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Abstract:
A number of characteristics are boosting the eagerness of extending Ethernet to also cover
factory-floor distributed real-time applications. Full-duplex links, non-blocking and priority-
based switching, bandwidth availability, just to mention a few, are characteristics upon which
that eagerness is building up. But, will Ethernet technologies really manage to replace
traditional Fieldbus networks? Ethernet technology, by itself, does not include features above
the lower layers of the OSI communication model. In the past few years, it is particularly
significant the considerable amount of work that has been devoted to the timing analysis of
Ethernet-based technologies. It happens, however, that the majority of those works are
restricted to the analysis of sub-sets of the overall computing and communication system,
thus without addressing timeliness at a holistic level.To this end, we are addressing a few
inter-linked research topics with the purpose of setting a framework for the development of
tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-
based factory-floor distributed systems. Thisframework is being applied to a specific COTS
technology, Ethernet/IP. In this paper, we reason about the modelling and simulation of
Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide
usable results. Discrete event simulation models of a distributed system can be a powerful
tool for the timeliness evaluation of the overall system, but particular care must be taken with
the results provided by traditional statistical analysis techniques.
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Abstract 

A number of characteristics are boosting the eagerness of extending Ethernet to also 

cover factory-floor distributed real-time applications. Full-duplex links, non-blocking and 

priority-based switching, bandwidth availability, just to mention a few, are characteristics 

upon which that eagerness is building up. But, will Ethernet technologies really manage to 

replace traditional Fieldbus networks? Ethernet technology, by itself, does not include 

features above the lower layers of the OSI communication model. In the past few years, it is 

particularly significant the considerable amount of work that has been devoted to the timing 

analysis of Ethernet-based technologies. It happens, however, that the majority of those 

works are restricted to the analysis of sub-sets of the overall computing and communication 

system, thus without addressing timeliness at a holistic level. 

To this end, we are addressing a few inter-linked research topics with the purpose of 

setting a framework for the development of tools suitable to extract temporal properties of 

Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed systems. This 

framework is being applied to a specific COTS technology, Ethernet/IP. In this paper, we 

reason about the modelling and simulation of Ethernet/IP-based systems, and on the use of 

statistical analysis techniques to provide usable results. Discrete event simulation models of 

a distributed system can be a powerful tool for the timeliness evaluation of the overall 

system, but particular care must be taken with the results provided by traditional statistical 

analysis techniques. 

1. Introduction 

The factory-floor has been, since a few decades now, one of the major application 

environments for real-time distributed computing systems [1].  Nevertheless, the evolution of 

the manufacturing industry has led to the adoption of information technologies, such as the PC 

and open standards for the factory-floor networking. In fact, the application of information 

technologies has evolved from relatively passive data collection and reporting roles to feedback 

control and diagnostics applications. This context unveils the role played by factory-floor 

networking in modern industrial automation systems.  
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Interesting, however, is that the use of communication networks at the factory floor is more 

recent than at the office environment. One of the reasons for this delay was that manufacturing 

systems usually depend on being able to sample input data at equally spaced points in time [2], 

and this feature was not easily fulfilled using early office-room networks. This lead to the 

fieldbus concept, the first step on the road to networked industrial automation systems. In the 

era of the Internet, however, factory-floor communication systems must also better explore 

commercial information technologies. This includes Commercial-Off-The-Shelf (COTS) 

operating systems, TCP/UDP/IP based applications (XML, Java, etc), and general-purpose 

communication networks such as Ethernet [3, 4].  

Nowadays, arguments against the use of Ethernet in industrial environments have almost 

disappeared. “Familiarity”, “high availability” (subsequently, low cost) and improved timeliness 

and dependability are driving this phenomenon. But still, there are obstacles to overcome [5]. 

Indeed, recent research efforts [6, 7] on Ethernet technologies have been focusing on timeliness, 

trying to find solutions to issues such as bounded response time evaluation, optimal scheduling 

policies, switching topologies or clock synchronisation. However, they essentially consider the 

timing characteristics at the Data Link Layer, and it is still to come, to our best knowledge, an 

overall approach embracing a fully defined protocol stack. While until a couple of years ago a 

valid justification for this hole could eventually be the actual lack of technologies [8] offering 

an overall ensemble of protocols and mechanisms, this justification can not serve that purpose 

anymore.  

