

Disseminating Data Using Broadcast when
Topology is Unknown

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-051202

Version: 1.0

Date: December 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disseminating Data Using Broadcast when Topology is Unknown
Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, nap, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of disseminating data from an arbitrary source node to all other nodes in a distributed
computer system, like Wireless Sensor Networks (WSNs). We assume that wireless broadcast is used and
nodes do not know the topology. We propose new protocols which disseminate data faster and use fewer
broadcasts than the simple broadcast protocol.

Disseminating Data Using Broadcast when Topology is Unknown

Björn Andersson, Nuno Pereira and Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson,npereira,emt}@dei.isep.ipp.pt

Abstract
Consider the problem of disseminating data from an

arbitrary source node to all other nodes in a distributed
computer system, like Wireless Sensor Networks (WSNs).
We assume that wireless broadcast is used and nodes do
not know the topology. We propose new protocols which
disseminate data faster and use fewer broadcasts than
the simple broadcast protocol.

1. Introduction
Distributed computing systems require protocols for

distributing data to all nodes. For example, every node in a
WSN detecting an event must distribute the knowledge of
this event. Critical events, like fire, explosion or detection of
an intruder require that the distributed system changes
mode, for example, from a power saving mode with low
duty cycle to a more active mode with a high duty cycle.
Another example is mobile robots that need to inform each
other that an important event has occurred, like a new
mission is given by a human.

In this paper we discuss the design of a protocol for
dissemination of data from an arbitrary source node to all
other nodes in a distributed computer system. The
protocol assumes that broadcast is used and all nodes
communicate over a wireless channel with a short range.
We present two protocols, both based on flooding. The
first protocol disseminates data faster than a simple
flooding protocol. The second protocol exploits a property
about the propagation speed in the first protocol to skip
unnecessary broadcasts. Clearly, this can be used to
reduce the number of redundant broadcasts, something
claimed [1, 2] previously to hamper the performance of
flooding-based data dissemination protocols.

The remainder of this paper is organised as follows.
Section 2 gives the terminology and system model used.
Section 3 presents the simple protocol, whereas Section 4
introduces an improved flooding algorithm and Section 5
conveys an effort to reduce redundant broadcasts. Section 6
discusses some other data dissemination protocols and their
ability to solve the problem of disseminating data to all
nodes. Finally, Section 7 gives conclusions and future work.

2. System model
The system has n computing nodes that communicate over

a wireless channel. Nodes do not have a shared memory; all
data variables are local to each node. A directed graph, not
known to the protocol, represents the connectivity. When an
arbitrary node, termed the source node, requests to
disseminate data, the protocol should disseminate the data to
all nodes. The objective is to minimize the delay from the
request until all nodes know about the data.

We make the assumptions that (i) only broadcast
communication is permitted (hence, if a node i broadcasts a
message m then any node j which has a link from i to j will
receive this message m), (ii) there is a medium access
control (MAC) protocol with prioritization and there is no
noise, (iii) during the time from the request to disseminate
until all nodes have heard about it, the topology does not
change and (iv) the topology is permitted to change at any
other time though.

For simplicity, in figures, we assume links go in both
directions. However, our protocols permit asymmetric links,
and they guarantee that if there is a path from the source node
to a node i, then node i will be informed about the data. (The
MAC protocol may need to operate in the presence of hidden
nodes and this may require symmetric links though.)

In our algorithms, when we write “broadcast”, we mean
try to get access to the medium and broadcast. When a node
tries, it can receive other broadcasts and updates the state of
the node based on that.

3. A simple protocol
Consider Protocol 1 below, which is often called blind

flooding [3] or simple flooding [4, 5].
Protocol 1. Simple Flooding
Initialization
 KnowsData : Boolean;
 KnowsData := FALSE;
When node requests to disseminate message m:
 KnowsData := TRUE;
 Broadcast m
When a message (called m) is received:
 If KnowsData=TRUE then
 Do nothing
 Else
 KnowsData := TRUE;
 Broadcast m
 End

B A F E C D G

Figure 1. A graph where an intelligent flooding protocol can perform well by using the RSSI (Received Signal Strength Indicator) to

measure the physical distance between nodes and hence “take longer hops”. Consider the case where node A requests to disseminate
data. Node B and node C hear it. They will both broadcast it. If node C has higher priority than node B then node E will hear it. If node
E has higher priority than node D then node E will broadcast it and then all nodes know about the data. This is a good flooding and it
takes 3 turns. If however node B has higher priority than node C then node B will transmit after node A has transmitted. After that,
consider that if node C has higher priority than node D then node C will broadcast. Then node D and node E knows about the data. Let
us consider the case that node D has higher priority than node E then D will broadcast. Then node E or F hear about it and all nodes
know about the data. This is bad flooding and it takes 5 turns for all nodes to know about the data from A.

We can generalize this reasoning as follows. Let node i be connected to nodes [i-r,i+r]. Let us consider the case where node 1 requests
to disseminate data. A good flooding scheme would broadcast this to node r+1 and then to node 2r+1 and then to node 3r+1. After
that, or in the meantime, it will take log r time units to spread this information to all the other nodes. Hence, the time it takes to reach x
nodes is approximately x/r+(log r). If we use an inappropriate flooding scheme however, it may take x time units. This occurs in the
following case. Node 1 broadcasts. Then node 2,…,1+r hears it. However node 2 has the highest priority so it will broadcast next; the
other nodes, node 3…r+1 will not broadcast. Repeating this reasoning gives us that it will take x rounds. We see that for dense
distributed systems (like wireless sensor networks; think of smart dust/smart concrete/smart paint), where r is large, the difference in the
time to inform all nodes can be large.

One can easily show that the algorithm in Protocol 1
may not perform well because one node, which is critical in
order to convey information to another clique of nodes, is
prevented from broadcasting because it has lower priority.
In addition, it can be shown that any broadcast protocol
which does not know the topology can perform as poorly.
We will now discuss one technique which can improve the
performance of flooding.

4. New protocols
Consider Figure 1. We can see that “taking large steps”

improves the performance of flooding protocols. Hence, we
propose the enhancement given by Protocol 2.

Protocol 2. Improved Flooding Protocol
Initialization
 KnowsData : Boolean;
 KnowsData := FALSE;
When node requests to disseminate message m:
 KnowsData := TRUE;
 Broadcast m with e (called m) is received:
 S := read_RSSI();
 If KnowsData =TRUE then
 Do nothing
 Else
 KnowsData := TRUE;
 Broadcast m with priority 1/S.
 End

Here we assume that the transceiver has an RSSI
(Received Signal Strength Indicator). Such an assumption is
true in the Mica motes [6].

Let d(i,j) denote the distance between any two nodes i
and j, and rssi(i,j) be the value of the RSSI in a node j, if
node i broadcasts. We assume that if d(i,j) > d(i,k), then
rssi(i,j) < rssi(i,k). Even a small difference in distance
produce a sufficiently big difference in rssi because the
signal strength decays as the square of the distance in free
space, and in other materials it decays even faster [8].

If CRC is not valid then the line “(When a message
(called m) is received” is not executed. We assume
that if many copies of the same message were received then
S should be the minimum RSSI of these messages.

If a node A broadcasts to two other nodes B and C and
d(A,B)≈d(A,C) then rssi(A,B) ≈ rssi(A,C), and hence A and
B have the same priority. Some protocols (for example [7])
cause collisions when two nodes contend with the same
priority. This problem can be alleviated by replacing (in
Protocol 2): “priority = 1/S” with “priority =
(1/S)*999 + (GetUniqueAddress mod 999)”;
assuming GetUniqueAddress returns a unique address.

5. Reducing redundant broadcasts
One common criticism of flooding is that it causes

redundant broadcasts; that is, a node has heard the data and
all its neighbours have also heard it, but still the node has to
make a broadcast. In the schemes presented so far, this is
still a problem. We can however reduce it.

So far we have assumed that the connectivity is
described by an arbitrary graph. We will now make more
assumptions. We will assume that all nodes have equal
transmission radius r and we assume that nodes are dense;
that is, at every geographic location, there is a node. We
also assume a "flat world" [15], and that Protocol 2 is used.

Now, based on these new assumptions, we can reason as
follows. If a node has heard many broadcasts, do these
broadcasts surround the node and hence have all nodes
already received the data? The answer is: Yes.

Let us consider a node A with a coverage represented as
a circle of radius r (see Figure 2c). Let B denote the node
that first broadcasted so that A heard it. This node B will
cover a sector of 120 degrees of the coverage area of
node A. When node B broadcasts, other nodes hear it.

2

3
4

5

6

7

8

9
10

11

12

1

2 3

4

5

1

 a) c)b)

13

120º

Figure 2. The connectivity is illustrated in Figure 2a. Figure 2b and 2c illustrate broadcast sequences. Because signal strength is used

in prioritization, we know that each hop is large. Hence, we know that if a node hears many broadcasts, they are separated with a long
distance. Consequently, the situation depicted in b) cannot happen.

 Consider now the situation depicted by c). If a node A hears 5 or more broadcasts then it knows that all its neighbours have heard the
message (or will soon hear the message) and hence A does not need to rebroadcast.

Some of these nodes will rebroadcast so A will hear it
again. Let D denote the one of these nodes with the earliest
broadcast. D must be located at a distance of r from B
(otherwise there is another node Q, that transmitted with a
higher priority and then node A would have heard Q instead).
Together, node B and D cover 180 degrees. Continuing this
reasoning we obtain that every new node that node A hears
from adds 60 more degrees of coverage, so finally, if node A
hears 5 broadcasts then 360 degrees of coverage is achieved,
and hence the entire area of node A is covered.

We conclude that if a node has heard 5 or more
broadcasts, then it should not rebroadcast.

6. Related Work
An algorithm for optimal flooding was proposed in [9]

for the case when all radios have the same propagation
radius and propagation is the same in all direction. It covers
an area with hexagons and covers the hexagons with circles.
Unfortunately, this solution requires (i) that the topology is
known and (ii) the exact position of nodes are known.

The broadcast storm problem was explored in [1] with
the assumption that a CSMA (carrier sense multiple access)
medium access control protocol is used. They analyzed the
severity of broadcast storms and found techniques to reduce
the number of redundant rebroadcasts. They propose
(i) location-based schemes, which we rejected in this paper
because they require a location system (for example a GPS
receiver) and (ii) cluster-based schemes (which require local
leader election). They also proposed a scheme similar to our
RSSI based priority scheme but it differs in that they used
RSSI to decide if the message should be rebroadcast, and
we used it to assign priorities. Our approach still guarantees
that the data at the source will reach all nodes whereas the
scheme in [1] does not. Moreover, they discussed that if a
node has received many broadcasts then it should not be
rebroadcasted. They did neither combine it with the RSSI
(as we do), nor offer a threshold when a rebroadcast can be
dropped safely.

A comparison of broadcasting techniques (flooding is
one of them) was made in [4]. Many of these schemes
required that nodes know about its neighbours; this is
achieved with polling, and it is not comparable to our
scheme.

The problem we study has some similarities to multicast
in an area, sometimes called geocast [10]. It is also similar
to Spatiotemporal multicast which sends a message to many
nodes [11]. However, their focus is different from ours.
They send to a subset of all nodes, and we send to all nodes.

The use of flooding to disseminate data has been
claimed [2] to suffer from three problems: (i) implosion (a
node receives the same data from two other nodes), (ii)
overlap (one sensor data is transmitted to a node on many
paths) and (iii) resource blindness (flooding does not adapt
the activity based on the energy given to it). Based on this,
two protocols, SPIN-1 and SPIN-2, are proposed [2]. They
are based on a three-way handshaking where first, nodes
advertise their data, then other nodes can request that data,
and finally the data is transmitted. All interactions are
performed between neighbour nodes. These protocols
disseminate data in an energy-efficient manner. However,
they assume that a node has knowledge about its
neighbours, and the three-way handshake relies on unicast
information, which may be slow.

Other data dissemination protocols (there are many, one
of the earliest ones is directed diffusion [12]) only deliver
the data to a subset of nodes. They typically depend on that
nodes express their interest in certain data. Communication
relies on unicast and requires knowledge of neighbours.

Flooding has been used to study the complex behaviour
of non-idealities in motes [13]. Our protocol could have
been used there. However, in their experiment (and some
other [14, 15]) they found that the radio range is not the
same in all directions. This implies that our rule “if you
heard a message 5 times then you do not need to
rebroadcast it” does not apply.

Flooding protocols can make use of the direction of the
transmission from the sender to the receiver, in order to
improve performance [16]. Naturally, with more
information, better performance can be achieved. If the
entire graph is known, then the optimal flooding algorithm
can be designed for a particular graph. However, this
problem is computationally intractable [17]. For this reason,
two heuristics were proposed. But unfortunately, they
require knowledge of neighbour nodes.

Gossip algorithms generally perform interaction
between pairs of nodes. Although these algorithms have
been claimed to be efficient in that only approximately O(n
log log n) steps needs to be taken before data has been
disseminated to all n nodes, they hide some part of the truth;
they assume that all interactions have the same cost. But
they do not; some paths are long. With our protocol there
are, at most, n broadcasts. With gossiping it could be
n*n*log log n broadcasts because a route may have to
traverse n nodes. They assume a complete graph. Other
gossip algorithms interact on a link between two neighbour
nodes. These perform better but they are still slow [2].

Flooding has also been used in distributed algorithms to
elect a leader. Some of these algorithms [18, 19] to elect a
leader in the synchronous model use the idea that messages
are not transmitted to all neighbouring nodes; only a few of
them. Later some other neighbours are informed and so on.
In this way, the number of messages is reduced at the cost
of an increased “execution time”. This idea is however
impossible when a wireless channel is used due to the
broadcast nature of the wireless medium. Flooding
techniques have also been used when a node should be
elected as a leader of a data object that keeps track of a
physical object to allow other nodes to communicate to the
leader of that physical objects [20].

