Rais-Rohani and Singh [2] and Carbillet et al. [9] studied the sensi-
tivity of reliability index of composite structures with non-linear
behavior and quantified the importance of the random variables
using local measures. Although the innovative aspects of joint reli-
ability and sensitivity analysis, the use of local importance mea-
sures of uncertainty propagation is limited. So, Global Sensitivity
Analysis (GSA) on the uncertainty response is still unexplored,
remaining an open issue.

The wuncertainty propagation of composite structures is
investigated in this work considering descriptive statistical mea-
sures of the response variability and sensitivity analysis of system
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responses inside GSA framework [11-13]. A study based on sensi-
tivity to uncertainty that allows selecting the important parame-
ters using global sensitivity indices is presented. The uncertainty
propagation and the importance measure of input parameters are
analyzed using an Artificial Neural Network-based Monte Carlo
simulation approach (ANN-MCS). The proposed methodology uses
aMonte Carloproceduretogether an Artificial Neural Network sur-
rogate model based on supervised evolutionary learning [14].

The use of approximate models in reliability analysis has been
studied. In particular, ANN has been used to approximate the limit
state function and its derivatives proposed a hybrid technique based
on ANN in combination with genetic algorithms (GA) for structural
reliability analysis [15-17]. Following a different procedure, an ap-
proach based on an ANN model simulating at the same time the limit
state function, the reliability index and their sensitivities is proposed
in this paper. The objective is to study the propagation of uncertain-
ties of mechanical properties on the response of composite laminate
structures (linear mechanical behavior) under an imposed reliability
level. Robustness assessment of the reliability-based designed com-
posite structures is considered and some criteria are outlined for the
particular case of angle-ply laminates. The longitudinal elastic mod-

ulus E,, transversal elastic modulus Es, transversal strength in ten-
sile Y, and shear strength S are considered the ANN input variables.
These are the mechanical properties with the most critical devia-
tions on the composite laminate strength randomness, according
to the numerical simulation performed by Concei¢do Anténio [18]
and Anténio et al. [19]. Nevertheless, the presented study can be ex-
tended to other random variables.

The paper is organized as follows: Section 2 presents the formu-
lation of the uncertainty propagation analysis describing the main
featuresofthe ANN-MCSproposed approach,theinversereliability
analysis and the ANN developments. GSA proposed model is de-
scribed in Section 3. The numerical applications are presented in
Section 4 together with the discussion of the results. Finally the
conclusions on the performance of the proposed approach are pre-
sented in Section 5.

2. Uncertainty propagation analysis
2.1. ANN-MC approach

The objective of the proposed approach is to study the propaga-
tion of uncertainties in input random variables, such as mechanical
properties, on the response of composite laminate structures for a
specified reliability level. Fig. 1 shows the proposed Artificial Neu-
ral Network based Monte Carlo simulation procedure. The pro-
posed approach for uncertainty propagation analysis in RBDO of
composite structures for the particular case of angle-ply laminates
is addressed according to the following steps:

Ist Step: An approach based on optimal design of composite
structures to achieve a specified reliability level, g, is consid-
ered, and the corresponding maximum load is aleulated as a
function of ply angle, o This inverse reliability problem is
solved for the mean reference values, &, of mechanical proper-
ties of the composite laminates.

Znd Step: Using the Uniform Design Method, a set of design
points belonging to the interval [7; — @i, T + 27 is generated,
covering a domain centered at mean reference values of the
random variables. This method enables a uniform exploration
of the domain values necessary in the development of an ANN
approximation model for variability study of the reliabilitgy
irudlese.

3rd Step: For each UDM design point, the most critical Tsal num-
ber, B, assodated with the most probable failure point (MPP),

structural reliability index, &, and their relative sensitivity indi-
oes, 5, are obtained using the previously calculated maximum
load for mean values, 7, as a reference. The Hasofer-Lind
method 15 used for reliability index assessment [18,20,21]
The sensitivity analysis is performed by the adjoint variable
method [18,20].

