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The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship
between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an
hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic
algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in
lichens. Besides the analysis of the spacial layout, amodelling of the time evolution is performed by adopting a distancemeasure and
the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret,
set of model parameters for distinct operating conditions.

1. Introduction

This paper analyzes the fractional order dynamics during the
search for the optimal solution in a plane with an hexagonal
tessellation by means of a genetic algorithm.These three dis-
tinct scientific topics are recognized to be efficient approaches
in particular areas, namely, in the problems of modelling
including long-range memory effects, space representation
using geometric shapes with no overlaps and no gaps, and
robust optimization in cases where standard techniques do
not yield adequate solutions. This paper integrates the three
methodologies in the analysis of a complex evolutionary
optimization for producing solutions somehow resembling
the percolation phenomenon, in the inorganic world, or,
alternatively, the lichens, in the scope of living beings.

Fractional calculus (FC) is a branch of mathematical
analysis that generalizes the operations of differentiation
and integration from integer up to real or complex orders
[1–5]. The concept emerged in September 30, 1695, when
Guillaume de l’Hôpital wrote to Gottfried Leibniz a letter
asking him about the meaning of 𝑑

1/2
𝑦/𝑑𝑥
1/2, to which

Leibniz replied “an apparent paradox, from which one-day
useful consequences will be drawn.” Important minds such

as Fourier, Euler, Laplace, Liouville, and Riemann devoted
efforts to the development of the theory of FC, but the
field remained primarily of pure mathematics.Things started
to change in the beginning of the twentieth century with
the work of Olivier Heaviside in operational calculus and
electromagnetism [6]. Nevertheless, only in the last two
decades FCwitnessed a substantial progress in the application
to physics, engineering, and biology [7–11].

Genetic algorithms (GAs) are a computer heuristic that
mimics the process of evolution and belong to the class
of the so-called evolutionary algorithms [12–16]. Genetic
algorithms (GAs) were invented in the 60s by John Holland
and developed by him and his colleagues. GAs are inspired
in the genetic structure and behaviour of chromosomes
within a population of individuals (the solutions) having
in mind the ideas that (i) individuals compete between
themselves, (ii) most successful individuals tend to produce
more offspring, (iii) the genetic information of “good” indi-
viduals disseminates in the population and tends to produce
offspring that are better than their parents, and (iv) successive
generations become more suited to their living environ-
ment. GAs implement an intelligent exploration of the space
of solutions by exploiting historical information to direct
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the search into the region of better performance. During the
last decades a growing amount of successful application to
real-world problems demonstrated that GAs are a powerful
and robust optimisation technique.

The hexagonal tessellation is a regular tiling of the
Euclidean plane, in which each vertex meets three hexagons
[17, 18]. There are two other regular tessellations of the plane,
namely, the triangular and the square tilings. Nevertheless,
the hexagonal tessellation constitutes the best way to divide
a given surface into regions of equal areas, while having
the least total perimeter. This forms the so-called “hon-
eycomb conjecture” that dates back to the ancient Greek
mathematician Pappus of Alexandria (c. 290–c. 350) and
was proven in 1999 by Hales [19]. We find this structure
in nature, such as crystals or honeycombs, built by honey
bees, and in man-made structures [20, 21], or even as art in
the famous Maurits Escher woodcuts and lithographs [22].
Many other examples can bementioned such as graphene and
superbenzene, substances with atoms arranged in a regular
hexagonal structure [23], or pineapples [24], a fruit with a
rough skin having a hexagonal pattern of nodules.

The three scientific concepts are put together for sim-
ulating and modelling an evolutionary process in a two-
dimensional space. First, it is considered a plane where some
kind of process evolves. The plane is discretized by means
of a regular hexagonal pattern, and the evolution consists of
the optimization using a standard GA. Second, the evolution
of the GA population is described using a fractional order
model that approximates the numerical results. For that
purpose, the best individual in each generation of the GA
population is analysed in the viewpoint of fitness function,
compared with the previous case, and the result is converted
into the Fourier domain. An important aspect is also the
fitness function that measures the “performance” of each GA
individual. In the two-dimensional space are considered two
distinct types of objects, and it is assumed that a “good per-
formance” corresponds to a spacial arrangement exhibiting
some type of interface between them. By other words, it is
assumed that some kind of cooperation, or synergy, exists
between the two objects, such that they should coexist close
to each other in space. The resulting time-space population
reveals fractal characteristics and patterns resembling those
of percolation [25, 26], in the inanimate world, or of lichens,
when thinking in living organisms [27, 28]. The possible
examples correspond only to possible interpretations of the
abstract algorithm implemented in the paper. Percolation
is the phenomenon involved in the movement and filtering
of fluids through porous materials. Nevertheless, in the last
years percolation brought a new light into many topics
such as material science, epidemiology, or geology. On the
other hand, lichens are organisms consisting of two partners,
namely, a fungus and a green alga growing in a symbiotic
relationship.The body of a lichen consists of fungal filaments
surrounding the cells of the algae. The basis of the symbiosis
in lichens is that the fungus provides the algal protection and
gains nutrients in return.Therefore, such examples aremerely
possible interpretations of the simulation results, but, in fact,
an abstract formulation is the basis of the proposed study that
primarily intends to model the GA evolution with FC tools.

