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ABSTRACT 

 

 
 

Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation 

according to the smart grid paradigm. SCADA (Super- visory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper 

proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context  

awareness). 

This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management 

considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational 

Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. 

The paper includes a case study using a 114 bus distribution network and load demand based on real data. 
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1. Introduction 

 
Power systems are essential for the modern society due to the 

importance that electricity assumes for the daily life and for the 

countries’ economy and security. Currently, power systems already 

accommodate a substantial penetration of Distributed Generation 

(DG) and operate in competitive environments. In the future, power 

systems will have to deal with large-scale integration of DG and other 

Distributed Energy Resources (DER), such as storage and Electric 

Vehicles (EVs), and must ensure a reliable, secure, and flexible oper- 

ation according to the paradigm of smart grids [1e5]. Other important 

resource that is gaining increasing relevance in power systems and 

electricity markets is Demand Response (DR) which includes all 

intentional electricity consumption pattern modifications by end-use 

customers that are intended to modify the timing, level of instanta- 

neous demand, or total electricity consumption in response to 

changes in the price of electricity over time [6e8]. 

In order to evolve to successful practical implementation of the 

smart grid paradigm, distribution networks require new protection, 

control and operation philosophy to cope with these challenges [9]. 

 

 
 

 
Future power systems will operate using the decentralized paradigm 

and also a re-aggregation philosophy, led by strategic coalitions  [10]. 

Supervisory Control and Data Acquisition (SCADA) system  are 

a vital infrastructure for this evolution [11,12]. SCADA systems, 

traditionally used in larger and higher levels of power systems, to 

transmit measurements, status information, and control signals to 

and from Remote Terminal Units (RTUs) must be changed to play 

their expected functions at the core of the concept of smart grid e 

the grid of the future [13]. Future SCADA must be designed to 

support multi-level decentralized decisions and actions. These are 

the result of smart and strategic behavior of the involved agents 

[10,14], including power suppliers, networks and consumers and 

also of smart components and control. A significant number of 

works is contributing to the diversity of  new characteristics 

required for power system future SCADA systems and also 

evidencing challenges that they must  face. 

The authors in [15] propose a model to detect situations of false 

data injections attacks in power systems and to set protection 

strategies. These attacks increase with the growing dimension of 

SCADA systems in smart grids, including high dissemination of 

wireless networks. The use of Internet and other wireless networks 

is envisaged for demand-side management, implementing resi- 

dential load management in the context of smart homes [16e18]. 

In this paper a conceptual design of an intelligent SCADA, with 

a more decentralized, flexible, and intelligent approach, adaptive to 
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Fig. 1. Example of context occurrence. 

 

 

 

 

the context (context awareness) is used to support energy resource 

management in the context of future distribution systems [9]. Once 

a situation is characterized, data and control options available to 

each entity are redefined according to this context, taking into 

account operation normative and a priori established contracts. 

Intelligent SCADA gives Distribution Network Operator (DNO) access 

to relevant data concerning third-party owned DG, in case of a priori 

contracted situations (e.g. to manage incident situations, to under- 

take service restoration or to manage voltage   profile). 

According to SCADA permissions, DNOs should effectively and 

efficiently manage the available DER [2,3,19,20]. This paper presents 

an optimization tool able to consider the available resources 

(generation resources including DG, storage, demand response, and 

distribution network) and demand requirements in order to mini- 

mize operation costs. The presented tool considers all the relevant 

costs including losses costs, considering AC power flow, providing, as 

a result, the energy resource scheduling along a multi-period time 

horizon defined by the user. Network reconfiguration and load 

curtailment are allowed, according to a priori defined conditions. 

Locational Marginal Prices (LMP) are obtained as a result of the 

optimization process. Based on LMP values, Demand Response (DR) 

programs can be activated on a network or on a local basis. This 

feature allows to effectively address high demand and high 

generation cost situations for which a relatively small decrease in 

demand may have a significant impact lowering operation costs. 

The paper will be organized as follows: after the initial intro- 

ductory section, Section 2 will deal with the proposed model and 

present its mathematical model. The application of the proposed 

model is illustrated with the energy resource management 

undertaken by a DNO. Section 3 will present a case study using 

a 114 bus distribution network, adapted from the 123 buses IEEE 

distribution network. Section 4 presents the most important 

conclusions of  the presented  work. 