4th Step: An ANN is developed based on supervised evolution-
ary learning. The generated UDM design points and their calcu-
lated response values are used as inputfoutput patterns,

5th Step: Using the developed ANN-based Monte Carlo simula-
tion procedure, the variability of the structural reliability index
and the critical Tsai number are evaluated as a function of ply
angle domain, The uncertainty propagation is studied using
the first order Sobol indices and relative sensitivities,

22 Inverse reliabibity analysis

For a target reliability index ., the inverse problem can formu-
lated as foll ows:
Minimize [f,(4,0.4,) [ Ay 1
1 1)
Subjed o 0= a= z

where s, is the structural reliability index, pe s the realizaton of
random variable s The mean values, 7, of mechanical properties
of composite laminates are considered for p. The design variables
are the ply angle, @, and load factor, L

The vector of applied loads is defined as L= i1, where L™ is
the reference load vector and after solution of the problem in Eq
(1} the corresponding maximum load is computed for each value
of ply angle a. This is a conventional RBDO inverse optimization
problem. To solve the inverse problem (1), a decompasiton of
the problem is considered. The Lind-Hasofer method and appropri-
ate iterative scheme based on a gradient method are applied t©
evaluate the structural reliability index, g in the inner loop
[18,20,21]. From the operational point of view, the reliability prob-
lem can be formulated as the constrained optimization problem
Minimize fiv) = (vv)"? _

¥ (2}

Subjed w0 (v =0

where v is the vector of the standard normal variables, §is the reli-
ability index and {v) is the limit state function. The relationship
between the standard normal variables and random variables &
established using the following projection formula:

My — I,

W=—
e,

(3]

where T; and @, are, respectively, the mean values and standard
deviations of the basic random variables. The limit state function
that separates the design space into failure (g x) <0] and safe re-
gions (g w)>0) @n be written as

oim=Rk-1 (4}
where K is the oitical Tsai number, defined as
F=MinR,.....R.....Ry) (5]

and N; the total number of points where the stress vedor
evaluated. The Teai number, Ep, which & a strength/stress ratio
[22], is abtained from the Tsai-Wa interactive quadratic failure cri-
terion and clolated at the kth point of the strudure solving
equation

1— (Fyss) )RS + (Fs )R, =0 (6}

where 5 are the components of the stress vector, and Fy and F are
the strength parameters associated with unidirectional reinforced
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Fig. 1. Flowchart of proposed approach for uncertainty propagation analysis.

laminate defined from the macro-mechanical point of view [22].
The solution, v', of the reliability problem in Eq. (2) is referred to,
in technical literature, as the design point or most probable failure
point (MPP). The bisection method used to estimate the load factor,
k, is iteratively used in the external loop [23]. After the minimiza-
tion of the objective function givenin Eq. (1), the structural reliabil-
ity index is b; € b, with some prescribed error, and the
corresponding load vector is L(b,).

2.3. ANN developments

The proposed ANN is organized into three layers of nodes (neu-
rons): input, hidden and output layers. The linkages between input
and hidden nodes and between hidden and output nodes are de-
noted by synapses. These are weighted connections that establish
the relationship between input data and output data.

In the developed ANN, the input data vector D"?is defined by a
set of values for random variables p, which are the mechanical
properties of composite laminates, such as elastic or strength prop-
erties. Following the developments performed by Conceicdo Anté6-
nio [18] and Anténio et al. [19] only the critical mechanical
properties of composite laminates are selected as ANN input data.
The objective is to avoid exhaustive calculations with high compu-
tational costs. Using a modified version of the Monte Carlo analysis
the referred authors [18,19] proposed a methodology based on a
parametric study of the influence of the physical properties ran-
domness in angle-ply laminated composite strength and further-
more the choice of the most relevant mechanical properties. The
parametric study concluded that the most important properties
for angle-ply laminates randomness strength are the longitudinal
elastic modulus E;, transversal elastic modulus E,, transversal
strength in tensile Y, and shear strength S. So, this mechanical

properties are considered as ANN input variables and denoted by
p = [E1, Es, Y, S. Nevertheless, the presented study can be extended
to other random variables.

In the proposed ANN-MC approach, each set of input values for
the random variable vector p is selected using the Uniform Design
Method (UDM) [24]. The procedure is based on a UDM table de-
noted by U,(q°), where U is the uniform design, n the number of
samples, q the number of levels of each input variable, and s the
maximum number of columns of the table. For each UDM table,
there is a corresponding accessory table, which includes a recom-
mendation of columns with minimum discrepancy for a given
number of input variables. Using the UDM a set of design points
belonging to the intervaly pi— api, pip api]is generated, covering
a domain centered at mean reference values of the random vari-
ables. This method enables a uniform exploration of the domain
values necessary in the development of an ANN approximation
model guarantying better results after learning procedure [25].
The corresponding output data vector D contains the critical Tsai
number, R, structural reliability index, b, and relative sensitivities
Sp,of reliability index with respect to random variables. The con-
cept of relative sensitivity [26] of the reliability index is defined as

i,

5 ===
ETAIMA

and its analysis aims to compare the relative importance of input
parameters on the response. Fig. 2 shows the topology of the
ANN, showing the input and output parameters.