Timeliness is usually exploited with an underlying framework dominated by the notion of 

absolute temporal guarantees. For distributed systems, computational and communication loads 

are presumed to be bounded and known, and the worst-case (at least believed to be) conditions 

are assumed. In this way, the problem of engineering distributed real-time systems, of which 

factory-floor distributed computing systems are a representative example, becomes a problem of 

devising the appropriate tools and methods to assure that all deadlines are met in all 

circumstances [9].  

One option for approaching those tools and methods is through devising the appropriate 

(analytical) formulations reflecting worst-case conditions. However, and for complex 

distributed systems, analytical-based worst-case approaches may lead to intractable 

mathematical models. This further difficult  handling and reasoning the analytical abstractions, 

particularly when techniques such as precedence relationships [10], event phasing [11, 12] or 

inheritance of time characteristics [13, 14] come to the equation as means of shrinking 

pessimism levels. 

There is another concern that is important to bring into this context. In fact, although the 

deterministic framework has been proved valid for the deployment of real-time systems in a 

wide range of applications, it is now accepted that it may pose serious research challenges when 

trying to apply it to some other application areas. This is eventually the case of some distributed 



 - 3 -  

systems that are more flexible and adaptive in their nature. In this direction, a great amount of 

research is being performed towards including, into the traditional analytical models for 

computing worst-case response time, some stochastic representation of the events. Clearly, this 

may only be good to provide some form of probabilistic guarantees. However, there might be 

some useful results if the application can cope with occasional deadline misses, within some 

quantifiable limits [15-20].  

Therefore, for the development of tools suitable to extract temporal properties of Ethernet-

based factory-floor distributed systems, we advocate the use of a framework that considers 

several inter-linked research topics.  

Firstly, the use of simulation models that mirror the behaviour of the system may allow 

providing a reasonable framework for the timeliness evaluation of such distributed real-time 

systems. A modular simulation, in which each node of the system is modelled independently 

and then combined to form the overall system, enables to easily conceive models of simulation 

for distinct distributed systems. Different network topologies may be experimented and 

compared. This approach is being applied to a specific COTS technology, Ethernet/IP [21]. 

Ethernet/IP, where IP stands for “Industrial Protocol”, is one example of a COTS technology 

offering a full set of protocols and mechanisms enabling the development of distributed time-

critical applications for the factory-floor environment. Ethernet/IP uses an Application protocol 

− the Control and Information Protocol (CIP), layered on top of a standard TCP/IP protocol 

stack, where the physical and data link layers can be available Ethernet technologies. 

The rest of this paper is structured as follows. The next section presents a brief description of 

the main components of Ethernet/IP-based distributed systems. In Section 3, we describe how 

we have been tackling the problem of modelling and simulating distributed systems based on 

the same COTS technology. In Section 4 we provide a discussion on the use of simulation 

results to perform statistical timeliness analysis, by means of a concrete simulation example. 

Finally, in Section 5, we draw some conclusions. 

2. Ethernet/IP-based Distributed Systems 

 Ethernet/IP is a communication system based on encapsulation technologies, suitable for use 

in industrial environments. It is an open industrial networking standard that takes advantage of 

commercial, off-the-shelf Ethernet communication chips and physical media. Ethernet/IP 

defines a protocol stack (Figure 1) that uses an Application protocol named Control and 

Information Protocol (CIP), layered on top of a standard TCP/IP protocol stack, where the 

physical medium is Ethernet. 

CIP uses an abstract object modelling to describe the suite of communication services 

available, the externally visible behaviour of a CIP node, and a common means by which 

information within CIP products is accessed and exchanged [22]. The majority of the messaging 
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performed on a CIP Network is done through connections. CIP connections define the packets 

that will be produced on the network. All connections in a CIP network are classified into 

Explicit Messaging or Implicit Messaging [23]. Explicit Messaging provides generic multi-

purpose communication paths between two devices. Implicit messaging provides dedicated, 

special purpose communication paths between a producing application object and one or more 

consuming application objects. 
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Transport Layer 

Internet Layer 

Layer 7 - Application 

Layer 4 - Transport 

Application Layer 
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Layer 1 – Hardware 

CIP 

TCP/UDP 

IP 

Ethernet 

 

Figure 1. Ethernet/IP Protocol Layers 

 
This last type of connection is used for time-critical I/O data and, therefore, will be the 

focused type in this paper. Implicit CIP connections may be of four main types: Polled, Change 

of State, Cyclic, and Strobe. For the purpose of this analysis, the messages passing through the 

network are assumed to be of Cyclic Implicit CIP connections. Cyclic messages are produced 

by a device on a predetermined schedule basis, defined by a Requested Packet Interval (RPI) 

parameter. Any other device that uses the data from the producing device is made aware of the 

connection identifier associated and accepts any packets from this connection. This 

producer/consumer model is based upon multicast UDP/IP, which, in turn is mapped over 

multicast Ethernet/IP. There is a one-to-one correspondence between a producer/consumer 

connection and a multicast group. 

