

Run-time Monitoring in Real-Time
Operating Systems

Filipe Valpereiro
Luis Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-050501

Version: 1.0

Date: May 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Run-time Monitoring in Real-Time Operating Systems
Filipe VALPEREIRO, Luis Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {fvalpereiro, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Embedded systems are increasingly complex and dynamic, imposing progressively higher developing time

and costs. Tuning a particular system for deployment is thus becoming more demanding. Furthermore when

considering systems which have to adapt themselves to evolving requirements and changing service requests.
In this perspective, run-time monitoring of the system behaviour becomes an important requirement,
allowing to dynamically capturing the actual scheduling progress and resource utilization. For this to
succeed, operating systems need to expose their internal behaviour and state, making it available to external
applications, and a runtime monitoring mechanism must be available. However, such mechanism can impose
a burden in the system itself if not wisely used. In this paper we explore this problem and propose a
framework, which is intended to provide this run-time mechanism whilst achieving code separation, run-time
efficiency and flexibility for the final developer.

Run-time Monitoring in Real-Time Operating Systems

Filipe Valpereiro, Luís M. Pinho
Polytechnic Institute of Porto, Porto, Portugal

{fvalpereiro, lpinho}@dei.isep.ipp.pt

Abstract

Embedded systems are increasingly complex and
dynamic, imposing progressively higher developing time
and costs. Tuning a particular system for deployment is
thus becoming more demanding. Furthermore when
considering systems which have to adapt themselves to
evolving requirements and changing service requests. In
this perspective, run-time monitoring of the system
behaviour becomes an important requirement, allowing to
dynamically capturing the actual scheduling progress and
resource utilization. For this to succeed, operating
systems need to expose their internal behaviour and state,
making it available to external applications, and a run-
time monitoring mechanism must be available. However,
such mechanism can impose a burden in the system itself
if not wisely used. In this paper we explore this problem
and propose a framework, which is intended to provide
this run-time mechanism whilst achieving code
separation, run-time efficiency and flexibility for the final
developer.

1. Introduction
 With current and future demands for real-time
embedded applications, developers and system engineers
are faced with complex design problems [1]. The need for
fault tolerant, reliable, but yet adaptable systems is a
constant concern every time a new system or application
is build from scratch. Efforts where made to create new
tools and theories that approach these problems in a
straightforward way.
 From all these research fields, one that is particularly
important, and that is still much unexploited, is
monitoring [1]. Such mechanism allows us to perform
testing for verification, validation of critical applications
and, importantly in the context of this work, to observe
the run-time behaviour of the system after deployment.
Nevertheless, in order to monitor we must acquire
sufficient information about the state of the system [2],
particularly the internal behaviour and state of the
operating system.
 However, such task must be carefully planned.
Providing information which is not used may leave pieces
of non functional code and the system may not behave as

expected, eventually failing. On the other hand, providing
a reduced amount of information may not allow
guaranteeing valid assumptions. This implies that any
mechanism must be flexible enough to be tailored to
specific applications. Furthermore, a delicate balance
between the monitoring requirements and the system
performance must be considered in order to avoid
interference. Therefore, a clear separation between
monitoring code and application code must exist.
 To overcome this delicate equilibrium we propose a
framework for information acquisition, tailored according
to the monitoring requirements. The key to achieve this is
the customization of the underlying information
acquisition mechanism. By using a customization scheme
at compile time it is possible to integrate (or not) specific
components of code responsible for acquiring the
necessary information. Such customization will be made
in accordance to the monitoring requirements.
 Our goal for the proposed framework is to separate the
application development from the development of the
monitoring mechanisms and to minimize the system
interference. This work is part of an ongoing project that
intends to provide feedback from the operating system to
monitoring applications running in parallel with the
system application. By providing such feedback, it will
then be possible to support quality of service requirement
evaluation [3] using real data from the system himself.
The practical benefits are obvious if we consider the
impact that such a tool has in developing modern
embedded systems.
 One approach to implement the information acquiring
mechanism could be the use of reflection [4]. Using such
feature a clear code separation can be made, and run-time
customization would also be possible. However, for
current operating systems which do not directly support
reflection, the alternative is to provide a customizable
tracing mechanism, which can be selectively applied
during compilation. For compatibility reasons, the goal is
to make this tracing mechanism as compliant with the
POSIX trace standard [5] as possible.
 This framework is currently being targeted for the
S.Ha.R.K. [6] operating system. The availability of its
source code, its modular structure, and the existence of a
tracing mechanism make it a good alternative for
experimentation. Nevertheless, the current trace
mechanism implementation does not allow much room