Each pattern, consisting of an input and output vector, needs to
be normalized to avoid numerical error propagation during the
ANN learning process [25]. The activation of the kth node of the
hidden layer (p = 1) and output layer (p = 2) is obtained through
sigmoid functions. The error between predefined output data and
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Fig. 2. Artificial Neural Network topology.

ANN simulated results is used to supervise the learning process, which
is aimed at obtaining a complete model of the process. As a set of input
data are introduced to the ANN, it adapts the weights of the synapses
and values of the biases to produce consistent simulated results
R e the neurons at the hidon g eutoat layor B35S
ar]e controlled during the learning process. For each set of input data
and any configuration of the weight matrix and biases, a set of output
resultsis obtained. These simulated output results are compared with
the predefined values to evaluate the difference (error), which is then
minimized duringthelearning procedure.

The adopted supervised learning process of the ANN based on a
Genetic Algorithm (GA) [27] uses the weights of synapses and
biases of neural nodes at the hidden and output layers as design
variables. A binary code format is used for these variables. The
number of digits of each variable can be different depending on
the connection between the input-hidden layers or hidden-output
layers. A GA is an optimization technique based on the survival of
the fittest and natural selection theory proposed by Charles Dar-
win. The genetic algorithm [27] basically performs on three parts:
(1) coding and decoding random variables into strings; (2) evaluat-
ing the fitness of each solution string; and (3) applying genetic
operators to generate the next generation of solution strings in a
new population. Three basic genetic operators, namely selection,
crossover, and mutation are used in this paper. An elitist strategy
based on conservation of the best-fit transfers the best-fitted solu-
tion into a new population for the next generation. Once the new
population is created, the search process performed by the three
genetic operators is repeated and the process continues until the
average fitness of the elite group of the current generation no long-
er shows significant improvement over the previous generation.
Further details on creating and using a genetic algorithm for ANN
learning can be found in the reference [27].

3. Global sensitivity analysis

The local measures of sensitivity are not enough for a full eval-
uation of the influence of input parameters on structural response
uncertainty [12—14]. The uncertainty analysis on response in the
neighborhood of mean values of input parameters is of limited va-
lue. To obtain the influence of individual parameters on the uncer-
tainty at the output structural response W, Global Sensitivity
Analysis (GSA) techniques must be used. Global Sensitivity Analy-
sis denotes the set of methods that consider the whole variation
range of inputs and tries to share the output response uncertainty
among the input parameters.

3.1. Global variance-based method

Among GSA techniques the variance-based methods are the
most appropriate [12,13,28]. GSA studies the effects of input vari-
ations on model outputs in the entire allowable ranges of the input
space. Global Sensrngty Analysis GSAS has an advantage over ﬁ' -
cal sensitivity analysis in that GSA does not require strong model
assumptions such as linearity or monotonicity [13,28]. However
its application for composite structures is complex and expensive
from the computational point of view. In this work the variance-
based methods is applied to a group of input parameters namely
the physical properties of composites and then compared with lo-
calimportance measures.

Assuming that X = (X;,. .., X.) are n independent input param-
eters and We is the performance function of structural response
previously defined, an indicator of the importance of an input
parameter X is the following normalized index

var(E (¥, X))

S =
h war ¥yl

(8]
rarmeed first-ordersensitiv ity mdex proposed by Sobol [11,13,28,29).In
Eq. (8) var(E{¥, X)) is the variance of the conditional expectation
and var¥.) is the wvariance of W, Furthermore, Sobol
[11,13,28 29] proposed a complete variance decomposition of the
uncertainty associated with ¥, into components depending onindi-
vidual parameters and interactions between individual parameters.
This procedure explains the variano: var Wq) as a contribution of
the partial variance associated to each individual parameter
[11,13,28 29]. From this decomposition higher ordersensitivity indi-
ces can be established inparticular the second order sensitivity index.
The second order index 5y defines the sensitivity of the structural re-
sponse ¥, to the interaction between X; and X, Le. the portionof the
variance of ¥, that is not included in the individual effects of X; and
X, The sum of all order indices is equal to 1incase all input parame-
ters are independent [11,28,29]. Since higher order sensitivity indices
require tedious aleulations only the Sobol first-onder sensitvity in-
dex is used in the presented work [11,14,20].

