
BabeLO—An Extensible Converter
of Programming Exercises Formats

Ricardo Queirós and José Paulo Leal

Abstract—In the last two decades, there was a proliferation of programming exercise formats that hinders interoperability in automatic

assessment. In the lack of a widely accepted standard, a pragmatic solution is to convert content among the existing formats. BabeLO

is a programming exercise converter providing services to a network of heterogeneous e-learning systems such as contest

management systems, programming exercise authoring tools, evaluation engines and repositories of learning objects. Its main feature

is the use of a pivotal format to achieve greater extensibility. This approach simplifies the extension to other formats, just requiring the

conversion to and from the pivotal format. This paper starts with an analysis of programming exercise formats representative of the

existing diversity. This analysis sets the context for the proposed approach to exercise conversion and to the description of the pivotal

data format. The abstract service definition is the basis for the design of BabeLO, its components and web service interface. This paper

includes a report on the use of BabeLO in two concrete scenarios: to relocate exercises to a different repository, and to use an

evaluation engine in a network of heterogeneous systems.

Index Terms—Interoperability, web services, REST, programming exercise formats, e-learning

Ç

1 INTRODUCTION

ASSESSMENT plays a vital role in learning. However,
automatic assessment of exercises other than multiple

choice can be a rather a complex task. This is certainly the
case with assessment of computer programs in two distinct
learning contexts: curricular and competitive learning.

Introductory programming courses are part of the
curricula of many engineering and sciences programs.
These courses rely on programming exercises, assignments,
and practical examinations, to consolidate knowledge and
evaluate students. The enrolment in these courses is
usually very high, resulting in a great workload for the
faculty and teaching assistants. In this context, the
availability of many programming exercises from different
sources is of great importance.

Competitive learning relies on the competitiveness of
students to increase their programming skills. This is the
common goal of several programming contests where
students at different levels compete such as the Interna-
tional Olympiad in Informatics (IOI), for secondary school
students; the ACM International Collegiate Programming
Contests (ICPC), for university students; and the IEEE-
Xtreme, for IEEE student members. Contest management
systems and online judges where students train rely also on
automatic assessment. In this context, there is also the need
for new programming problems that may come from
different systems. Also, competitive learning is usually a

source or programming exercises for curricular learning
that are recast as learning objects.

In both contexts, the lack of a standard—or at least a
widely used format—creates a modern Babel tower made
of learning objects, of assessment items that cannot be
shared among automatic assessment systems. These sys-
tems whose interoperability is hindered by the lack of a
common format include contest management systems,
evaluation engines (EE), repositories of learning objects,
and authoring tools. A pragmatical approach to remedy
this problem is to create a service to convert among existing
formats. A kind of translation service specialized in
programming problems formats.

To convert programming exercises on-the-fly among the
most used formats is the purpose of the BabeLO—a service
to cope with the existing Babel of Learning Object formats
for programming exercises. BabeLO was designed as a
service to act as a middleware in a network of systems
typically used in automatic assessment of programs. It
provides support for multiple exercise formats and can be
used by 1) evaluation engines to assess exercises regardless
of its format; 2) repositories to import exercises from various
sources; and 3) authoring systems to create exercises in
multiple formats or based on exercises from other sources.

The remainder of this paper is organized as follows:
Section 2 analyses several of existing formats to highlight
both their differences and their similar features. Based on
this analysis, Section 3 presents an approach to extensible
format conversion and details the features of Programming
Exercises Interoperability Language (PExIL)—the pivotal
format in which the conversion is based—and the service
functions. Section 4 provides details on the design and
implementation of BabeLO, including the service API and
the interfaces required to extend the conversion to a new
format. To evaluate the effectiveness and efficiency of this
approach, this paper reports on two actual uses of BabeLO:

38 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

. R. Queirós is with the CRACS and INESC-Porto LA, Faculty of Sciences,
University of Porto, and DI-ESEIG/IPP, Rua D. Sancho I. 981, Vila do
Conde, 4480-876 Porto, Portugal. E-mail: ricardo.queiros@eu.ipp.pt.