Ethernet/IP Networks are constituted of three basic elements: Remote I/Os, Controllers and 

interconnecting Switches. These elements communicate with each other via Ethernet. The 

Remote I/O and Controller nodes can be composed by a number of different modules 

communicating via a device-specific backplane (Figure 2). Typically, a Controller is composed 

of a number of I/O modules (labelled in the figure as I or O), several Controller modules (C) 

and one or more Ethernet Adapters (EA). A Remote I/O is similar to a Controller, but it is 

simpler as it lacks Controller modules. 
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 Controller Remote IO

… 
EC I 

… 
E OI 

Backplane Backplane  

Figure 2. (Controller and Remote IO) Ethernet/IP basic nodes 

 
Before closing this section it is worth to take a closer look to the type of end-to-end 

transactions we are addressing. Assume a simple network scenario (Figure 3), and an end-to-end 

transaction between the Remote I/O and the Controller nodes. 
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Figure 3. End-to-end transaction path example 

 
The above mentioned transaction starts at the input module of the Remote I/O ( ), where a 

message with the actual input data will be generated (produced) at a rate defined by the RPI 

parameter for that particular connection. This message will suffer contention delay at the node 

device backplane ( ), and will then arrive at the Ethernet Adapter, where it is processed, and 

sent via the Ethernet communication interface ( ). The Ethernet switch forwards the message 

to the corresponding output port(s) ( ) with a determinable latency. The message will arrive to 

the Controller Ethernet Adapter ( ), where is parsed and dispatched to the Controller module 

via the node backplane ( ). At the controller (consumer of the data related to the transaction), 

the input data will be processed by a controller task (characterised by a worst-case response 

time), that generates the corresponding output data ( ). The generated output data corresponds 

to another transaction, in this case produced by the controller and consumed at the Remote I/O 

node. With another RPI parameter associated, this message will then follow the inverse path 

( , , ), until it reaching the EA of the Remote I/O ( ). It is then processed and delivered to 

the output module that will, in result, energise the corresponding output(s) ( ). 
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The producer/consumer model of Ethernet/IP-based systems, together with the advantages of 

Ethernet technologies in the factory-floor greatly increase the interest put on using this 

technology for time-dependent distributed applications.  

3. Ethernet/IP Simulation Model  

The Ethernet/IP distributed system simulation environment was developed using the 

OMNeT++ [24] discrete event simulation platform. OMNeT++ is an object oriented modular 

discrete event simulator, which provides a reusable component framework, where the system 

components can be independently built and then characterised and assembled into larger 

components and models. The basic system components are built using the C++ language and 

then assembled into larger components and models using a high level language, named NED (a 

OMNeT++ specific scripting language). An OMNeT++ model consists of hierarchically nested 

Modules. These modules can have parameters which are used to customise the module 

behaviour; to create flexible model topologies; and for module communication, as shared 

variables. Modules can also communicate through message passing, where messages can 

contain arbitrary data structures. 

Our simulation model for Ethernet/IP is composed of three basic components (nodes), 

mapping on the main Ethernet/IP devices: a Remote IO, a Controller and an Ethernet Switch. 

Each of these basic nodes can be instantiated into several different device models, with different 

particular characteristics, since modularity and parameterisation are considered into the design 

to a sufficient extent.  

Figure 4 depicts a basic example of a network model. This network is composed of a Remote 

IO, a Controller and a Switch. In the next subsections, further details are provided concerning 

model implementation aspects. 