3.2. GSA evaluation using Monte Carlo simulation

One of the problems using global sensitivity indices is the com-
putational cost. Due to thelarge number of input parametersinthe
uncertainty propagation analysis on composite structures, Finite
Element Method evaluations become very expensive. In this work
the ANN-based Monte Carlo simulation approach is used for the
estimation of GSA indices. To reduce the computational coststhe



analysisisimplemented using groups ofinput parameters and con-
sidering only the Sobol first-order sensitivity index.

The proposed methodology is based on the following algorithm

[14]:

15t Step: Lets consider p groups of non-correlated input param-
ELErs @ = (M,,. .., ©,) following a normal distribution N with
mean fi; and standard deviation o represented by @ ~ N, @)
2nd Step: Considers a set of random numbers, Ne.o= (4., Ay ),
following a standard normal distribution N(D, 1. These random
numbers are used to generate the fixed values of the input
parameter m

3rd Step: For each input parameter m,.; a sample matrix is gen-
erated by independenty collecting samples of (p-1) random
numbers following a normal distribution N(O, )

Ty - Fpa
M,=| @ . i9)
Tyt - Awpp
where the size of the sample is N,.
4th Step:
Repeat for cach input parameter m, i=1—p
Dok=1—N,
Dog=1—N,
m+am 0 j=i
nj‘“:[ pFa BI= =1 p (10)
iy =+ gy AF j=

Evaluation of the structural response: W%, the vector 79
being the nominal values of &, with com ponents Iﬁ“.

End Do

Estimate the conditional expectation of structural response
function ¥, by:

e
E{¥alm) =~ P =lz'h.r_n*"] (11]
.qu_]
End Do
Estimate of the mean values
= 1%
Po=—1% W (12
m Hf‘l_] m h ]

Estimation of the variance of the conditional expectation of
structural response, fixing the input parameter m:

“i =
var E{%¥m|m)) a”fj— _JZF; - ‘Pm:ll (13)
k=1

AB side:
constrained in
y—axis direction

End repeat
5th Step: Estimation of variance of structural response var¥ )
considering the previous Ne = N, = Ny p simulations for %,

] Ny M
E{¥a) =Efzzlmn*“]_, (14)

=1 ik=1g=1

L

var (¥'m ) = ﬁfEZ{ [Puims)], —E(¥a)}  (15)

=1 k=1 g=1
Gth Step: Calculation of the global sensitivity index:

_ var(E{¥y|m))

5= var(¥,] i=1,....p (16]

4 Numerical examples
4.1, Clamped cylindrical shel

To test the proposed approach applied to composite strudures,
a clamped cylindrical shell laminated structure is considered, as
shown in Fig. 3. Nine vertical loads with mean value Ly are applied
along the free linear side (AB) of the structure. This free linear side
(AB}is constrained inthe y-axis direction. The structure is made of
one laminate, The balanced angle-ply laminates with eight layers
and stacking sequence |—af +o/ —af +a), are considered in a
symmetric constructon. Py angle, a, is referenced to the x-axis
of the reference coordinate, as detailed in Fig. 3. All plies have a
thicknesses of 2.5 = 107 m.

The structural analysis of laminated composite structures is
based on the finite eleme nt method {FEM) and shell finite e lement
mode | deve loped by Ahmad [30], and indudes im provements from
Figueiras [31]. The Ahmad shell element is obtained from a 3-D fi-
nite element using a degenerative procedure. [tis an isoparametric
element with eight nodes and five degrees of freedom per node, as
described by Mindlin shell theory.

The laminate is made of a carbonfe poxy composite system [22].
The mean reference values of the elastic and strength properties of
the ply material used in the laminate construction of the composite
structure are presented in Table 1. The elastic mnstants of the
orthotropic ply are the longi tudinal elastic modulus, E, ; transversal
elastic modulus, E;; in-plane shear modulus, o out-of-plane
shear modulus, Giz and Gzz: and in-plane Poisson's ratio, viz. The
ply strength properties are the longitudinal strength in tensile, X;
longitudinal strength in compression, X ; transversal strength in
tensile, Y, transwersal strength in compression, ¥, and shear
strength, S

Fig. 3. Geometric and loading definition of cylindrical composite shell.



Table 1
Mean reference values of mechanical properties of composite layers.