for freedom and it does not follow the POSIX trace
standard.
 The paper is structured as follows. Section 2 presents
the motivation to the proposed framework. In section 3
we present the proposed framework for monitoring, while
section 4 briefly describes the basic mechanisms and
strategies that can be used for implementing this
framework. Sections 5 provides some conclusions.

2. Run-time Monitoring
 Monitoring should be considered a desired feature for
development and deployment phases. In [7], the
motivation for the separation of the monitoring
mechanisms from the application is provided. From the
development process to the actual design and
implementation of both the real-time application and the
monitoring mechanisms, the advantages are considerable
and must be taken into account.
 Run-time monitoring gives to the system the necessary
degree of freedom in order to dynamically change, adapt
and evolve. With a system under monitoring a developer
can ensure a quality of service policy and to observe the
internal state of the system working on real data. Thus, it
ensures the system overall response and can account for
unexpected situations. Furthermore, system requirements
can change. Under deployment it may be necessary to
change a particular quality of service. Monitoring can
play the judge rule, enforcing that such policy will go as
expected.

2.1 How to Monitor
 One important aspect to keep in mind when we look
into monitoring is the non deterministic effect of
observing a system. Through the addition of code lines,
we may expect to see the Heisenberg uncertainty
principle or probe effect [1] appearing into the observed
system. We can however minimize this impact and turn
interference into a deterministic behaviour. Such task can
be accomplished if we provide a clear separation between
the real-time application and the existing mechanism for
information acquisition. The monitoring can then be
implemented on top of it.
 To efficiently generate system information it is
important to clearly identify which type of information is
needed to monitor the system. Latter, we can benefit from
this approach, simply because we do not pay extra run-
time to generate or check if that particular information is
needed. Excess of information to monitor may impose an
extra burden in the system and intrusive issues may arise.
 In order to easily manage all the information that can
be monitored, we can group it according to its origins:
Data Flow (internal or external), Control Flow (execution
and timing) and Resources [1]. Furthermore, we can have
sub-groups that reflect the logical nature of this

information. For example, a Network and Sensor Data
sub-groups under Resources. With this scheme we
provide room for flexibility. When developing a real-time
application, the developer selects data groups that best
reflect the requirements and then apply a higher control
over each individual part.
 Finally, we must consider how to determine when the
system should produce information. There are several
approaches to deal with this issue, but the one that best
reflects the nature of current operating systems is driven
by events. Events can then be used to trigger the data
collection on the internal system state. The tracing
mechanism described by the POSIX standard [5] is one of
the possible approaches to perform this task. It is oriented
by events and doesn’t impose any limitations on the type
and quantity of information to be collected.

2.2 The POSIX Trace Standard
 The POSIX trace standard is based on two main data
types and three different roles that take part during the
trace activity. The data types are the trace event and the
trace stream. The three different roles that take part during
the trace activity process are the trace controller process,
the traced process and the analyzer process (also called
monitor process). For now it is sufficient to state that
using the two main data types supplied by the trace
standard we have plenty of room for flexibility. The
standard does not impose any restrictions on the
information type that can be collected by events and
allows an application to supply its own events and data.
 The only concerns when applying the POSIX standard
to real-time systems are the Real-Time Systems Profiles
[8]. Which different roles that take part during a trace
activity and which level of trace functionality can be
supported in a target system? The standard does not state
what level of trace functionality should be available in
each profile at runtime. Thus, it is possible to incorporate
only the required trace functionality in order to support a
monitoring mechanism. Later, when the system has all the
necessary support, the other levels could be implemented,
thus ensuring a full compliance with the POSIX standard.
Once again, customization is the key to achieve this.
There can be a complete implementation for a full fledged
real-time POSIX system, yet we may adjust such
implementation to each system needs.
 Since our target operating system [6] currently only
supports the MRSP profile we need to merge the three
different roles into a single (or even multiple) task. From
the POSIX standard point of view, no restriction exists
that limit this approach. However, work is still needed to
determine which configuration for the three different roles
should be used in order to achieve a higher efficiency.
 Using the current S.Ha.R.K. implementation, it is
possible to implement the base trace level, the event filter,