3.1. Remote IO Node 

The Remote IO is composed of several IO modules and an Ethernet/IP Adapter. The IO 

modules contain the several input/output connections of the device. Typically, each IO module 

will act has an Input or Output module, but not both at the same time. As previously mentioned 

in Section 2, the diverse modules inside a Remote IO node communicate (CIP packets) through 

a backplane. The Ethernet Adapter is responsible for relaying messages between the Backplane 

and the Ethernet network. CIP packets are eventually (for the case of a consumer outside the 

node) encapsulated into UDP packets inside the Ethernet/IP Adapter (ethIPAdapter in Figure 4). 
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Figure 4. OMNET++ hierarchical models 

 
The Backplane is a simulation module that exists both at Controller and Remote IO nodes. It 

gathers information about the data connections produced/consumed at each module. Figure 5 

provides a sample of NED code defining the Backplane OMNeT++ simple module. A simple 

OMNeT++ module is declared with the keyword simple, followed by the module’s name. The 

declaration of the simple module terminates with the keyword endsimple. Included in the 

declaration are the OMNeT++ simple module’s parameters and gates. The gates of an 

OMNeT++ module define the entry points of the module. For the example of the Backplane 

module, an array of input and output gates are defined, where each pair of input and output 

gates represents a Backplane interface, connecting to a node’s module. 

 
simple Backplane

    parameters: 

  tTableTime : numeric,  

  frameTime  : numeric,  

  timeDivison: bool;  

    gates: 

        in: in[];        

        out: out[];      

endsimple 

 

Figure 5. Backplane OMNET++ simple module NED definition 

 
The Backplane simple module has the parameter tTableTime, which defines the transmit table 

time, used for the time division multiple access (TDMA) protocol used as backplane’s medium 

access control protocol. The parameter frameTime concerns the time a message takes to be 

transmitted in the Backplane, and the parameter timeDivision specifies whether the time 

division protocol behaviour should be precisely simulated or simplified. The Backplane module 

simulates the behaviour of a TDMA contention schema where access to the communication 

medium is equally distributed to the several producing connections delivering data to the 

Backplane. Nevertheless, and because this simulation approach of the Backplane can introduce 

a great amount of events, it is possible to disable this behaviour. The alternative will then be to 

insert a variable delay, as a function of the number of connections that send messages to the 

Backplane.  

The Ethernet/IP Adapter is responsible for relaying messages to/from the Ethernet network. It 

does its job by receiving the CIP messages from the Backplane and, in the CIP Bridge Layer 
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(cipBridgeLayer in Figure 4), encapsulating them into UDP packets which are passed down to 

the Network Layer of the UDP/IP stack. CIP packets are encapsulated into IP packets and an 

Ethernet frame is created and sent through the network. On the opposite direction the packets 

are retrieved of the UDP/IP packet and delivered to the Backplane. 

The Ethernet/IP Adapter models the delays introduced to perform the encapsulation of the 

messages, to access the network and the concurrent access to the adapter resources. Figure 6 

illustrates the NED definition of the Ethernet Adapter OMNeT++ module (a compound 

OMNeT++ module). A compound module is composed of other modules. It is declared with the 

keyword module and the module’s name, closed by endmodule. Like an OMNeT++ simple 

module, a compound module is composed of the module’s parameters and gates. Additionally, 

it has to include its sub-modules and the connections between the sub-modules and gates. 

 
module EthIPAdapter 

    parameters: 

        connectionIDProducedList : string,  

        connectionIDConsumedList : string;  

    gates: 

        in: from_backplane; 

        out: to_backplane; 

        in: from_eth; 

        out: to_eth; 

    submodules: 

        cipBridgeLayer: CIPBridgeLayer; 

        networkLayers: NetworkLayers; 

    connections: 

        from_backplane --> cipBridgeLayer.from_bp[0]; 

        to_backplane <-- cipBridgeLayer.to_bp[0]; 

        networkLayers.to_application --> cipBridgeLayer.from_ntw; 

        networkLayers.from_application <-- cipBridgeLayer.to_ntw; 

        from_eth --> networkLayers.from_phy; 

        to_eth <-- networkLayers.to_phy; 

endmodule  

Figure 6. EthIPAdapter OMNET++ compound module NED definition  

 
Two parameters are considered. The connectionIDProducedList parameter and the 

connectionIDConsumedList parameter, for listing the CIP connection identifiers of the 

connections produced and consumed in the node’s modules connected to the Backplane, 

respectively. The sub-modules considered into an EthIPAdapter module are the CIP Bridge 

Layer (cipBridgeLayer sub-module) and Network Layer (networkLayers sub-module). The 

connections implemented (refer to the NED code sample in Figure 6) are those between these 

two layers and the input/output gates from both the Backplane and the Ethernet network. 