 
2. Mathematical model and problem formulation 

 
This section presents the proposed methodology in three sub- 

sections. Sub-section A provides the reader with an explanation of 

the basic concepts used to build the model. Sub-section B presents 

the mathematical representation of the proposed model. Finally, 

sub-section   C   presents   the   mathematical   formulation   of  the 

 
optimization problem that aims at the minimization of the DNO 

operation costs, using the model presented in the two first sub- 

sections. 

 
 

2.1. Basic concepts 

 
The efficient operation of distribution systems, taking into 

account the information concerning the operational network 

context and the contractual agreements between the involved 

players, requires the use of new intelligent and flexible SCADA 

models. This sub-section introduces the basic concepts that allow 

establishing the basis of the proposed SCADA model. 

For better understanding of the model, let us define some terms 

used in the present  work: 

 
• Additional resource e a resource (r) or a partial capacity of 

a specific resource that is contracted to be used in a determined 

context (c); 

• Context e a priori defined network context that can be charac- 

terized by the status of network components (e.g. branches, 

breakers and switches) and/or by other relevant information 

such as the demand level, the storage (e.g. storage units, hydro 

plant reservoirs) status, and the market price. A determined 

context can occur at any period (t) and can last for several periods; 

• State e set of contexts occurring in a determined period (t). 

 
For illustration of these concepts, an example considering four 

contexts is presented below. Fig. 1 presents an example of the 

occurrence of the four hypothetic contexts along a twelve-period 

scenario. The information concerning the occurrence of each 

context (c) is therefore organized in a two-dimension matrix. 

Looking at a column of this matrix, which contains the information 

related to a period (t), it is possible to identify the state of the 

network in that period. 

In this example, ten additional resources can be used by the 

DNO, regarding the permissions established according to the 

existing contracts in the four considered contexts, as seen in Fig. 2. 

Looking at a row of this matrix, which corresponds to a certain 

specific context, it is possible to identify which additional resources 

are available for the DNO use in that context. 

 
 

2.2. Mathematical representation of the model 

 
This sub-section presents the mathematical formulation of the 

proposed SCADA model. 

The occurrence of contexts over time, as defined in the previous 

sub-section, can be represented by a matrix formulated as in 

equation (1) which is hereinafter referred as Ct_matrix. Each line of 

this matrix corresponds to a specific context c. The element ctc,t is 

equal to “1” if the context c occurs in period t, and equal to “0” 

otherwise. N and T are the cardinality of contexts and periods, 

respectively. 

 
 

 
 

  
       

 
 

 



  

 

 

 
Fig. 2.  Example of additional resources availability in each  context. 

 
The unavailable resources in a determined period should also be 

represented in the model. This information is coded in the matrix 

R_unavailable, as seen in equation (5), a matrix with two rows and R 

columns, as many as all the considered resources (i.e. the ones 

owned by the DNO and the third party resources, for which the use, 

under determined  context(s),  is contracted). 

The first row pertains to the unavailability starting period (tr) of 

the situation, and the second one to the expected duration (dr) of 

the unavailability, for each resource  (r). 

 

 
The considered contexts are a priori defined contexts that are of 

 

particular relevance to the network operation. DNOs should define 

the set of relevant contexts and negotiate with other players the 

contractual conditions to use some of their resources that are useful 

for each considered context. Consequently, the contractually 

allowed third party resource use is   contextual. 

Rc_additional_matrix, as seen in equation (2), includes the 

additional (third party) resources that can be used in each 

considered context c. This matrix corresponds to the one presented 

in Fig. 2 for the example in the previous sub-section. The element 

rc,r is equal to “1” if the additional resource r is contracted to be used 

in context c, and “0” otherwise. N and R_ad are the cardinality of 

contexts and additional resources, respectively. 

This matrix is permanently updated using the information about 

all the considered resources. For a specific period t, tr is: 

 
• tr :s t, if the resource r is already unavailable; 

• tr 2' t, if resource r is expected to be unavailable, starting in 

period tr; 

• zero if there is no information concerning a confirmed or ex- 

pected unavailability situation for resource r. 