Material E1(GPa) E>(GPa) Gi2 (GPa) n

X; X° (MPa) Y: YO (MPa) S (MPa) q (kg/m®

T300/N5208

181.0 10.3 7.17 0.28

1500; 1500 40; 246 68 1600

To assess reliability, the longitudinal elastic modulus, E;, trans-
versal elastic modulus, E,, transversal strength in tensile, Y, and
shear strength, S, are the considered random variables and denoted
by p = [E1, E, Y, S]. All random variables are non-correlated, and
follow a normal probability distribution function defined by their
respective mean and standard deviation. The present study can
be further extended to other random variables. To obtain the max-
imum reference load, the inverse RBDO problem defined in Eq. (1)
is solved. The structural reliability index is b, € b, with some pre
scribed error, and the corresponding maximum load vector, L(b,),
can be obtained. The reliability assessment follows the procedure
described in Egs. (2)—(6). A target reliability index b,= 3 for the
composite structureis considered. The mean values of the mechan-
ical properties are assumed to be random variables and are defined
in Table 1, and the coefficient of variation of each random variable
is set to CV(p) = 6%, relative to the mean value.

The Most Probable failure Point (MPP) values are obtained
based on the Hasofer- Lind method. After obtaining these values,
the inverse RBDO, formulated in Eq. (1), is solved for b,= 3 and
the maximum load is outlined depending on ply angle, a. The cor-
responding maximum load is plotted as a function of ply angle, a,
and shown in Fig. 4. This load is used as the reference load for fur-
ther uncertainty propagation analysis in the ANN-MCS and sup-
ported by UDM and GA developments.

The UDM points are considered as experimental input values to
be used in the ANN learning procedure. A number of 27 training
data sets is selected inside the interval #p;— 0:06p;; pi 0.06pi,
with mean reference value pi set as a random variable for each
mechanical property and defined in Table 1.

In Uniform Design Method (UDM) originally proposed by Fang
et al. [24] a set of design points is generated over a domain cen-
tered at mean values of random variables, aimed at studying the
space variability. Obtaining points that are most uniformly scat-
tered in the s-dimensional unit cube C’is the key of UDM, which
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Fig. 4. Maximum load for b, = 3, solving the inverse RBDO problem for clamped
composite shell.

is based on a quasi-Monte Carlo method. In this context, the dis-
crepancy is used as a measure of uniformity that is universally ac-
cepted. As referred in Section 2.3, for each UDM table there is a
corresponding accessory table, which includes a recommendation
of columns with minimum discrepancy for a given number of input
variables.

The UDM values are selected according to the approach pro-
posed by Cheng et al. [16]. After selecting Table U (27") of the
UDM [16], where columns 1, 4, 6 and 9 must be selected according
to the respective accessory Table for four variables and discrepancy
W(n, P) = 0.1189, the resulting integer code format is presented in
Table 2. The UDM table must be transformed into a hyper-rectan-
gle region corresponding to the input variable domain by linear
Then the intervaly p: 0:06pi; Ho 0:06p} is
equally discretized with 27 points and, using the integer code for-
mat from Table 2, the actual composition for p = [E;, Es, Y, S] is ob-
tained [25].

Reliability analysis is performed for the input values from Ta-
ble 2 and 27 input/output patterns are obtained and used in ANN
development. For each UDM design point, the most critical Tsai
number, R, associated with the most probable failure point
(MPP); reliability index of structure, b;; and relative sensitivities
are obtained by using the maximum load previously calculated
for each ply angle, a considering the respective domain, as a refer-
ence and solving the inverse RBDO formulation of Eq. (1). A fixed
standard deviation #p, ¥:06piis used in the reliability index eval-
uation for all UDM design points, based on Hasofer—Lind method.
The sensitivities are calculated based on the adjoint variable meth-
od [18,20].

A number of 10 neurons are considered for the hidden layer of
the ANN topology. The ANN learning process is formulated as an
optimization problem with 116 design variables corresponding to

transformation.

Table 2
UDM design points for discrepancy Wz, P) = 0.1189.

Design point 1 4 6
1 1 11 15
2 2 22 2
3 3 5 17
4 4 16 4
5 5 27 19
6 6 10 6
7 7 21 21
8 8 4 8
9 9 15 23
10 10 26 10
11 11 9 25
12 12 20 12
13 13 3 27
14 14 14 14
15 15 25 1
16 16 8 16
17 17 19 3
18 18 2 18
19 19 13 5
20 20 24 20
21 21 7 7
22 22 18 22
23 23 1
24 24 12 24 12
25 25 23 11 9
26 26 7 26
27 27 17 13 3




100 weights of synapses and 16 biases of neural nodes [25]. The
ANN-based GA learning process is performed using a population
of 21 individuals/solutions. The elite and mutation groups have 7
and 4 solutions, respectively [27]. The binary code format with 5
digits is adopted for both designing the values of the weights of
synapses and biases of neural nodes at the hidden and output lay-
ers. The learning process is concluded after 15,000 generations of
the GA. The mean values in Table 1 (point 14 of UDM Table 2)
are used for ANN testing. The relative errors in learning and testing
processes corresponding to the optimal ANN are less than 1%.