Each of the IO modules (labelled IOModule1, IOModule2 and IOModule3 in Figure 4) inside 

a node and connected to the Backplane has a CIP Layer, responsible for delivering data to/from 

the IO connections. The IO Connection can behave either as an output or input connection, and 

each IO Module may have several input or output connections connected to its CIP Layer 

(Figure 7). 



 - 9 -  

 

 

Figure 7. ONNET++ EthIPIOModule composition 

 
When an IO Connection is doing the task of an input connection, it receives data from a data 

input, which generates input data at a defined periodicity (this data input models the input 

signals of an input connection). At a defined Requested Packet Interval (RPI), the IO 

Connection constructs a CIP data item from the last received data, and sends it to the CIP Layer. 

When an IO Connection is acting like an output connection, it receives data from the CIP Layer, 

which is delivered to a data output, after a parameterised hardware delay. This is illustrated in 

Figure 8, which provides the C++ code of the message handler from the IOConnection class. 

 
 
void IOConnection::handleMessage(cMessage *msg) { 

 if (msg->isSelfMessage() == true && inputModule == true) { 

  // at rpi, send input data and schedule next rpi 

sendInputData(); 

if (((simtime_t)*rpi) > 0) 

 scheduleAt(simTime()+((simtime_t)*rpi), msg); 

} else { 

 if (inputModule == true) { // acting as an input 

  // discard previous dataItem and store new one 

  if (dataItem != NULL) delete dataItem; 

   dataItem = (CIPDataItem*) msg->dup(); 

  } else // acting as an output 

  sendDelayed(msg->decapsulate(),((simtime_t)*asicDelay), "out"); 

  delete msg; // After finishing with a message, it is released 

} 

}  

Figure 8. C++ code for the IOConnection class message handler 

 
The data input generators (dataInput1, dataInput2, ..., in Figure 7) model the signals applied 

at the input pins of the IO. They are characterised by two delays introduced after the generation 

of the input (a hardware delay and a filter delay). They are also characterised by the length of 

the data generated and by the periodicity of the data generation. OMNet++ supports defining 

any of these parameters as a randomly distributed function, with characteristics defined by the 

user. These parameters can be either defined in the NED code of a compound module, in which 

case it will be the same for all instances of this compound module, or defined in a special 

initialisation file that may assign the parameters of each module in the simulation. 
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Figure 9 exemplifies the definition of the dataInput (NED code) parameters in an IO module. 

Note that the generation period of the dataInput is defined as a random variable. In the 

following, it is defined with a uniform distribution in the interval [100, 150] milliseconds. 

 

module EthIPIOModule  

… 

    submodules:  

        dataInput: Input[numInputs];  

            parameters:  

                hwDelay = 200 us,  

                dataLength = 22, 

      filterDelay = 0,  

                period = uniform (0.1, 0.15); 

… 

endmodule  

Figure 9. OMNET++ EthIPIOModule NED code for parameter configuration 

 
Figure 10 illustrates the alternative of setting the same parameters through an initialisation 

file, for a particular IO module instantiation (ioModule1), inside of a Remote IO node 

(ethIPIO1), within a network (ethIPNetwork1). 

 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].hwDelay = 200 us 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].dataLength = 22 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].filterDelay = 0 ms 

ethIPIO1.ioModule1.dataInput[0].period = uniform(0.1,0.15)  

Figure 10. EthIPIOModule parameter configuration through initialisation file 

 

3.2. The Controller Node 

The Controller node is, in its structure, similar to the Remote IO node. The Backplane, the 

Ethernet/IP Adapter and IO Modules are exactly the same modules as described previously for 

the Remote IP node (Section 3.1). Of course, it is possible to parameterise each of the modules 

differently, and therefore manipulate their actual behaviour. 

There is however a module that must be specified for the particular case of Controller Nodes: 

the Controller module. In the actual Ethernet/IP systems, the Controller module is used to 

perform control functions. The controller was modelled reusing some OMNeT++ modules 

described earlier. It reuses the IO Connection modules and the CIP Layer, seen previously in the 

IO Module. In this case, the naming used for these modules may be somewhat misleading. 