and the trace log1. Trace inheritance will not be
considered since S.Ha.R.K. does not provide support for
multiple process. The trace filter is an important feature
since it allows a developer to include monitoring over a
group. Finally, the log option can be useful if the
embedded system has a file system, a fast network link or
a flash memory device [9]. Such devices allow a developer
to store the internal state changes occurred in the system
for a post-mortem analysis and fine-tuning.

3. Run-time Monitoring Framework
 The purpose of this framework (Figure 1) is to allow
developers to choose which parts of the information
acquiring mechanism are needed in order to fully support
the desired monitoring scheme. Achieving this goal is
only possible if we pay attention to the system analysis
and functional requirements.

Figure 1. Run-time Monitoring Framework

 With a careful identification of such features, we can
take full advantage over the underlying trace mechanism.
Knowing in advance which parts take a role into the
application offers us the possibility to impose some

1 Since S.Ha.R.K. has some file system support (FAT16)
we can implement the trace log.

control over the tracer. With such control we achieve a
lower interference on the system, eliminating the
existence of non functional code, which could be
potentially hazardous [10], and avoiding the overall
impact that such mechanism produces.
 At compile time, a tool will select all the relevant
features to be inserted according to the monitoring
requirements, injecting the required trace code with the
application. During this stage we can apply group control
over the information or individually select which part of
the system should generate trace information. This leaves
space to achieve a greater flexibility, if we choose to
apply a trace filter over the tracing data, thus achieving a
higher control over the monitoring.
 In order to take full advantage of the customization
stage over the POSIX trace standard, we must ensure that
the target operating system supports all the required
functionality. Thus, prior to the creation of this tool the
standard (or parts of it) must be implemented over the
target system.
 Virtually it becomes possible to describe almost any
internal state in the system. With such powerful tool it
will be possible to achieve a higher degree of flexibility,
customizing the system according to specific needs. Thus,
the developer only needs to focus on the application
development, increasing the productivity, shortening the
developing phase and giving more time to test and deploy
the final application.
 An indirect consequence of this approach is the
portability of embedded real-time applications. Using a
POSIX operating system and having the chance of
customize the tracing/monitoring mechanism, a developer
does not need any longer to create or adapt previous
schemes. Another advantage comes from the fact that all
communication issues are removed from the real time
system context and pass directly to the monitoring
application, making the system even more versatile and
clean. This separation is clearly an advantage, minimizing
intrusive behaviour and approaching the intrusiveness
principle that should be the motivation for every
monitoring solution.

4. Strategies for Customization
 We can view the code customization as a process
where a developer can select individually features and
transform the target system. Such manipulation can be
made by disallowing code sections and if necessary, to
inject code into specific locations. In order to perform
these operations the tool must gain some knowledge about
the existing trace implementation. Such knowledge can be
represented as meta-information, thus indirect reflection
over the implementation source can be used to change the
actual target implementation.
 When executed, the tool will play two roles in the
source code generation. First, it begins to analyze the

Code

Functional
Requirements

Monitoring
Requirements

Trace
Requirements

System Analysis

Real Time
Application

Monitoring
Application

Selective Code injector

Compiler

Code

Application
Development

Monitoring
Application

Development

Code

Real Time
Operating System

Custom
Trace System

Final
Application

Monitoring
Application

Real Time
Operating System

Custom
Trace

System

monitoring requirements. Then, crossing this knowledge
with the meta-information on the actual implementation
produces the final source code. The result is a carefully
selection of features that should be activated in the
operating system. Those features are the minimum
necessary subset of the standard trace in order to fully
support the monitoring application. Finally, when the tool
starts the code generation, it defines the selected events
and injects the code to generate them. Then, the resulting
source will be ready to feed into the compiler.
 Code injection is the key to achieve the customization
of the tracing/monitoring mechanism. This is done using a
three step approach (Figure 2): identification of event
generation code, identification of the injection points in
the source files and injecting the desired event generation
code.

Figure 2. Code Injection

 Therefore it is possible to select which parts of the
standard trace mechanism should be compiled. We limit
the trace mechanism that can be available at run-time,
removing any unnecessary pieces of code. It is also at this
stage that the tool generates a header defining the selected
kernel events in accordance with the POSIX standard
rules. For the application specific events the POSIX
standard states that an explicit definition should occur at
run-time. If application event definitions are not required,
then the event register mechanism will not be needed.
 The monitoring requirements also provide meta-
information specifying which event groups or individual
events will be used by the application. The tool
transforms this piece of meta-information into injection
points in the source code, since prior to this stage we have
defined the groups and identified the specific source code
injection points.
 After the careful identification of the injection points,
we can proceed with code inoculation. The selected
injection points will receive the necessary code to
generate the selected trace events. This process concludes
the source code manipulation, allowing the developer to
finally compile and test the application.
 We are currently evaluating the use of Aspect-Oriented
Programming [11] techniques for the basis of the
framework customization. Tracing is a well-identified
crosscutting aspect, and by using this approach, the event
generation code can be seen as advices which must be
applied to the system code at specific injection points
(join points). Then the tool becomes a weaver for this
particular aspect.

5. Conclusions
 In this paper we elaborate on the need for run-time
monitoring of operating systems. We propose a
framework for run-time monitoring of real-time
embedded systems, which considers systems that have to
adapt themselves to evolving requirements and changing
service requests. Our perspective is that operating systems
must expose their internal behaviour and state, making it
available to external applications. The proposed
framework intends to provide such a mechanism whilst
achieving code separation, run-time efficiency and
flexibility. With this framework we pretend to create a
tool to allow a complete customization of monitoring
mechanisms, based on a customizable implementation of
the POSIX tracing standard.

Acknowledgements
 This work was partially supported by FCT, through the
CISTER Research Unit (FCT UI 608) and the Reflect
project (POSI/EIA/60797/2004).

References
[1] H. Thane, Monitoring, Testing and Debugging of Distributed
Real Time Systems, Ph.D. Thesis, MRTC Report 00/15, 2000.
[2] S. Chodrow, F. Jahanian, M. Donner, Run Time Monitoring
of Real Time Systems, Proc. International Real-Time Systems
Symposium, 1991, pp. 74-83.
[3] L. Nogueira, L. M. Pinho, Dynamic QoS-Aware Coalition
Formation, Proceedings of the 19th IEEE International Parallel
& Distributed Processing Symposium, Workshop on Parallel
and Distributed Real-Time Systems, Denver, USA, 2005
[4] R. Barbosa, L. M. Pinho, Mechanisms for Reflection-based
Monitoring of Real-Time Systems, WIP Session of the 16th
Euromicro Conference on Real-Time Systems, Catania, Italy,
2004, pp. 21-24.
[5] IEEE Std. 1003.1, Information technology – Portable
Operating System Interface (POSIX), Section 4.17 – Tracing,
2003
[6] Soft and Hard Real-Time Kernel (S.Ha.R.K.),
http://shark.sssup.it/
[7] R. Barbosa, L. M. Pinho, Monitoring of Real Time Systems:
a case for Reflection? Polytechnic Institute of Porto Technical
Report HURRAY-TR-0413, April 2004. Available online at:
http://www.hurray.isep.ipp.pt
[8] IEEE Std. 1003.13, Standardized Application Environment
Profile – POSIX Realtime and Embedded Application Support,
2003
[9] IEEE Std. 1003.13, Section 8: Dedicated Realtime System
Profile (PSE53), 2003
[10] Leveson N. and Turner C. An investigation of the Therac-
25 accidents. IEEE Computer, 26(7):18-41, July 1993;
[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
V.Lopes, J. Loingtier and J. Irwin, Aspect-Oriented
Programming, In Proceedings of the European Conference on
Object-Oriented Programming, 1997.

Code

Injection point Event generation

Code

Event Generation Code

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