Bearing these ideas in mind this paper is organized
as follows. Section 2 formulates the main algorithms and
methods. Section 3 presents the experiments and analyzes the
results. Finally, Section 4 draws the main conclusions.

2. Main Algorithms and Methods

In this section are introduced briefly some aspects of FC and
Laplace transform and the computational implementation of
GA.

2.1. Fractional Calculus. The most used definitions of a
fractional derivative of order 𝛼 are the Riemann-Liouville,
Grünwald-Letnikov, and Caputo formulations [29]. Frac-
tional derivatives capture the history of past events, contrary
to integer derivatives that are merely “local” operators. This
property has been recognized both in natural and man-made
phenomena, where modelling becomes simpler using FC
rather than building complicated integer order expressions.

Using the Laplace transform, for zero initial conditions,
we have the expression

L {𝐷
𝛼

𝑡
𝑓 (𝑡)} = 𝑠

𝛼
L {𝑓 (𝑡)} , (1)

where 𝑠 and L denote the Laplace variable and operator,
respectively.

In the scope of FC it is also important to mention the
Mittag-Leffler function 𝐸

𝛼
(𝑡) defined as [30–33]

𝐸
𝛼
(𝑡) =

∞

∑

𝑘=0

𝑡
𝑘

Γ (𝛼𝑘 + 1)
, 𝛼 ∈ C, Re (𝛼) > 0. (2)

The Mittag-Leffler function is a generalization of the
exponential and the power laws. The first occurs in phenom-
ena governed by integer dynamics, and the second emerges in
fractional dynamics. In particular, when 𝛼 = 1 yields 𝐸

1
(𝑡) =

𝑒
𝑡, while, for large values of 𝑡, the asymptotic behaviour of the
ML leads to 𝐸

𝛼
(−𝑡) ≈ (1/Γ(1 − 𝛼))(1/𝑡), 𝛼 ̸= 1, 0 < 𝛼 < 2.

Applying the Laplace transform

L {𝐸
𝛼
(±𝑎𝑡
𝛼
)} =

𝑠
𝛼−1

𝑠𝛼 ∓ 𝑎
, (3)

we verify the generalization from the exponential up to the
Mittag-Leffler function, that is, from integer up to fractional
powers of 𝑠.

These results mean that standard methods in mod-
elling and control, such as transfer functions and frequency
response, can be directly applied as long as we allow the
substitution of integer orders by their fractional counterparts.

2.2. Genetic Algorithms. GAs are a computer method to
find approximate solutions in optimization problems. GAs
are implemented such that a population of 𝑁 possible
solutions evolves with successive iterations towards better
approximations. In the GA formulation it is necessary to
define the genetic representation of the problem and the
fitness function that measures how successfully a given
individual approximates the solution. In the GA execution
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the population is initialized randomly and after it is improved
applying iteratively the operations ofmutation, crossover, and
selection that mimic Darwin’s theory. During the evolution
a given part of the population is selected to breed the new
generation. Solutions are selected by means of the fitness
function. Therefore, those individuals that have the best
fitness values are preferred.The GA execution is ended when
some predefined condition is obeyed, such as when the
maximum number of generations 𝑡max is reached or when
a satisfactory fitness value is obtained. The technique of
“elitism” is often adopted that allows the better individuals to
carry over, unaltered, to the next generation.

The pseudo-code of a GA is as follow:

(1) generate randomly the initial population of individu-
als (solutions);

(2) evaluate the fitness function for each individual in the
population;

(3) repeat:

(a) select the individuals with best fitness value for
reproducing;

(b) treat the population by means of the crossover
and mutation operators and produce offspring;

(c) evaluate the fitness value of each individual in
the offspring;

(d) replace the worst ranked part of previous pop-
ulation by the best individuals of the produced
offspring;

(e) until termination.

3. Numerical Experiments

In this section we describe the experiments with the GA
and we analyse the results in the perspective of fractional
dynamics.