Output connections refer to actual input data (from the input device) and output connections 

refer to actual output data (from the controller to the output IO). Thus, in the Controller, the data 

received from output connections is processed by a controller task which, after an upper-

bounded response time will generate the respective data, to be delivered to input connections. 
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Currently, the controller only possesses one task that processes all the output data received, in 

order to simplify the construction of simulation networks. The modelling details for Controller 

modules are presented in Figure 11. 

 

 

Figure 11. ONNET++ Controller module composition 

 
In the current implementation, the correspondence between the output data received and the 

input data generated by the Controller task is made in a one to one relation between the indexes 

of the connections. This means that, at reception of data from the output connection with index 

one, the task will generate an input also at index one after the respective task response time. The 

C++ message handler that reflects this simple behaviour is illustrated in Figure 12. 

 
void ControllerTask::handleMessage(cMessage *msg) 

{ 

  sendDelayed(msg, (simtime_t)*responseTime, "out", 

              msg->arrivalGate()->index()); 

}  

Figure 12. C++ code for the Controller Task class message handler 

 
The task (worst-case) response time is a Controller Task parameter which will be a time span 

introduced between the receptions of data until the generation of the data to be delivered. Again, 

this parameter can be defined has a random function. 

3.3. The Switch Node 

The Switch node models the delays introduced by an Ethernet Switching component. For the 

purpose of this simulation, it is only necessary that the Switch recognises multicast groups and 

deliver the frames received in an appropriate manner. The Switch model is composed of several 

ports that connect to the nodes in the network. Because there is a port in each direction, the 

Ethernet medium is assumed to be full-duplex.  

The Switch node is a simple OMNeT++ module. The NED definition of the Switch 

OMNeT++ module is rather simple, and is given in Figure 13. It is similar to the Backplane 
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OMNeT++ module, since it has an array of input and output gates, in which each pair represents 

the interface with each connecting modules (the switch port). 

 
simple Switch 

    parameters: 

        nodename : string, 

        switchDelay : numeric; 

    gates: 

        in: in[]; 

        out: out[]; 

endsimple  

Figure 13. OMNET++ Ethernet Switch simple module NED definition 

 
OMNeT++ offers a rather convenient manner of defining channel transmission 

characteristics. It is possible to define the characteristics of the connection between any two 

modules by using a predefined channel. A channel is defined with its name, preceded by the 

keyword channel. A channel may be assigned with the attributes delay, error and datarate. The 

example code depicted in Figure 14 corresponds to the definition of a 100 Mbit/sec Ethernet 

channel with a normally distributed delay, with mean value of 150 µs and a standard deviation 

of 50 µs. The connecting channels model the transmission delays and queue the messages 

whenever concurrent access to the medium occurs.  

 
channel ethernet  

    delay normal(0.00015,0.00005);  

    datarate 100*10^6;  

endchannel  

Figure 14. Ethernet Channel definition in OMNET++ 

 
To simplify the multicast deliver process, the connection identifier of a producing connection 

is directly mapped into the last octet of an IP Multicast Address. For example, for a connection 

with the identifier 128, the IP Multicast Address would be constructed with a user defined 

prefix and the last octet being 128; that is, for a prefix of 239.0.0., the connection with identifier 

128 would be mapped to the multicast group with address 239.0.0.128.  

Because mapping rules defined by multicast Ethernet MAC address mapping are also used 

[25], the Ethernet frames actually contain the connection identifier mapped into the multicast 

groups. In this way, it is possible for the Switch to simply construct, at initialisation time, a list 

of all producing/consuming connection IDs for each connected node. At run time, the Switch 

module will merely compare the connection identifiers of the received frames with the ones in 

the list for each node, swiftly delivering copies of the received frame to all nodes that belong to 

the multicast group. 

The Switch is parameterised by a delay that represents the time taken to process the frames, 

which can also be defined as a random function. 
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4. Discussion of Results over a Practical Example 

In order to provide some insight into the obtainable results with this modelling and 

simulation approach for Ethernet/IP-based distributed systems, an example system is presented. 

The results of its simulation and how they could be correctly analysed are then discussed in this 

section. Note that we are aiming at obtaining an estimation of the end-to-end response time for a 

number of transactions. A primary goal is to disclose some fundamental aspects about the 

analysis of the simulation results.  

4.1. Example scenario 

 

Remote IO 3 Remote IO 2 Remote IO 1 

Controller 1 

Ethernet Switch 

EC

E I 

CO

I O O E I I OE I I OI 
 

Figure 15. Example of simulated system 

The example system is constituted of three Remote IOs, one Controller and an 

interconnecting switch (Figure 15). 

The Controller node is composed of one IO module and two Controller modules. The first 

Remote IO includes four IO modules, two for output and two for input. The second Remote IO 

also includes four IO modules, three for input and one output. Finally, the last Remote IO 

contains three IO modules, two for input and one output. 

The system has nine end-to-end transactions between the Remote IOs and the Controller. 

This results in a total of eighteen connections, half from the Remote Input to the Controller 

(Input direction) and the other half, from the Controller to the Remote IO (Output direction).  

Table 1 presents the connection identifiers attributed to the connections that make up the 

several transactions, whereas, Table 2 provides further details on these connections. 
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Table 1. End-to-end transactions in example network 

Transaction Connection at Input 
Direction 

Connection at Output 
Direction 

1 131 141 

2 132 142 

3 133 143 

4 134 144 

5 151 161 

6 152 162 

7 153 163 

8 171 181 

9 172 182 

 

Table 2. Connections in example network 

Input 
Connection 

Output 
Connection Node Module 

ID RPI 
(ms) ID 

141 10 131 

142 7 132 

143 25 133 

Controller 
module 

1 
163 35 153 

144 20 134 

161 350 151 

162 110 152 

181 200 171 

Controller 

Controller 
module 

2 

182 350 172 

141 

142 

143 

IO 
module 

1 
 

162 

IO module 2  163 

171 200 

Remote  IO 
1 

IO module 3 
172 350 

 

IO module1 131 10  

IO module2 132 7  

133 25 IO  module 
3 134 20 

 

144 

Remote  IO 
2 

IO  module 
4  

163 

151 55 

152 80 IO  module 
1 

153 75 

 

161 

181 

Remote  IO 
3 

IO  module 
2  

182 
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4.2. Analysis of simulation output data 

It is known that not much can be concluded with a single simulation run. In fact, the results 

of a given simulation run are just particular realisations of random variables that may have large 

variances. It is also known that classical statistical techniques based on Independent and 

Identically Distributed (IID) observations are not directly applicable to the investigation of 

simulation results. In fact, simulation output data results are usually highly correlated and have 

non-stationary distributions.  

Several different methods have been developed to correctly compute estimates of a model’s 

characteristics [26]. There is however no simple or complete solution. Besides, the precision of 

the estimation is at the cost of long and computing intensive simulation runs. Although previous 

works have interesting approaches for the application of discrete–event simulation to the 

analysis of distributed real-time systems (e.g. [27]), to our best knowledge, little has been 

advanced in respect to the actual statistic analysis of the simulation output results, including 

some measure of confidence in the results. 

Most of the methods for the analysis of simulation output data, referred in the literature [26], 

rely on the fact that, although the simulation results of a single simulation run are not 

independent, it is possible of obtain independent observations across the results of several 

independent simulation runs (replications). A set of replications is independent if the random 

numbers used to drive the simulation through time are different for each replication.  

Mainly, there are two general strategies that can be efficiently approached. One relates to 

fixed-sample-size procedures, where a single simulation run of a fixed length is made, and then 

one of a number of procedures is used to construct a confidence interval from the available data. 

A second can be based on sequential procedures that increase sequentially the length of a single 

simulation run until an acceptable confidence interval can be constructed. 

A particular method, included within the group of fixed sample procedures, is the 

replication/deletion. It is a fairly simple method, with a reasonably good statistical performance 

[26], which we will briefly describe and apply in the analysis of the simulation network 

example presented formerly. The goal is to obtain an estimate and confidence interval for a 

steady-state mean v of worst-case observations.  

Suppose that we make n replications of the simulation each of length m, where m is much 

larger than l (the warm-up period used to eliminate the initial transient problem). Let Xi be 

independent and identically distributed (IID) random variables given from the maximum end-to-

end response time observed in each simulation replication i, in the set of response times 

between l and m. Xi holds an expected average approximate of the steady-state mean v, across i 

replications of the simulation. Thus, )(nX  is an approximately unbiased point estimation for v, 

and an approximate 100(1 − α) percent confidence interval for v may be obtained by [26]: 
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The half-length of the replication/deletion confidence interval given by equation (1) depends 

on the variance of Xj, which will be unknown for the first n replications. Therefore, it is 

necessary to make a sufficient number of replications of the simulation to achieve a confidence 

interval small enough for a particular purpose.  

4.3. Statistical results of the simulation 

Table 3 provides the results of the application of such approach to the analysis of the 

simulation output data. In this, we will attempt to construct a confidence interval for the worst-

case that can be expected in the long run. This estimation is based on the observation of 

successive maximum end-to-end values verified across simulation replications and the variance 

of these observations. The number of replications performed was 61, which was a number of 

replications that allowed obtaining an error below 25-26% of the estimate for all transactions. 

Table 3. Results of simulation output using replication/deletion 

Transaction 
Estimation for 99.9% confidence 

interval 
(X ± ε  ms) 

99.9% 
Confidence interval 

(ms) 

Tr. 1 21.22 ± 4.42 [16.80 , 25.64] 

Tr. 2 15.28 ± 3.97 [11.31 , 19.26] 

Tr. 3 51.15 ± 5.08 [46.07 , 56.24] 

Tr. 4 41.11 ± 4.68 [36.43 , 45.78] 

Tr. 5 700.45 ± 9.22 [691.23 , 709.66] 

Tr. 6 220.90 ± 6.27 [214.62 , 227.17] 

Tr. 7 110.20 ±12.79 [97.41 , 122.98] 

Tr. 8 400.74 ± 7.44 [393.30 , 408.18] 

Tr. 9 700.59 ± 8.72 [691.87 , 709.31] 

 

The X presented in table above represents the estimation for the worst-case response time of 

the transactions. The margin of error (ε) gives a measure on how accurate the estimation is, 
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based on the variability of the estimation. The confidence level (99.9%) reflects the amount of 

confidence that, in the long run, this approach will be able to approximate the true worst-case. 

With these values, it is possible to construct the confidence intervals displayed. 

This type of conclusion about the behaviour of a concrete system may be of relevance to the 

systems designer, when a probabilistic evaluation of the system is being carried out. 

Nonetheless, some relevant remarks that might be raised towards this analysis include the fact 

that the simulation data needed to produce such results may be at a prohibitive computation 

cost. This time actually depends on a number of variables. The complexity of the system 

influences the number of events generated during the simulation, the variance of the variables 

under study affect the size needed for each individual simulation replication, and the margin of 

error desired, which is also influenced by the variation of the variables of interest, may be 

controlled by the number of simulation replications. A close investigation of these matters is 

beyond the scope of this paper, but this is an important issue that must be evaluated in order for 

this approach to succeed. Nevertheless, it can be advanced that, for the example presented, each 

replication took less than 2 minutes to run on a fairly old machine (PIII 1GHz).  

Also, as noted, the precision obtained depends on the variance of the variables. There are 

methods to reduce the variance of a simulation output, which generally require controlling 

random-number streams to introduce correlation in successive observations. Such methods are 

usually dependent on a particular model and, if not carefully used may impair the validity of the 

results. Nonetheless, regardless of such techniques, by observing the evolution of the data 

obtained it is clear that there is a level of precision which can not be much improved by 

increasing the number of simulation replications. Therefore, particular care must be taken with 

the use of traditional statistical methods when timeliness guarantees must be provided. 

5. Summary and Conclusions 

Ethernet-based technologies have already gained a strong position in the factory-floor. For 

many years, deemed non-determinist, Ethernet has gone through some evolution which enables 

its use in real-time applications. Nevertheless, Ethernet technology, by itself, does not include 

features above the lower layers of the OSI communication model. Although lots of attention has 

been devoted to the timing analysis of Ethernet-like technologies and solutions, most of the 

work on Ethernet has been restricted to the Data Link Layer level. It is still to come an overall 

approach that allows the evaluation of a whole Ethernet-based distributed computing system.  

In this paper, we have presented the modelling and simulation of Ethernet/IP-based systems, 

which is being addressed with the purpose of setting up a framework for the development of 

tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-

based factory-floor distributed systems as a whole. The use of discrete event simulation models 

can be a powerful tool for the timeliness evaluation of the overall system, but particular care 
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must be taken with the results provided by traditional statistical analysis techniques. Therefore, 

some discussion was also introduced on the use of simulation results to perform statistical 

timeliness analysis. This discussion provides insights for ongoing work in this area. In order to 

obtain better more approximate estimates to real-time system parameters, analysis techniques 

that incorporate some of the features of such systems must be considered.  
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