. J.P. Leal is with the CRACS and INESC-Porto LA, Faculty of Sciences,
University of Porto, DCC - R. do Campo Alegre, 1021/1055, 4169-007
Porto, Portugal. E-mail: zp@dcc.fc.up.pt.

Manuscript received 7 May 2012; revised 25 July 2012; accepted 6 Oct 2012;
published online 15 Oct. 2012.
For information on obtaining reprints of this article, please send e-mail to:
lt@computer.org, and reference IEEECS Log Number TLT-2012-05-0066.
Digital Object Identifier no. 10.1109/TLT.2012.21.

1939-1382/13/$31.00 � 2013 IEEE Published by the IEEE CS & ES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1) to relocate exercises to a different repository and 2) to use
an evaluation engine in a network of heterogeneous systems.
Section 5 summarizes the main contributions of this research
and plans futures developments of this service.

2 PROGRAMMING EXERCISES FORMATS

The increasing popularity of programming contests world-
wide resulted in the creation of several contest management
systems. At the same time, Computer Science courses use
programming exercises to encourage the practice on
programming. The interoperability between these type of
systems is becoming a topic of interest in the scientific
community. In order to address these interoperability issues
several problem formats were developed. The next sections
details four formats: CATS, FreeProblemSet (FPS), Mooshak
Exchange Format (MEF) and Peach Exchange Format (PEF).
Then, their features are synthesize based on a specific
exercises format expressiveness model.

2.1 CATS

CATS1 is a format for programming assignments [1]. The
format encoded in XML describes the conditions of the
problem and a set of files with additional tests, test
programs, etc. All these files are wrapped up in a ZIP file
to facilitate deployment. A typical XML file contains the
description of

1. the problem statement codified in the Simple Text
Markup Language (STML) format—a simplified
subset of HTML,

2. the format of input and output files and samples,
3. the restrictions on the input format, and
4. references for external resources such as tests

generators, special checkers, plug-ins and solution
programs.

2.2 FreeProblemSet

Freeproblemset2 is a transport file format for the storage of
all information about problems. It aims to provide free
problems sets for managers of ACM/ICPC Online Jugdes
by transporting data from one judge to another. The format
uses XML to formalize the description of a programming
problem. It includes information on problem, test data,
special judger(optional) and answer(optional). Currently,
the FPS format is supported by several online judge
systems including HUSTOJ,3 ACM-Server,4 and Woj-land
(OJ from Wuhan University).5

2.3 Mooshak Exchange Format

Mooshak6 is a web-based competitive learning system
originally developed for managing programming contests
over the Internet [2]. Recently, it was upgraded to expose the
evaluation functions as services. These services are expected
to integrate in heterogeneous networks of e-learning types
of systems, including the learning management systems

(LMSs), integrated development environments (IDEs), and
learning objects repositories (LORs) [3]. Despite the context
where it is used, Mooshak has its own internal format to
describe problems called Mooshak Exchange Format. MEF
includes a XML manifest file referring several types of
resources such as problem statements (e.g., PDF, HTML),
image files, input/output test files, correctors (static and
dynamic) and solution programs. The manifest also allows
the inclusion of feedback and points associated to each test.

Currently, Mooshak is being used in several Universities
worldwide to support learning activity. In the competitive
context, it was used as the official evaluation system for the
IEEE programming contests for some years.

2.4 Peach Exchange Format

Peach7 is a system for the presentation, collection, storage,
management, and evaluation (automated and/or manual)
of assignments. The Peach exchange format [4] is a specific
format for programming task packages used in Peach.
Peach task packages are stored in a directory tree with a
predefined structure. Currently, Peach is being used by the
Eindhoven University of Technology.8

2.5 Synthesis

Several approaches can be found in literature [4], [1], [5] to
evaluate the expressiveness of programming assignments
formats. This section synthesizes the formats described
previously according to the model proposed by Verhoeff.
This model describes conceptually the notion of a task
package as an unit for collecting, storing, archiving, and
exchanging all information concerning with a programming
task. The choice of the Verhoeff model over the alternatives
is due to its more comprehensive coverage of the required
features. This model organizes the programming exercise
data in five facets:

1. Textual information—programming task human-
readable texts,

2. Data files—source files and test data,
3. Configuration and recommendation parameters—

resource limits,
4. Tools—generic and task-specific tools, and
5. Metadata—data to foster the exercises discovery

among systems.

The extual information facet (Table 1) accommodates all
the information (or pointers to such information) that the
exercise author wants to offer to students or contestants

QUEIR �OS AND LEAL: BABELO—AN EXTENSIBLE CONVERTER OF PROGRAMMING EXERCISES FORMATS 39

1. http://imcs.dvgu.ru/cats/docs/format.html.
2. http://code.google.com/p/freeproblemset/.
3. http://code.google.com/p/hustoj/.
4. http://code.google.com/p/acm-server/.
5. http://code.google.com/p/woj-land/.
6. http://mooshak.dcc.fc.up.pt/.

7. http://peach3.nl.
8. http://peach.win.tue.nl/.

TABLE 1
Textual Information Facet

about the exercise. It includes, for instance, the exercise
challenge, background information, grading information
and input/output samples. These texts may be available in
several languages and formatted in plain text or other open
format standards such as HTML or LATEX. Since this data
are encoded in flexible text data formats, they can be
transformed into various (open) presentation formats such
as PDF. Other texts (e.g., grading information and samples)
should ideally be generated from the evaluation data.

Besides human-readable texts, a programming exercise
can also include several other files, in both text or binary
format. The data files facet (Table 2) covers the following
files: program and skeleton source files (ideally with
support for multiple programming languages), input/
output test data (ideally with support for grouping and
multiple visibility mode), feedback files associated with a
specific test case and others files.

The description of a programming exercise can also
include parameters related with the submission, compila-
tion, and execution of the student attempts to solve the
exercise. These parameters can be organized in terms of
configuration and recommendation (Table 3). The former deals
with the configuration of compiler and linkers such as the
compilation line of source files and associated parameters.
The latter includes recommendations usually expressed in
terms of resource limits such as the size and number of lines
of a submission, compilation and execution time and
memory limits. These recommendations depend on the
actual platform used for evaluation runs. Thus, platform
information should be associated for a more accuracy control.

When creating, solving, or evaluating an exercise, several
software tools are needed such as editors, compilers,
libraries, linkers, test, and feedback generators, input/
output format checkers, evaluators, etc. The tools facet
(Table 4) covers the support of the formats either by
referencing these tools or by formalizing data that can be
used as input for these tools.

The metadata facet (Table 5) comprises all the data that
provide useful information on the exercise for classification
and discovery purposes. There are several types of

metadata that can be included in a programming exercise,
such as exercise metadata (exercise type, keywords,
difficulty level), authors metadata (name, contact), event
metadata (name, type, local, date, number of participants,
etc.), solver metadata (platform, operating system, etc.) and
management metadata (status of development, version
information, etc.).

This study confirms the disparity of programming
exercise formats highlighting both their differences and
their similar features. This heterogeneity hinders the
interoperability among the typical systems found on the
automatic evaluation of exercises. Rather than attempting to
harmonize the various specifications, a pragmatic solution
is to provide a service for exercises formats conversion. The
next section presents an approach to extensible format
conversion and details the features of PExIL—the pivotal
format in which the conversion is based—and of an abstract
view of the conversion service functions.

3 EXERCISE FORMAT CONVERSION

Data conversion is the conversion of computer data from
one format to another. Data conversion can typically occur
based on two approaches: direct or pivotal [6].

In the direct conversion, the converter receives the input
format and apply transformations according to the output
format. One apt example is the transcoder9 developed by JISC
Centre for Educational Technology and Interoperability
Standards (JISC CETIS) that enables the conversion between
e-learning content packages. It addresses conversions be-
tween the most common e-learning content formats in use
such as IMS Content Packaging (IMS CP), Sharable Content
Object Reference Model (SCORM), and IMS Common
Cartridge (IMS CC).

The pivotal conversion is based on an intermediate
format allowing any source format to be converted to its
target. Compared with the previous approach, this pivotal
encoding approach provides several advantages such as

40 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

TABLE 2
Data Files Facet

TABLE 3
Configuration and Recommendation Parameters Facet

TABLE 4
Tools Facet

TABLE 5
Metadata Facet

9. http://purl.oclc.org/NET/transcoder.

manageability. A data format converter would have to
support a huge number of mappings for all the permuta-
tions of the data formats supported. Using a intermediate
format scales down this number because only one mapping
is needed for each format supported. Pivotal conversion
is often used in several areas. For instance, Office applica-
tions use the OpenDocument file format as a pivot for the
conversion between office file formats. Despite its use, the
pivotal approach is also subject of criticism [6] such as
the augment of noise due to the propagation of the
translation errors and inaccuracy or lost of data due to the
conversion between formats that are conceptually different.

3.1 Approach

Based on the current conversion approaches, it was decided
to use the pivotal approach regarding the exercise formats
conversion.

Using a pivot format reduces drastically, the number of
permutations needed from n� ðn� 1Þ to 2� n, where n is
the number of formats supported.

Since one of the design requirements of the converter is
its extensibility, it is important to simplify the support for
new formats.

3.2 PExIL—a Pivot Exercise Format

The PExIL [7] is a XML dialect that aims to consolidate all
the data required in the programming exercise life cycle.

The life cycle comprises several phases. In the creation
phase the content author should have the means to
automatically create some of the resources (assets) related
with the programming exercise such as the exercise
description and test cases and the possibility to package
and distribute them in a standard format across all the
compatible systems (e.g., learning management systems,
learning objects repositories. In the selection phase, the
teacher must be able to search for a programming exercise
based on its metadata from a repository of learning objects
and store a reference to it in a learning management system.
In the presentation phase, the student must be able to choose
the exercise description in its native language and a proper

format (e.g., HTML, PDF). In the solving phase, the learner
should have the possibility to use test cases to test his
attempt to solve the exercise and the possibility to
automatically generate new ones. In the evaluation phase,
the evaluation engine should receive specialized metadata
to properly evaluate the learner’s attempt and return
enlightening feedback.

The PExIL definition is formalized through the creation
of a XML Schema depicted in Fig. 1. The schema comprises
three groups of elements:

. Textual—elements with general information about
the exercise to be presented to the learner (e.g., title,
date, challenge).

. Specification—elements with a set of restrictions that
can be used for generating specialized resources
(e.g., test cases, feedback).

. Programs—elements with references to programs as
external resources (e.g., solution program, correc-
tors) and metadata about those resources (e.g.,
compilation, execution line, hints).

The expressiveness of PExIL was validated according to
the multifacet model proposed by Verhoeff. Table 6 shows
the PExIL elements coverage.

Textual elements group (G1) in PExIL can be used in
several phases of the programming exercise life cycle: in the
selection phase as exercise metadata to aid discoverability
and to facilitate the interoperability among systems (e.g.,
LMS, IDE); in the presentation phase as content to be
present to the learner (e.g., exercise description); in the

QUEIR �OS AND LEAL: BABELO—AN EXTENSIBLE CONVERTER OF PROGRAMMING EXERCISES FORMATS 41

Fig. 1. PExIL data model.

TABLE 6
PExIL Coverage on the Verhoeff Model

solving phase, as skeleton code to be included in the
student’s project solution.

Specification elements group (G2) in PExIL can be used in
several phases of the programming exercise life cycle by
1) the content author to automatically generate an input and
output test example to be included on the exercise
description for presentation purposes, 2) the learner to
automatically generate new test cases to validate his
attempt, and 3) the Evaluation Engine to evaluate a
submission using the test cases.

Program elements group (G3) contains references to
program source files as external resources (e.g., solution
program, correctors) and metadata about those resources
(e.g., compilation, execution line, hints). These resources
are used mostly in the evaluation phase of the program-
ming exercise life cycle to allow the Evaluation Engine to
produce an evaluation report of a students’ attempt to solve
an exercise.

This analysis asserts the total coverage of PExIL elements
based on the Verhoeff model and guarantees PExIL as a
good candidate to act as a pivot format for a conversion
service of programming exercises formats. More details
about PExIL can be found in literature [7].

3.3 Abstract Functions

This section describes the generic capabilities of a Con-
verter service expressed in terms of their behaviors,
without prescribing how to make them operational. A
service of this genre is responsible for the conversion of
programming exercises formats. It supports five functions:
GetFormats, Convert, ConvertSets, ConvertFrom-
Set, and ConvertToSet. The following section details
the five service functions.

3.3.1 The GetFormats Function

The GetFormats function provides the requester with a
list of all the formats supported by the service. In order to
support a format, the service must implement the format
conversion from and to the pivotal format. In this function,
the request may omit the parameter or have one represent-
ing the input format. In the former, the response returns a
list of all formats of the converter. In the latter, the response
includes only the formats that can be converted from the
input format given as a parameter. In the response, each
format is described by its name and a list of formats that
can be used as outputs and its corresponding URL paths.
This will allow client systems to automate the conversion
request based on the available formats returned by the
GetFormats function.

3.3.2 The Convert Function

The Convert function performs the conversion of a given
programming exercise from an input format to an output
format. The function includes three parameters: 1) the
format of the exercise to convert, 2) the conversion output
format, and 3) a reference (URL based) of the exercise to
convert. The function returns an archive with its contents
complying with the output format.

3.3.3 The ConvertSets Function

The ConvertSets function converts a set of programming
exercises from an input format to an output format. This

function is useful with formats that deal only with exercise
sets, or when they are convenient for a particular task. In a
competitive setting, a contest manager may want to feed a
new contest based on a problem set of a existing
programming contest. In a more pedagogical setting, a
teacher may want to use in the classroom a set of problems
from an external source. In both cases, the request
parameters are similar to the previous function. The
function returns an archive with a set of exercises
complying the given output format.

3.3.4 The ConvertFromSet Function

The ConvertFromSet function converts a single pro-
gramming exercise from a set of exercises described with
the input format to a single exercise in the output format.
The exercise to convert is given by its position within the
set as an additional parameter. The function returns an
archive with a single exercise complying the given output
format.

3.3.5 The ConvertToSet Function

The ConvertToSet function converts a single program-
ming exercise complying with the input format to a single
collection in the output format. The function returns an
archive containing a collection with only one exercise in the
given output format.

4 BABELO

This section details the design and implementation of
BabeLO on the Tomcat servlet container. Fig. 2 shows the
architecture of the BabeLO service described by an UML
component diagram.

In order to allow client systems to use the conversion
features of BabeLO, its core functions are exposed as
services using a REST web service interface. The REST
implementation uses Jersey10—the reference implementa-
tion of JAX-RS (the Java API for RESTful web services). In
Table 7, each function is associated with the corresponding
operation in the REST flavor.

42 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 2. BabeLO architecture.

10. http://jersey.java.net.

The GetFormats function returns a list of the formats
supported by the service. The syntax of the GET HTTP
request is

GET=convert½=inputFormat� > BRL:

The response is formalized using the BabeLO Response
Language (BRL). The Convert function converts a given
programming exercise from an input format to an output
format. The syntax of the GET HTTP request is

GET=convert=in=out=ex > Archive:

The function includes three parameters: in—the format of
the exercise to convert, out—the conversion output format,
ex—reference (URL based) of the exercise to convert. The
function returns an archive with its contents complying the
output format.

Fig. 3 shows a typical conversion between two formats:
Mooshak and FPS. BabeLO uses the convertFrom()

method of MooshakConverter to transform the program-
ming exercise from mooshak format to the PExIL format.
Then, it is uses the convertTo() method of the
FPSConverter to transform the exercise from the PExiL
format to the FPS format.

Being an extensible converter, BabeLO can be augmented
with other classes implementing a specific Java interface
defining the convertFrom() and convertTo() methods
mentioned above, as well as other similar methods to
handle collections.

5 EVALUATION RESULTS

This section focus the evaluation the effectiveness and
efficiency of the proposed approach. It is based on two
actual uses of BabeLO: 1) to relocate exercises to a different
repository and 2) to use an evaluation engine in a network
of heterogeneous systems.

5.1 Case Study 1: Repositories Exchange

In the first case study, the BabeLO service is used to create a
repository collection based on a problem set of an existing
programming contest. Fig. 4 depicts the interconnection of
BabeLO with two other components to achieve this purpose.

In order to measure the efficiency of the BabeLO Service,
two repositories were used: an installation of crimsonHex

[8]—a repository of programming exercises created in the
scope of an European project called Edujudge [9]—and the
ACM/ICPC contest system of the University Waterloo. The
exercises were copied from the Waterloo repository to
crimsonHex installation. The former supports the IMS
Common Cartridge (IMS CC) format for describing the
exercises. The later uses the FPS format to describe the
contest problem sets.

The time to convert collections with different numbers of
exercises was measured and compared with a standard
download, i.e., using the time of a HTTP GET as bench-
mark. The average size of the exercises used in this
experiment was 12 KB and time was measured in
milliseconds. Table 8 summarizes the results and presents
the overheads introduced by BabeLO.

The main conclusion is that BabeLO introduces an
overhead of a factor of 10 when converting an exercise.
This overhead increases with the size of collections when
taking as benchmark the direct download of a collection.
This fact is understandable since BabeLO has to process
each exercise, one-by-one, and takes little advantage of
collections. Analyzing the columns for direct download one
notices that, although the time for downloading a collection
increases with the size of the collection, the average time
per exercise reduces significantly. This is due to the fact that
a collection download avoids the time of establishing a
connection to the repository for each exercise, which is a
significant part of the download. Analyzing the columns for
the BabeLO download, one notices something similar; the
time per exercise is reduced but it is not as expressive as in
the direct download. This is due to the fact that the
conversion time is a larger share of the overall time and
saving the time of establishing connection has less impact.

At first sight, an overhead factor of 10 may seem
impracticable for on-the-fly format conversion. However, it
should be noted that exercises only need to be down-
loaded from a remote site for the first time they are used.
As in any HTTP based system, a cache can and should be
used to improve overall efficiency [10], as described in the
next section.

5.2 Case Study 2: Automatic Assessment

In this section, the effectiveness of BabeLO is validated with
an evaluation engine in a network of heterogeneous systems.

QUEIR �OS AND LEAL: BABELO—AN EXTENSIBLE CONVERTER OF PROGRAMMING EXERCISES FORMATS 43

Fig. 3. The convert function.

Fig. 4. Case study 1—exchanging exercises between repositories.

TABLE 8
Download Time (ms) and Overhead of BabeLO

TABLE 7
BabeLO REST API

The architecture depicted by UML component diagram in
Fig. 5 is composed by the following systems and tools:

1. Learning Objects Repository to store/retrieve ex-
ercises.

2. Evaluation Engine to evaluate students’ exercises.
3. Learning Management System to present the ex-

ercises to students.
4. Integrated Development Environment to code the

exercises.

To start using this network, the teacher sets a number of
activities (exercises) in the LMS by selecting a set of relevant
programming exercises from the LOR. Then, the learner
tries to solve the exercises assigned by the teacher using the
pivot component (launched by the LMS). The pivot
component recovers the exercise description from the
LOR and shows it to the student. After coding the program
in the IDE, the student uses the pivot component to send an
attempt to the EE. The first time that the user send an
attempt to the EE, the engine uses the BabeLO service to
convert the exercise from its original format to the Mooshak
internal format and then it caches the BabeLO response for
further use. After that, the EE evaluates the student’s
attempt and returns an evaluation report. The student may
submit repeatedly, integrating the feedback received from
the EE. In the end, the EE sends a grade to the pivot
component and reports the LO usage data back to the LOR.

In order to validate the efficiency of this network, an
experiment was conducted at ESEIG—a school of the
Polytechnic Institute of Porto. Students from the first of the
Algorithmic and Programming course participated in a two-
month experiment (six classes) with several assignments
comprising 18 exercises. From a extensive list of results, it
should be stressed that the number of times that the EE
accessed to BabeLO (18) comparing it with the number of
attempts submitted by students to solve the exercises (819).
These results show two things: 1) the EE cache mechanism is
working as expected and 2) the BabeLO service made
successfully conversions since no more requests were made.

6 CONCLUSIONS

The goal of the research presented in this paper is to
promote the interoperability among systems that participate
in the automatic assessment of programs. The heterogeneity
of theses systems is the least of the obstacles to interoper-
ability. The major problem is the lack of a standard for
assessment items, i.e., learning objects, understood by all
the systems involved in assessment. The proposed ap-
proach is a service to convert programming exercises
formats on-the-fly.

The contribution of this research is twofold, the service
abstract definition and its actual implementation. The
abstract definition comprehends the modular design of
the conversion service based on a pivot format, the data
model of this pivotal format and the definition of the
service functions. The actual implementation of BabeLO is a
web service implemented in a Java servlet container
supporting a few formats and with the ability to be
extended to new formats.

The effectiveness and efficiency of the proposed ap-
proach were evaluated with two case studies presented in
this paper.

The BabeLO service is an open-source project and was
already deployed in networks of e-learning systems that
require on-the-fly conversion among learning object formats.

Currently, BabeLO supports only the conversion of
programming exercises from and to Mooshak and FPS
formats and this is its main drawback. As future work, the
authors will extend the BabeLO compliance to other exercise
formats. Also rather than maintaining a single installation of
the conversion service, the authors intend to distribute the
source code of BabeLO and promote installations of this
service at each site. With this approach, they expect both to
reduce the fear of unauthorized copy of learning objects,
and to encourage users of other formats to contribute with
code to convert to and from the pivotal format.

REFERENCES

[1] A. Klenin, “Common Problem Description Format: Require-
ments,” Proc. ACM-ICPC World Final Competitive Learning Inst. of
Symp., 2011.

[2] J.P. Leal and F.M.A. Silva, “Mooshak: A Web-Based Multi-Site
Programming Contest System,” Software—Practice & Experience,
vol. 33, no. 6, pp. 567-581, 2003.

[3] J.P. Leal and R. Queirós, “A Programming Exercise Evaluation
Service for Mooshak,” Proc. ACM-ICPC World Final Competitive
Learning Inst. of Symp., 2011.

[4] T. Verhoeff, “Programming Task Packages: Peach Exchange
Format,” Int’l J. Olympiads Informatics, vol. 2, pp. 192-207, 2008.

[5] S.H. Edwards, J. Börstler, L.N. Cassel, M.S. Hall, and J.
Hollingsworth, “Developing a Common Format for Sharing
Programming Assignments,” SIGCSE Bull., vol. 40, no. 4, http://
dx.doi.org/10.1145/1473195.1473240, pp. 167-182, 2008.

[6] T. Tsunakawa, “Pivotal Approach for Lexical Translation,” PhD
dissertation, Univ. of Tokyo, 2010.

[7] R. Queirós and J.P. Leal, “PExIL: Programming Exercises
Interoperability Language,” XML: Aplicacoes e Tecnologias Associa-
das (XATA), 2011.

[8] J.P. Leal and R. Queirós, “CrimsonHex: A Service Oriented
Repository of Specialised Learning Objects,” Proc. Int’l Conf.
Enterprise Information Systems, pp. 102-113, May 2009.

[9] E. Verdú, L.M. Regueras, M.J. Verdú, J.P. Leal, J.P. de Castro, and
R. Queirós, “A Distributed System for Learning Programming On-
Line,” Computers and Education, vol. 58, pp. 1-10, Jan. 2012.

[10] R. Fielding and R. Taylor, “Principled Design of the Modern Web
Architecture,” Proc. Int’l Conf. Software Eng., pp. 407-416, 2000.

44 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 6, NO. 1, JANUARY-MARCH 2013

Fig. 5. Case study 2—automatic assessment.

Ricardo Queirós is currently working toward
the PhD degree in computer sciences in the
Faculty of Sciences of the University of Porto.
He is an assistant professor at the School of
Industrial Studies and Management in Vila do
Conde. His scientific activity is related with e-
learning standards and interoperability. He is an
associated member of the Center for Research
in Advanced Computing Systems.

José Paulo Leal is an assistant professor at the
Department of Computer Science of the Faculty
of Sciences of the University of Porto and an
associate researcher of the Center for Research
in Advanced Computing Systems. His main
research interests are e-learning system imple-
mentation, structured document processing, and
software engineering. He has a special interest
on automatic exercise evaluation, in particular in
the evaluation of programming exercises, on the

semantic web, and on web adaptability.

QUEIR �OS AND LEAL: BABELO—AN EXTENSIBLE CONVERTER OF PROGRAMMING EXERCISES FORMATS 45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