3.1. Genetic Algorithm Using Hexagonal Tessellation. We
consider a two-dimensional space subdivided in discrete
cells and where three types of situation may occur. The
cells consists of a tessellation using regular hexagons as
represented in Figure 1, where (𝑖, 𝑗) denotes the cell indexing
and the six gray cells define the setA of neighbours.

Each cell has three possible situations, namely, “empty,”
“occupied with object type 1,” and “occupied with object type
2.”

In the GA these objects interact by means of a fitness
function 𝐽 defined as

𝐽 =

𝑖max

∑

𝑖=1

𝑗max

∑

𝑗=1

{(𝑖, 𝑗) ⊥ A} , (4)

where 𝑖max and 𝑗max denote the maximum values for indices
𝑖 and 𝑗, respectively. The notation (𝑖, 𝑗) ⊥ A describes the
logical operation of comparing the object present in cell
(𝑖, 𝑗) with the set of six neighbours A and incrementing the
value of 𝐽 by “1” (or “0”) each time the cells have different

𝑖, 𝑗 Neighbour𝒜

Figure 1: Hexagonal tessellation of the plane and definition of
neighbour setA of cell (𝑖, 𝑗).

(or identical) types of objects.Therefore, the logical operation
(𝑖, 𝑗) ⊥ A yields a value between 0 and 6, with each term “1”
(or “0”) being the result of verifying if cell (𝑖, 𝑗) is occupied
with “object type 1” (or “object type 2”) and a given cell inA is
occupied with “object type 2” (or “object type 1”). For “empty”
cells, or for cells near the boundary of the tessellation space,
no logical action is performed.

In the numerical experiments neighbours with more
cells were tested, namely, with a second and a third ring
having 12 and 18 hexagons and having different weights.
Nevertheless, the results were qualitatively of the same type,
and, therefore, these experiments are not reported in this
paper. Furthermore, for testing the surrounding cells different
fitness functions were also evaluated. Again, while leading to
different plots, the results were not significantly distinct and
are not described in the sequel.

We must note that fitness (4) is straightforward to calcu-
late, leading to a fast computational implementation, while
accessing as “good” a genetic species that includes a high
number of variations between objects in neighbour cells.This
abstract notion of discontinuity can be interpreted according
to the type of application. As mentioned in Introduction
we can interpret for percolation as some type of interface
between two distinct materials or for lichens as the interface
between two symbiotic species.

For the crossover operation a simple one-point scheme
is considered. First, the indices 𝑖 and 𝑗, for the one-point
crossover, are randomly generated. Second, the individual 1
of the offspring is generated by selecting the upper left and
lower right corners of parent 1 and the upper right and lower
left corners of parent 2. The individual 2 of the offspring is
obtained using the complementary selection of the corners
in parents 1 and 2.

3.2. Numerical Experiments and Fractional Dynamics. In
this subsection experiments with GA populations of 𝑁 =

{100, 200, 500, 1000} individuals and a two-dimensional
space are developed such that 𝑖max = 30 and 𝑗max = 60.
The GA terminates for 𝑡max = 10

3 generations. In the plots
are adopted the colours white, red, and green for the cases of
cells “empty,” “occupied with object type 1,” and “occupied with
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Figure 2: GA result for𝑁 = 100, 𝑃
0
= {0.2, 0.4, 0.4}.

Figure 3: GA result for𝑁 = 100, 𝑃
0
= {0.8, 0.2, 0.2}.

object type 2,” respectively. Moreover, different initializations
of the GA population, such that the three types of cells have
distinct probabilities, are also tested. Let us represent the
initialization probabilities 𝑃

0
= {𝑤ℎ𝑖𝑡𝑒, 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}. In the

sequel the cases 𝑃
0

= {0.2, 0.4, 0.4}, 𝑃
0

= {0.33, 0.33, 0.33},
𝑃
0
= {0.5, 0.25, 0.25}, and 𝑃

0
= {0.8, 0.1, 0.1} are considered,

corresponding to environmental conditions varying from
“fertile” up to “arid.” For the GA parameters the one-
point, crossover with tournament selection is adopted, 100%
crossover rate and elitism, a mutation probability of 0.05.

Figures 2 and 3 show the plots resulting for 𝑁 =

100 with 𝑃
0

= {0.2, 0.4, 0.4} and 𝑃
0

= {0.8, 0.2, 0.2},
respectively. We observe clearly the fractal structure in space
and the interlacing between the two distinct types of objects.
Moreover, the effect of the initial conditions is also clear, that
is, the outcome of having rich or poor populating conditions
of the tessellated plane.