Using the proposed ANN-MCS approach 5000 simulations are
obtained aiming to analyze the behavior of structural response
parameters as the critical Tsai number, the reliability index and
its relative sensitivities. An example of the implemented analysis
is shown in Fig. 5 with the relative sensitivities of the reliability in-
dex bscalculated for ply angle a = 60°. The histograms show that
the response do not follow a Normal probability distribution
function.

Descriptive statistics of the structural response parameters cal-
culated for ply angle a = 60° are presented in Table 3. Supported by
the statistical analysis it can be concluded that all response param-
eters, except the critical Tsai number, show large variations. The
coefficients of variation (C.V.) are very high when compared to
the coefficient of variation for the input random variables, which
has a predefined value of 6% of the mean values. This is confirmed
also by box plot analysis in Fig. 6.

The importance of input parameters on uncertainty propagation
on structural response is shown in Figs. 6 and 7 based on box-plot
analysis. In particular, the variability of the reliability index in
RBDO and associated relative sensitivities indices must be consid-
ered for robust design of composite structures.
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Fig. 7 shows the interval of variation for the relative sensitivities
obtained from Eq. (7). The objective is to compare the relative
importance of the input parameters on structural response, in par-
ticular for the inverse RBDO solutions. The reliability index b, is
very sensitive to transversal strength, Y, over the entire domain
of angle a except for a = 45°. The sensitivity relative to the shear
strength, S, is high for ply angle values equal to 45° and 60°. The
relative sensitivities of other parameters as longitudinal elastic
modulus and transversal elastic modulus are not so important.

The global variance-based method proposed in Section 3.2 and
ANN-based Monte Carlo simulation is applied to the same shell
structure shown in Fig. 1 with all laminates built using the CFRP,
T300/N5208 composite system. Then, let us consider the vector
of input parameter p = [E;, Ez, Y, S] following a normal distribution
N with mean p; and standard deviation 7; represented by
pi N ]3,'; 7i .Hn particular the statistical values of non-correlated
input parameters are:

E, ~ (181.000,10860) GPa
E: ~ N(10300,0.618) GCPa _
Y ~ N(40.000,2.400) MPa (17)
S~ N(6.800, 0.4080) MPa

The formulation presented in Section 3.2 is implemented for
critical Tsai number R and reliability index b,, denoted here by
W, and using the above mechanical properties as input parame-
ters. To provide the fraction of the global variance var(W,) due
to each input parameter and further to calculated the respective
importance measure the global Sobol first-order sensitivity index
defined in Eq. (16) is used. This means that the global variance
var(W,,) is explained by the contribution of partial variances as de-
fined in Section 3.1.
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Fig. 5. Histograms of relative sensitivities of the reliability index bs, with respect to p = [Ey, Es, Y, S] for clamped composite shell and ply angle, a = 60°.
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Descriptive statistics of the structural response parameters, using data from the ANN-based MCS approach for clamped composite shell.

Tsai number Reliability index Rel. sensi. of reliab. Rel. sensi. of reliab. Rel. sensi. of reliab. Rel. sensi. of reliab.
index to Ex index to Ea index to Y index to S
Angle = 60°
Mean 1.154 2.959 1.671 0.412 1.852 5.082
Std. deviation 0.022 0.533 0.349 0.034 0.281 0.884
C.V. (%) 1.89 18.02 20.91 8.22 15.19 17.40
Minimum 1.110 1.935 1.133 0.355 1.429 3.797
Maximum 1.190 3.873 2.465 0.507 2.475 7.165
N 5000 5000 5000 5000 5000 5000
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Fig. 6. Box plot of the critical Tsai number R, and reliability index bs, for clamped composite shell on ply angle domain.

For the Monte Carlo simulation algorithm proposed in Sec-
tion 32 the size samples are defined as follows:

- A set of random numbers, Np= 50, following a normal distribu-
tion N0, 1) o generate the fixed values of input parameters.

- A sample matrix M; with dimension Ny = (p —1}=100= 3 to
simulate the non-fixed input parameters,

A total of five thousand simulations was considered in Monte
Carlo simulations {Ny = N} to estimate the varianee of conditional
expectation of structural response vanE( W, |n,) ) acording to Eq
(13} The simulation proaess is implemented for each input param-
eter m, i=1,...,4 and the global variance var%y) can be esti-
mated from the twenty thousand simulations following Eq. (15}

An important aspect of the present work 15 to study the influ-
ence of anisotropy in the uncertainty propagation on structural re-
sponse, Then, GSA is implemented as a function of ply angle, o
Figs 8 and 9 show the global variance var] ¥, ), explained by Sobol
first-order sensitivity index 5:

_var(E{¥,|m))

5= var( ¥, < 100 (%)

i=1,....4 (18)
evaluated for input parameter vecor x= [Ey, Es, Y, 5] and consider-
ing the critical Tsaf number B and reliability index g, as ¥, response
functional respectively.

The aim of this modeling is o rank the input parameters
amording o variance response measure, [nput parameters with
higher contribution for conditional variance var(E(W ) ) will
have higher sensitivity index 5 taken as the global uncertainty
importance measure of the input parameter

It is evident from Figs. 8 and 9 that the most important input
parameter along ply angle domain is the ransversal strength
group Y except for a short interval [45° 60°] where the shear
strength 5 are the most important.

The shear strength contributes for global variance var(®) along
whole domain of ply angle 2. However, this contribution does
not appear for global variance van f) except for a short interval
[45°,60°] as previouwsly referred.

The transversal elastic modulus £ has an important contribu-
ton o the global variance varB) over the ply angle interval
[30°,90°] rather than this importance computed as a fradion of
the global variance wvar(f;) is relevant only in the interval
|30, 45°]. The longitudinal elastic modulus Ey has a marginal con-
tribute to the global variance of both responses fundional for ply
angle equal to 30°,

An interesting comparison can be established between the re-
sults obtained from the relative sensitivities as defined in Eq. (7)
and the ones obtained using the Sobol sensitivity indices. The rel-
ative sensitivities of the reliability index §; are obtained directly
from ANN-MCS analysis considering 5000 simulations. Then, the
mzan values of relative sensitivities are obtained for each compo-
nent of  and the fractions of the contribution for the total value
are calculated. This procedure is re peated for each ply angle value
and the results are presented in Fig 10, A comparison with results
shown in Fig. 9 reveals that the most important differences are ob-
servied in the contribution of the longitudinal elastic modulus E,.

42 Aircraft wing

Let us consider an aireraft wing-like composite panel as shown
in Fig. 11. The panel thickness is equal to 0,015 m The structure is
damped along linear side (AB) and free along opposite side. One
vertical load with perpendicular direction relatvely to OXY plan
is applied on point C. The structure is built by one laminate made
of a carbon/epoxy composite system with mechanical properties
defined in Table 1. A balanced angle-ply laminate with eight layers
and stacking sequence [+af —a/ + 45/ — 457, is considered in a
symimetric construdion. Ply angle 4, is referenced o the x-axis of



Box plot of relative sensitivities of reliability index to E1

Box plot of relative sensitivities of reliability index to E2

4,0 45
3,5 4,0
3,0 35
25 - 3,0
25
2,0
2
1
S 15
1,0 é 1.0 é % é
0,5
== = 05 = ==
0,0 —_ 00} —-=—
-0,5 -y
0° 15° 30° 45° 60° 75° 90° 5 o 15° 30° 45° 60° 75° 90°
Angle Angle
90 Box plot of relative sensitivities of reliability index to Y 80 Box plot of relative sensitivities of reliability index to S
8,0 = _ 7,0
7.0 - 6,0
6,0 5,0
5,0 4,0
40 — — — 3,0
3,0 2,0 %
2,0 é 1,0 =
1,0 = 00 I —
0,0 o
0° 15° 30° 45° 60° 75° 90° o° 15° 30° 45° 60° 75° 90°
Angle Angle
Fig—7—Boexplot-of relativesensitivities-of thereltability-index b, with respect to p = [E1, Es, Y, S| for clamped composite shell on ply angle domain.
100 + 100 4
[JE1
me2 Bes
80 [ 80 oy
ms Hs
60 + 60 -
2 2
0 w
8 8
T 40+ T 40
c £
2 3
3 @
9 20+ 20
0 - 0-

0° 15 30° 45°  60° 75°  90°
Angle

Fig. 8. Global variance vardRp, explained by Sobol first-order sensitivity index S;with
respect to p = [E1, Es, Y, S] for clamped composite shell on ply angle domain.

the reference coordinate, as detailed in Fig. 11. All plies have same
thickness.

The same shell finite element referred in previous example is
used here for structural analysis. To assess reliability the previ-

ously described procedure in Eq. (2)—(6) is applied considering
the vector of random variables p=[E1, Es, Y, S]. The target reliabil-

ity index is b,= 3 and the coefficient of variation of each random

0° 15 30° 45°  60° 75°  90°
Angle

Fig. 9. Global variance var( ), explained by Sobol first-order sensitivity index S; with
respect to p = [E1, Es, Y, S] for clamped composite shell on ply angle domain.

variable is set to CV(p) = 6%, relatively to the mean value. The cor-
responding maximum load is plotted in Fig. 12 and it is used as the
reference load for further development of the ANN supported by
UDM and GA-basedlearning procedure.

The ANN is developed using the same UDM points defined in
Table 2. After obtaining the new optimal ANN for aircraft wing-like
composite panel, the uncertainty propagation analysis is per-
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Fig. 11. Geometric definition of aircraft wing-like composite panel.

formed based on the procedure defined in Section 3.2. A set of ran-
dom numbers, Ny= 50, following a normal distribution N(0, 1) and
a sample matrix M, with dimension Nx(p - 1) = 100 x 3 are used
in GSA algorithm for a total of twenty thousand simulations fol-
lowing Eq. (15). The GSA is implemented and the Sobol first-order
sensitivity index S;is calculated as a function of ply angle, a. Figs. 13
and 14 show the contribution of each random variable for global
variance var(lV,,) using two responses functions of the composite
structure. The Sobol first-order sensitivity index [11,29] is used as
importance measure and the contribution is represented as a frac-
tion of the total values at each ply angle. Fig. 13 plots the results for
structural response analysis based on critical Tsai number R. Similar
analysis is performed using the reliability index b as response

functional of the structure and plotted in Fig. 14.
The most important random variable in global variance expla-
nation of R is the transversal strength Y for whole domain of ply an-
gle as shown in Fig. 13. Also the shear strength S is important in
interval [15°, 45°]. The longitudinal elastic modulus E; has relevant
importance in interval [45°, 75°] and the elastic transversal modu-
lus Ezis important for whole domain of ply angle a, except for 75°.
Analyzing the results plotted in Fig. 14 it can be concluded that the
most important random variable to explain global variance var(b )
is the transversal strength Y except for ply angle a equal
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Fig. 12. Maximum load for b, = 3, solving the inverse RBDO problem for aircraft
wing-like composite panel.
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Fig. 13. Global variance vardRb, explained by Sobol first-order sensitivity index Sifor
input parameters p = [E1, E2, Y, S], aircraft wing-like composite panel.

to 30° where the shear strength S is the most important. Further-

more the shear strength has important contribution to explain

var(b) in the interval [15°, 45°]. The balanced contribution of the

four random variables p = [E1, Es, Y, S] for ply angle a equal to 45°
is another relevant observation. _

The global variance of critical Tsai number R and of the reliability
index bs;can be explained by Sobol indices in different manner
when the ply angle a 2 115°; 45°]. Since R is associated to a deter-
ministic analysis and b, is associated to a probabilistic analysis of
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Fig. 14. Global variance var(bs), explained by Sobol first-order sensitivity index S;for
input parameters p = [E1, Es, Y, S, aircraft wing-like composite panel.

failure a different behavior in wuncertainty propagation was
expected.

4. Conclusions

The problem of uncertainty propagation in RBDO of composite
laminate structures was studied. In particular, the effects of
mechanical property deviations from the RBDO results were ana-
lyzed. The proposed ANN-based MCS approach shown that varia-
tions in the mean values of mechanical properties propagate and
are even amplified inreliability index results in RBDO of composite
structures. The objective of the proposed approach is to evaluate
the variance of the structural response based on sensitivity indices,
identifying the most important sources of uncertainty and to re-
duce the large number of input parameters involved in uncertainty
analysis of laminated composite structures. In particular normal-
ized indices can be established using the conditional expectation
as named Sobol first-order sensitivity indices.

A study of the anisotropy influence on uncertainties propaga-
tion of composites is carried out based on the proposed methodol-
ogies. The study proves that the variability of the structural
response as a function of uncertainty of the mean values can be
very high. This high variability is also corroborated by evaluated
relative sensitivity measures. These aspects must be considered
for robust design since high structural response variability may in-
duce a drastic reduction in the quality of the optimal design solu-
tions for composite structures.

Based on the numerical results, the importance of measuring in-
put parameters on structural response are established and dis-
cussed as a function of the anisotropy of composite materials.
Some difference was found depending on a deterministic or a prob-
abilistic analysis of structural failure. The uncertainty analysis
propagation is very useful in designing laminated composite struc-
tures minimizing the unavoidable effects of input parameter
uncertainties on structural reliability.
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