 
A third row can be considered, registering a confidence measure 

concerning the information registered in rows 1 and 2, i.e., the third 

line would include the probability of the information about 

resource  r  being  true. This probability  is especially important  for 
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R_power_matrix, as seen in equation (3), registers the informa- 

tion considering the maximum available power for each resource 

(matrix row) in each period (matrix column, from t ¼ 1 to T). 

resources for which tr is set to zero, although there is no reliable 

information about the resource state. 

The following sets are also used in the proposed model: 
 

 

 

  
 

 

 
 

 

R_cost_matrix, as seen in equation (4), registers the information 

considering the cost of each resource (matrix row) in each period 

(matrix column, from t ¼ 1 to T). 

• 

R_additional e set of all additional resources; 

• R_additionalc e Additional resources available in context c, 

i.e.   the   additional   resources   available   in   context   c      as 



b 

b 

 
 

  

 

indicated in C_matrix (only the resources which corre- 

sponding elements assume the value “1” in row c are 

considered); 

• R_additionalt e Additional resources usable in period t; 

• R_base e Base resources (the ones owned by the DNO) that can 

be used in any context or period; 

• R_global e set of all the resources including the base resources 

 
 

 

 
R_globalt can be defined as the relative complement of 

R_unavailablet in R_global (also known as the set-theoretic differ- 

ence of R_global and R_unavailablet), as expressed in equation (11). 

and the additional resources; 

• R_globalt e set of resources that can be used in period t, 
  

according to the state of the system in that period; 

• R_opt e set of resources available for operation in period t; 

• Rt e usable resources in period t; 

• R_unavailablet e set of resources unavailable in period t for 

which the following cardinality values are relevant: 

• N_DG e cardinality of base resources of type DG (Distributed 

Generation); 

• N_LC_1 e cardinality of base resources of type LC_1; 

• N_storage e cardinality of base resources of type storage; 

• R e cardinality of R_global. 

 
In what concerns the temporal variables, t is used as a single 

period index. 

R_base can be  obtained  as  the  gathering  of  the  base 

resources sets concerning the considered resource types, as 

expressed in equation (6). For  this  formulation,  we  are 

considering the following types of base resources: distributed 

generation (DG) units, storage units and one load curtailment 

program (LC_1). External energy  suppliers  are  also  considered 

as  base resources. 

where R_unavailablet is derived from the matrix R_unavailable, 

updated for period t. 

Using the above defined sets, the set of the usable resources in 

period t, Rt, can be expressed as in equation (12). 

  

Out of the resources in set Rt, only the ones that are available 

(R_opt) in the considered period (t) can be used, as expressed in 

equation (13). 
 

  

2.3. Optimization problem 

 
The problem employed in this paper to illustrate the use of the 

proposed model concerns the minimization of the operation costs 

of the DNO, as expressed in equation (14). 

Additionally to the variables already defined in sub-section B, 

the following variables are also used in the mathematical formu- 

lation  of  this problem: 

 
 

 

R  base  ¼  R  base  DGWR  base  StorageWR  base  LC  1WR  base    Supplier (6) 
 

 

 

R_additional can be obtained as the gathering of the additional 

resources sets concerning the considered contexts, as expressed in 

equation (7). 

• 

qb,t e Voltage angle in bus b in period t; 

• qk,t e Voltage angle in bus k in period t; 

• qmax e Maximum voltage angle in bus b; 
min 

• qb e Minimum voltage angle in bus b; 
 

 

 

We are considering the following types of additional resources: 

distributed generation (DG) units, storage units and additional load 

curtailment programs. Additional external energy suppliers are also 

considered. 

R_global  can  be  obtained  as  the  gathering  of  R_base    and 

R_additional, as expressed in equation (8). 

 

 

 

The use of the proposed model requires the definition of sets 

with similar meaning as the ones referred above but dynamically 

updated for each period t. 

Let us consider an auxiliary set Cc,t as seen in equation (9), which 

equals R_global or the empty set, respectively if the context c occurs 

or not in period t. 