The analysis of the GA dynamics [34, 35] in space time
requires the definition and clarification of several concepts.
In this line of thought, the term “space” represents the plane
where the objects are laid. Since we consider an hexagonal
tessellation, the space points are represented by cells (𝑖, 𝑗),
𝑖 = 1, . . . , 𝑖max, and 𝑗 = 1, . . . , 𝑗max. The term “time”
denotes the iteration time consisting of the successive GA
generations 𝑡 = 1, . . . , 𝑡max. For the characterization of
the GA population the individual with best fitness value
𝐽 is considered, since usually in GA applications only the
best solution is selected. Furthermore, for describing the
dynamics, 𝑑, an index measuring the “distance” between two
consecutive best individuals is considered, defined as

𝑑 (𝑡) =

𝑖max

∑

𝑖=1

𝑗max

∑

𝑗=1

{(𝑖, 𝑗)
𝑡
¬(𝑖, 𝑗)

𝑡−1
} , (5)
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Figure 4: Plot of 𝑑(𝑡) for𝑁 = 100, 𝑃
0
= {0.33, 0.33, 0.33}.
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Figure 5: Polar diagram of 𝑑(𝑡) and its approximation (7) for 𝑁 =

100, 𝑃
0
= {0.33, 0.33, 0.33} and 0.001 ≤ 𝜔 ≤ 0.03.

where the notation (𝑖, 𝑗)
𝑡
¬(𝑖, 𝑗)

𝑡−1
describes the logical opera-

tion of comparing the objects present in cell (𝑖, 𝑗) at iterations
𝑡 and 𝑡−1 and incrementing the value of 𝑑 by “1” (or “0”) if the
cells have different (or identical) types of objects. Therefore,
𝑑 yields the value 0 (𝑖max × 𝑗max) for two completely identical
(distinct) consecutive best individuals.

Figure 4 depicts 𝑑(𝑡) for 𝑁 = 100, 𝑃
0
= {0.33, 0.33, 0.33}.

We observe a vanishing transient with severe discontinuities.
The vanishing value means the convergence towards the final
value while the discontinuities reveal that often successive
generations change only slightingly or even do not evolve
at all. These transients vary with the initial conditions,
that is, with the probabilities 𝑃

0
and the GA parameters,

namely, the population size𝑁.Therefore, in the sequel several
combinations of values of 𝑃

0
and𝑁 are tested.

It was decided to identify a parametric model in the
Fourier domain since usually it leads to a simple and robust
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Figure 6: Variation of the transfer function parameter 𝐾 versus 𝑁
and 𝑃

0
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procedure. Therefore, the Fourier transform of each time
response, 𝐷(𝚤𝜔) = F[𝑑(𝑡)], was determined. For the
identification several transfer functions were tested trying to
establish a compromise between accuracy and complexity,
while trying to preserve the same type of expression for all
cases under study.The final choice fell on a function𝐺(𝑠)with
3 parameters given by the expression

𝐺 (𝑠) =
𝐾

1 + (𝑠/𝑝)
𝛼
𝑒
−𝑠𝜏

, (6)

where 𝐾 denotes the gain, 𝑝 represents a pole of fractional
order 𝛼, and 𝜏 stands for a time delay.

For example, Figure 5 depicts the polar diagram of the
experimental result and approximation (6), that is, Re =

R{𝐷(𝚤𝜔)} versus Im = I{𝐷(𝚤𝜔)}, for 𝑁 = 100 and 𝑃
0

=

{0.33, 0.33, 0.33}. Several experiments demonstrated that the
low frequency content of 𝐷(𝚤𝜔) is invariant with different
GA seeds, in opposition with the high frequency behaviour
that reflects the stochastic nature of the algorithm and reveals
noisy characteristics in the Fourier domain. Therefore, in the
sequel a bandwidth limitation is considered such that 𝜔 ≤

0.03.
Given the large number of combinations of values for

𝑁 and 𝑃
0
, the identification was performed automatically by

means of a second GA having a population of 500 individuals
and terminating after calculating 500 iterations. Several tests
demonstrated that good identification results were produced
by the fitness function:

𝜔=0.03

∑

𝜔=0.001

{R [𝐷 (𝚤𝜔)] −R [𝐺 (𝚤𝜔)]}
2
+{I [𝐷 (𝚤𝜔)] −I [𝐺 (𝚤𝜔)]} .

(7)
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Figures 6, 7, 8, and 9 show the variation of the transfer
function parameters {𝐾, 𝑝, 𝛼, 𝜏} versus𝑁 and 𝑃

0
.