7. Conclusions and Future work
We have studied data dissemination using wireless

broadcast, and proposed protocols that disseminate data
faster. There are several directions for future work. First, we
want to disseminate data even faster by finding new ways
of using the combination of RSSI, the number of heard
broadcasts and also the time of these broadcasts. Second,
we would like to give some guarantees that nodes are
reached even if there are nodes that move during the
execution of the data dissemination protocol. Third, we
would like to allow two or many source nodes to flood the
network in parallel. These source nodes may have different
deadline requirements until all nodes should know about the
data (let Di denote the deadline from source node Si). This
requires that the priority is not only computed based on
RSSI, but also on Di. Fourth, we are currently extending our
prioritized MAC protocol [7] to function in multihop
networks and we would like to use it in conjunction with
the protocol discussed in this paper.

References
[1] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, "The broadcast
storm problem in a mobile ad hoc network". In Proc. of International
Conference on Mobile Computing and Networking, pp. 151-162, 1999.

[2] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, "Adaptive
protocols for information dissemination in wireless sensor networks". In
Proc. of ACM/IEEE international conference on Mobile computing and
networking, pp. 174 - 185, 1999.

[3] J. Lipman, P. Boustead, J. Chicharo, and J. Judge, "Optimised
Flooding in Ad hoc Networks". In Proc. of Workshop on the Internet,
Telecomm. and Signal Processing, 2003.

[4] B. Williams and T. Camp, "Comparison of broadcasting techniques
for mobile ad hoc networks". In Proc. of International Symposium on
Mobile Ad Hoc Networking & Computing, pp. 194 - 205, 2002.

[5] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, "Flooding for
Reliable Multicast in Multi-Hop Ad Hoc Networks". In Proc. of
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pp. 64-71, 1999.

[6] P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. Jha, "Node
Localization Using Mobile Robots in Delay-Tolerant Sensor Networks",
IEEE Transactions on Mobile Computing, vol. 4, pp. 7, 2005.

[7] B. Andersson and E. Tovar, "Static-Priority Scheduling of Sporadic
Messages on a Wireless Channel". In Proc. of International Conference
on Principles of Distributed Systems, 2005.

[8] G. J. Pottie and W. J. Kaiser, "Wireless integrated network sensors",
Communications of the ACM, vol. 43, 2000, 51 - 58.

[9] V. Paruchuri, A. Duressi, D. Dash, and R. Jain, "Optimal Flooding
Protocols for Routing in Ad Hoc Networks." In Proc. of IEEE Wireless
Communications and Networking Conference, 2003.

[10] X. Jiang and T. Camp, "A Review of Geocasting Protocols for a
Mobile Ad Hoc Network". In Proc. of Grace Hopper Celebration (GHC),
2002.

[11] Q. Huang, C. Lu, and G.-C. Roman, "Spatiotemporal multicast in
sensor networks". In Proc. of International conference on Embedded
networked sensor systems, pp. 205 - 217, 2003.

[12] C. Intanagonwiwat, G. Ramesh, and D. Estrin, "Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Networks".
In Proc. of 6th ACM/IEEE Int. Mobile Computing and Net., pp. 56-67,
2000.

[13] D. Ganesan, D. Estrin, A. Woo, A. Culler, B. Krishnamachari, and B.
Wicker, "Complex Behavior at Scale: An Experimental Study of Low-
Power Wireless Sensor Networks", 2002.

[14] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic, "Impact of
Radio Irregularities on Wireless Sensor Networks". In Proc. of
International Conference on Mobile Systems, Applications, and
Services, 2004.

[15] D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Ellliot,
"Experimental Evaluation of Wireless Simulation Assumptions". In
Proc. of International Workshop on Modelling Analysis and Simulation
of Wireless and Mobile Systems, 2004.

[16] Y.-B. Ko, J.-M. Choi, and J.-H. Kim, "A New Directional Flooding
Protocol for Wireless Sensor Networks", Lecture Notes in Computer
Science, pp. 93-102, 2004.

[17] H. Lim and C. Kim, "Multicast Tree Construction and Flooding in
Wireless Ad Hoc Networks". In Proc. of MSWIM, 2000.

[18] Y. Afek and E. Gafni, "Time and Message Bounds of Election in
Synchronous and Asynchronous Complete Networks". In Proc. of ACM
Symposium on Principles of Distributed Computing, pp. 186-195, 1985.

[19] N. Lynch, Distributed Algorithms: Morgan Kaufmann Pub., 1996.
[20] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J.
Stankovic, "An Entity Maintenance and Connection Service for Sensor
Networks". In Proc. of International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