 

• hc(r1) e Storage r1 charge efficiency; 

• hd(r1) e Storage r1 discharge efficiency; 

• Dt e Time period interval; 

• cr,t e Cost of resource r in period t; 

• cEGE(r,t) e Cost of excess active power generated by resource r in 

period t; 

• cNSE(r,t) e Cost of active power not supplied to the load L in 

period t; 

• ybk e Admittance of the line that connects bus b and k; 

• yShunt_b e Shunt admittance of bus b; 

• ECapacity(r1) e Storage r1 energy limit; 

• EStored(r1,t) e Active energy stored in storage unit r1 in period t; 

• EStored(r1,t-1) e Active energy stored in storage unit r1 in period 

t - 1; 

• Nb e Total number of bus; 

• NL e Total number of loads; 

• Pr,t e Scheduled active power generation of resource r in period t; 

• Pbr,t e Scheduled active power generation of resource r in bus b, 

in period t; 

• Pcharge(r1,t) e Power charge in storage unit r1 in period t; 

• PchargeLimit(r1,t) e Power charge limit in storage unit r1 in period t; 
b 

 • P charge(r1,t) e Power charge in storage unit r1 in bus b, in period t; 

• Plimit(r,t) e Maximum active power generation of resource r in 

where cc,t  are elements of C_matrix. 

R_additionalt can be defined as the gathering of this auxiliary set 

with the set of additional resources that can be used in each context 

c, R_additionalc, as expressed in equation (10). 

period t; 

• PEGE(r,t) e Excess active power generated by resource r in period t; 

• P EGE(r,t) e Excess active power generated by resource r in bus b, 

in period t; 
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Fig. 3.  Case study 114  bus distribution network. 

 
b 

Load(r,t) e Active power demand of load L in bus b, in period t; • R_stt e Storage units resources in period t; max 

• PNSE(L,t) e Active power not supplied to load L in period t; • Sbk e Maximum apparent power flow in the line that connects 
b 

NSE(L,t) t 
e Active power not supplied  to  load L  in bus  b,  in bus b and k; 

• Vb,t e Voltage magnitude of bus b, in period t; 
period ;  

max 

• Qr,t e Reactive power generation of resource r in period t; 

• Qbr,t e Reactive power generation of resource r in bus b, in 

• Vb 
min 

• b 

e Maximum voltage magnitude in bus b; 

e Minimum voltage magnitude in bus b; 

period t; 

• Qlimit(r,t) e Maximum reactive power generation of resource r in 

period t; 

• Xr1,t e Binary variable of storage unit r1 in period t, related to 

power discharge; 

• Yr1,t e Binary variable of storage unit r1 in period t, related to 
b 

Load(r,t) e Reactive power demand of load L in bus b, in  period power charge. 

t; 
b 

NSE(L,t) 

 
e Reactive power not supplied to the load L in bus b, in 

 
The presented formulation is generic for a specified time   period 

period t; (from period t ¼ 1 to t ¼ T). 

 

 

 

 

Fig. 4.  Demand for the 24-h  simulation. 



  

 

 

 
Fig. 5.  Base resources for the first day  simulation. 

 
 

 

 

 

 

 
 

 
 

 

 

This problem is a Mixed-Integer Non Linear Programming 

(MINLP) problem.  All  the  involved  costs  are  represented  by 

a  linear  cost  function.  Beyond  the  remuneration  of   generation sources,   energy  acquisition   to   external   suppliers,   the storage 

 

 

   

 

 

discharge, and demand response are also included (cr,t in equa- 

tion (14)). The penalties include non-supplied energy (cNSE(r,t)) 

 

 

and the excess generated energy (cEGE(r,t))  costs. 

The efficient management of the  available  energy 

resources requires a multi-period optimization. The minimi- 

zation of this objective function is subjected to the following 

constraints: 

  

 
• The network reactive power balance in each bus b and each 

period t; 

• The network active power balance in each bus b and each 

period t; 

 

 
 

 

 

Fig. 6. Wind generation in the considered scenarios. 



  

Table 1 

Case study contexts. 

Table 2 

Additional resources in each context. 
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- Discharge limit for each storage unit considering the battery 

discharge rate; 
 

 
 
 

 

 

• Bus voltage magnitude in equation (17) and angle limits in 

equation (18); 

   
 

- Charge limit for each storage unit considering the battery 
 charge rate; 

 
  

 
  

   

 
• Line thermal limits; 

  

 
 

- Storage unit discharge limit considering the storage balance; 

 ( 
*    *     

  
 
 

       
 

• Maximum active in equation (20) and reactive in equation (21) 

resources limit in each period t; 
 

- Storage charge limit considering the capacity and previous 

charge status; 

  

 
 

 
 

   

 
- Storage capacity limit; 

 
 

 

• Storage units resources needs specific constraints: 
- Storage charge and discharge are not simultaneous;   

 

 
  

 
 

 

  

The above formulation has been implemented in GAMS [21]. 

  3. Case study 
 

The case study presented in this section is based on a 114 bus 

- Battery balance for each storage unit: distribution    network,    adapted    from    the    123    buses   IEEE 

 
 

 

 
   

 
 

 
 



  

 

Table 3 

Additional resources costs in each context (m.u.). 
 

 

 

 

 

 

 
distribution network [22]. The considered network includes 9 

storage units, 97 DG units (Fig. 3), and 84 loads which consumer 

profiles for the considered 24-h period are based on real data from 

the Portuguese distribution utility as presented in [23]. In Fig. 3, 

the contracted additional resources are identified by the large 

orange circles. 

The proposed methodology is applied to three scenarios, 

which take place in three distinct days. The first scenario 

considers abnormal high peak demand on periods 20 and 21. The 

second scenario considers the inexistence of wind generation in 

periods 10, 11, 12 and 13. The third scenario considers an incident 

state. 

The resulting load diagrams for the three scenarios  considered 

in the case study are presented in Fig. 4. The base resources for each 

period of the first day are presented in Fig.  5. 

For the two other days, the base resources are considered the 

same, with the exception of wind generation maximum limit, 

which is represented in Fig. 6. 

Tables 1e3 represent the information in matrixes Ct_matrix (1), 

Rc_additional_matrix (2), R_power_matrix (3), and R_cost_matrix (4). 

The black squares represent the variables equal to 1 and the white 

squares the variables equal to 0. The grey squares represent the 

resources that are unavailable, according to equation (5). Table 1 

presents the contexts that occur in each period of the case study. 

Scenario 1 corresponds to the successive occurrence of contexts 1 

(in periods 20 and 21) and 2 (in period 22). Scenario 2 corresponds 

to context 3 in periods 11 and 12. Finally, scenario 3 corresponds to 

the successive occurrence of contexts 4 (in periods 16, 17 and 18), 5 

(in periods 19 and 20), and 6 (in periods 21 and 22). 

Table 2 includes the information about all the contracted addi- 

tional resources in each context. In the third row, it can be seen the 

type of each resource. Each resource type can be identified by the 

following initials: Fuel cell (FC); Hydro units (H), Storage units (St); 

Suppliers (Sp); Load Curtailment (LC). 

Load curtailment resources correspond to three demand 

response programs. The first (LC_1) is a Direct Load Control (DLC) 

that the DNO can use as a base resource. The additional demand 

response resources (LC_2-1, LC_2-2 and LC_3-1) are included in 

Table 2. LC_2-1 and LC_2-2 are LMP-triggered demand response 

programs, inspired on [24], with two successive steps. These 

programs may be activated when the Locational Marginal Price 

(LMP) value is above an a priori defined LMP limit. LC_3-1 is a DLC 

program. Several additional resources can correspond to partial 

uses of the same physical resource, which are independently con- 

tracted. For example, hydro unit 1 is represented by three resources 

(r5, r6, r7). 

The last row of Table 2 presents the maximum contracted power 

for each resource. In the case of LC_3-1, this value varies throughout 

the day according to the demand in each period and as a mean 

value equal to 20 percent. 

Table 3 includes the information about the costs of the con- 

tracted additional resources in each context. 

 

 

 

 

 

Fig. 7.  Additional energy resource used in the three   scenarios. 



  

 

 

 
Fig. 8.  Energy resource scheduling for scenario  1. 

 
Fig. 7 shows a summary of the additional energy resource 

scheduling for the three considered scenarios. The obtained 

scheduling is the result of the minimization of DNO costs, consid- 

ering all the available resources (base and additional contracted 

resources) in each period. The next sub-sections present additional 

details for each scenario. 

 
 

3.1. Scenario 1 

 
This scenario concerns a high demand profile, with peak values 

over 25 MW in periods 20 and 21. In this context, DNO base 

resources are not enough to supply all the demand, being necessary 

to use additional contracted resources. The DNO can activate the 

contracts of four fuel cells, the first step of three storage units, and 

LC_2-1 and LC_2-2 for contexts 1 and 2. In context 1, it can also use 

the second step of the three storage   units. 

Normally external suppliers and hydro units are the first choices 

to supply the demand. However, in the present scenario, the water 

reserves in the dam reservoirs are lower and the supplier price is 

higher than the fuel cells and storage units’ prices. Although the 

DNO has some reserve demand response base resources, it prefers 

to keep this resource as a reserve and uses additional resources to 

fully supply the  demand. 

Fig. 8 shows the results of the energy resource management for 

this scenario. 

3.2. Scenario 2 

 
In Scenario 2 the generation of wind farms is low all day long. In 

periods 10 to 12 the wind generation is zero. The main problem is 

that the forecasted generation is higher than the actual one, being 

necessary to use additional resources. 

In the context that corresponds to this scenario (context 3), the 

DNO has contracts that allow the use of two steps of two hydro 

units and LC_2-1 and LC_2-2. As a result of the optimization 

process, the DNO uses two steps of H1 and the first step of H2 as 

additional resources to compensate the lack of wind generation. 

Fig. 9 shows the results of the energy resource management for 

scenario 2. 

 
 

3.3. Scenario 3 

 
Scenario 3 simulates a situation of a double contingency. The 

first fault occurs in the bus 108 substation. This substation is out of 

service between periods 16 and 20, and it was scheduled to supply 

3 MWh in each of these periods. The second fault occurs in the 

MSW generator connected to bus 76, between periods 19 and 22. 

This generator should produce 1.2 MWh in each of these periods. In 

periods 19 and 20 both resources are out of service simultaneously. 

The impact of this double contingency is very significant because it 

represents the lack of about 15% of the total generation   capacity. 

 
 

 

 

Fig. 9.  Energy resource scheduling for scenario  2. 



  

 

 

 
Fig. 10.  Energy resource scheduling for scenario  3. 

 

 

In practice we have three different contexts in this scenario. The 

first context (context 4) occurs between periods 16 and 18, in which 

the substation is out of service. The second context (context 5) 

occurs in periods 19 and 20, in which the substation and generator 

76 are out of service. The third context (context 6) occurs in periods 

21 and 22, in which generator 76 is out of    service. 

During the periods in which the double contingency occurs, it is 

necessary to use all additional contracted resources and also DLC 

demand response program corresponding to base resource LC_1. As 

the resulting LMP value is higher than the LC_2-1 trigger value 

(3 m.u./kWh), this program is activated. The actual high LMP value 

is due to the existence of non supplied priority loads. 

Fig. 10 shows the results of the energy resource management for 

scenario 3. 

For operational purposes, a transient stability analysis is 

necessary to assess the system stability state. In the situations for 

which the system is not stable, the use of ancillary services should 

be scheduled for the short-term time scale, in order to avoid load 

shedding. 

 
 

4. Conclusions 

 
In the context of power system operation with intensive use of 

Distributed Energy Resources (DER) and in a competitive environ- 

ment, an adequate management of the available energy resources is 

crucial. 

In order to enable efficient operation, SCADA systems should 

evidence context awareness, allowing each player to access its own 

and also third party resources contracted for each specific opera- 

tion context. 

This paper has proposed a contextual energy resource 

management methodology, which is able to model contracted third 

party resource use. Available resources are dynamically updated 

according to eventually occurred faults, to the operation context 

and to the existing  contracts. 

The application of the proposed model is illustrated with the 

optimization of a DNO operation costs. The paper includes a case 

study that considers a 114 bus distribution network. The DNO 

makes use of its own resources which include Distributed Gener- 

ation, Storage units, Load Curtailment and external suppliers. It can 

also use additional contracted resources, according to each opera- 

tion context, including Real Time Demand Response Programs 

based on LMP triggered events. 
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