We observe that the parameters of the transfer function
(6) have the following behaviour:

(i) 𝐾 grows with 𝑁 and has a maximum for 𝑃
0
= {0.5,

0.25, 0.25};

(ii) 𝑝 decreases with𝑁 and is independent of 𝑃
0
;
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(iii) 𝛼 has a fractional value and seems to be almost
independent of𝑁 and grows slightly with 𝑃

0
;

(iv) 𝜏 has not a clear relationship with 𝑁 or 𝑃
0
. It has a

small value and its average is 𝜏av = 0.3.

Weverify that we canmodel theGAdynamical behaviour
in terms of a simple fractional ordermodel. In fact, stochastic
results of the GA seem to be of minor influence in the
proposed modelling scheme, not only due to the com-
prehensive variation of the parameters, but also because
several numerical experiments with distinct seeds lead to
similar results. Nevertheless, we have a phenomenal mod-
elling perspective based on the analytical approximation and
supported by the outcome results.Therefore, a new challenge
is the inverse problem. By other words, the problem of
defining the fractional order model remains open and, as
a consequence, designing the GA rules that produce such
dynamical behaviour. In the scope of this problematic it can
not be forgotten that the GA optimizes a symbiotic behaviour
using a regular hexagonal space tessellation. Therefore, at a
higher level several problems remain open such as the design
of other fitness functions, the effect of other tessellation
methods, or the phenomena produced by a larger number of
object types in the GA population.

4. Conclusions

This paper presented a GA dynamical evolution and its
description by means of a fractional model. The GA adopts
a tessellation of the space using regular hexagons in order to
provide an efficient scheme to handle the neighbour cells in
the numerical discretization. Furthermore, the GA includes
a fitness function that evaluates positively the interface

between distinct objects in the population. This scheme has
an abstract nature but can be interpreted as representing
a simplified version of some kind of interaction between
distinct materials or, even, as symbiotic relation between
two different species. During the experiments several condi-
tions for the GA evolution were tested, namely, with initial
populations having different number of objects and distinct
percentages of each type. For describing the space-time GA
dynamics a simple measure was defined. The index, inspired
in the notion of distance, captures the differences between
two consecutive best individuals. It is verified, in all cases, that
the proposed description leads to simple models capable of
being traduced by analytical expressions of fractional order.
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benzene, coronene, and graphene from quantum Monte Carlo
calculations,” Journal of Chemical Physics, vol. 134, no. 13, Article
ID 134701, 2011.

[24] J. Kappraff, “Growth in plants: a study in number,” Forma, vol.
19, no. 4, pp. 335–354, 2004.

[25] H. Kesten, “What is...percolation?” Notices of the American
Mathematical Society, vol. 53, no. 5, pp. 572–573, 2006.

[26] G. R. Grimmett and l. Manolescu, “Inhomogeneous bond per-
colation on square, triangular, and hexagonal lattices,” submit-
ted to Annals of Probability, http://arxiv.org/abs/1105.5535.

[27] R. W. Sumner, Pattern formation in lichen [M.S. thesis], Massa-
chusetts Institute of Technology, Cambridge, Mass, USA, 2001.

[28] B. Desbenoit, E. Galin, and S. Akkouche, “Simulating andmod-
eling lichen growth,” LIRIS Research Report 2672, LIRIS FRE,
Lyon, France, 2004.

[29] I. Podlubny, “Fractional-order systems and 𝑃𝐼
𝜆
𝐷
𝜇-controllers,”

IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208–
214, 1999.

[30] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory
and Applications of Differentiation and Integration to Arbitrary
Order, Academic Press, New York, NY, USA, 1974.

[31] V. S. Kiryakova, Generalized Fractional Calculus and Applica-
tions, vol. 301 of Pitman Research Notes in Mathematics Series,
Longman Scientific & Technical, New York, NY, USA, 1994.

[32] I. Podlubny, Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations, to
Methods of Their Solution and Some of Their Applications, vol.
198 ofMathematics in Science and Engineering, Academic Press,
San Diego, Calif, USA, 1999.

[33] H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Mittag-
Leffler functions and their applications,” Journal of Applied
Mathematics, vol. 2011, Article ID 298628, 51 pages, 2011.

[34] E. J. S. Pires, J. A. T. Machado, and P. B. Oliveira, “Fractional
order dynamics in a GA planner,” Signal Processing, vol. 83, no.
11, pp. 2377–2386, 2003.

[35] E. J. S. Pires, J. A. T. Machado, and P. B. Oliveira, “Dynamical
modelling of a genetic algorithm,” Signal Processing, vol. 86, no.
10, pp. 2760–2770, 2006.



Impact Factor 1.730
28 Days Fast Track Peer Review
All Subject Areas of Science
Submit at http://www.tswj.com

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal


