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a b s t r a c t

This paper presents a complete, quadratic programming formulation of the standard thermal unit com-
mitment problem in power generation planning, together with a novel iterative optimisation algorithm
for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise
linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative

way, converging to the optimum; this avoids the requirement of resorting to quadratic programming,
making the solution process much quicker.

From extensive computational tests on a broad set of benchmark instances of this problem, the algo-
rithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed,
it is able to tackle ramp constraints, which although very important in practice were rarely considered in
previous publications.

Most importantly, optimal solutions were obtained for several well-known benchmark instances,
including instances of practical relevance, that are not yet known to have been solved to optimality. Com-
putational experiments and their results showed that the method proposed is both simple and extremely
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effective.

1. Introduction
The Unit Commitment Problem (UCP) is
ing which power generating units must be 
ted over a planning horizon (that lasts fr
generally split into periods of 1 h each). Th
which units must operate (pre-dispatch) m
to optimise a given objective function. The 
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resulted in highly inefficient algorithms that were only capable o
solving small problem instances with virtually no practical inter
est. Heuristic techniques, such as those based on priority lists
did not totally succeed either, as they often lead to low quality
solutions. Metaheuristics had very promising outcomes when they
committed units must were first explored. The quality of their results was better than 
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usually satisfy the forecasted system load and reserve require- those achieved using well established techniques and good solu
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ments, as well as a large set of technological constraints.
This problem has great practical significance because the effec-

tiveness of the schedules obtained has a strong economical impact 
on power generation companies. Due to this reason and to the 
problem’s high complexity (a prove that it is NP-hard has been gi-
ven in [1]), it has received considerable research attention. Even 
after several decades of intensive study, it is still a rich and chal-
lenging topic of research.

The proposed optimisation techniques for unit commitment 
encompass very different paradigms. These range from exact ap-
proaches and Lagrangian relaxation to rules of thumb or very elab-
orate heuristics and metaheuristics. In the past, the combinatorial 
nature of the problem and its multi-period characteristics have 
prevented exact approaches from being successful in practice: they
be highlighted when metaheuristics are used. If one considers tha
the ultimate goal is to design a technique that can be accepted and
used by a company, one major drawback of metaheuristics is thei
dependence on parameter tuning. Parameter tuning is time con
suming and the complex tuning procedure requires profound
knowledge of the algorithm implemented. Furthermore, accurate
tuning is vital for algorithm performance. A second drawback is re
lated to the lack of information that metaheuristics provide in
terms of the quality of the solution (i.e., how far it is from the opti
mal solution). Some proposals have been presented to addres
these drawbacks; but this still remains an open line of research.

An open issue is related to solution optimality and how it affect
individual pay-offs in restructured markets where an independen
system operator performs a centralised unit commitment. As sta
ted in [2], only if problems are solved to optimality can one guar
antee that units will receive their optimal dispatch and pay-off
Therefore, the design and development of optimisation technique
that provide optimal results to unit commitment problems are o
crucial importance.
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Nomenclature

Constants
T length of the planning horizon
T ¼ f1; . . . ; Tg set of planning periods
U set of units
Pmin

u ; Pmax
u minimum and maximum production levels for unit u

Ton
u ; T

off
u minimum number of periods that unit u must be kept

switched on/off
rup

u ; rdown
u maximum up/down rates of unit u

Dt system load requirements in period t
Rt spinning reserve requirements in period t
au, bu, cu fuel cost parameters for unit u
ahot

u ; acold
u hot and cold start up costs for unit u

tcold
u number of periods after which the start up of unit u is

evaluated as cold
yprev

u previous state of unit u (1 if on, 0 if off)
tprev

u number of periods unit u has been on or off prior to the
first period of the planning horizon

Decision variables
yut 1 if unit u is on in period t, 0 otherwise
put production level of unit u, in period t

Auxiliary variables
Auxiliary variables Due to model structure, some of the auxiliary

variables can be relaxed to the set [0,1], as discussed la-
ter

xon
ut ; x

off
ut 1 if unit u is started/switched off in period t, 0 otherwise

shot
ut 1 if unit u has a hot start in period t, 0 otherwise

scold
ut 1 if unit u has a cold start in period t,0 otherwise

pmax
ut maximum production levels for unit u in period t (due

to ramp constraints)

Production costs
F(put) fuel cost for unit u in period t
S xoff

ut ; yut

� �
start up cost for unit u in period t

Hut shut down cost for unit u in period t
The dramatic increase in the efficiency of mixed-integer pro-
gramming (MIP) solvers has encouraged the thorough exploitation
of their capabilities. Some research has already been directed to-
wards defining of alternative, more efficient, mixed-integer linear
programming (MILP) formulations of this problem (see e.g., [3]).
Extensive surveys of different optimisation techniques and model-
ling issues are provided in [4–6].

This paper proposes a MIP formulation for quadratic optimisa-
tion of the UCP, and also presents a method based on a linear for-
mulation. The method has proven to be effective at solving
instances of a practically relevant size. Instead of considering a
quadratic representation of the fuel cost, the linear model consid-
ers a piecewise linear approximation of the function and updates it
in an iterative process, by including additional pieces. Function
updating is based on the solutions obtained in the previous
iteration.

The solution approach developed in this research was tested on
several well-known test instances that were not known to have
been solved to optimality. For each of them, the new approach iter-
atively converged to the optimal solution, even for the largest
benchmark instances.
1 Notice that even in this situation there is a fixed component in the quadratic cost
function.
2. Problem variants

Different modelling alternatives that reflect different problem
issues, such as fuel, multiarea and emission constraints have been
published (e.g., [7–9]). Security constraints [10] and market related
aspects [11] have been addressed more recently.

The decentralised management of production has also intro-
duced new issues to the area [12] and in some markets the problem
has now been reduced to single-unit optimisation. However, for sev-
eral decentralised markets the traditional problem is still very much
similar to that of the centralised markets [3]; the main difference is
the objective function that, rather than minimising production
costs, maximises total welfare. Therefore, the techniques that apply
for centralised production management will also be effective at
solving many decentralised market production problems.

This paper considers the centralised UCP model. The objective of
the problem is to minimise total production costs over a given plan-
ning horizon. The total production cost is expressed as the sum of
fuel costs (quadratic functions that depend on the production level
of each unit) and start-up costs. Start-up costs are represented by
constants that depend on the last period when the unit was operat-
ing. In addition to the uninterrupted operation of the unit (i.e., no
start-up cost1), two constants are defined: one constant for hot
start-up costs when the unit has been off for a number of periods
smaller than or equal to a given value, and the other for cold
start-up costs. The following constraints will be included in the
formulation: system power balance, system reserve requirements,
unit initial conditions, unit minimum up and down times, generation
limits and ramp constraints. For a standard quadratic mathematical
formulation refer to [13].
3. MILP formulations for the UCP

For many years, approaches to solving the UCP were mainly
based on Lagrangian relaxation and (meta) heuristics. This was
due to the non-existence of exact approaches capable of coping
with the computational complexity of the problem using reason-
able resources. However, the dramatic improvement of MIP solvers
in recent years suggested that an effort should be applied to study-
ing ‘‘good’’ mathematical formulations of the problem, so that it
can be handled by relevant solvers.

The first requirement is the linearisation of the various non-
linearities in the problem; namely, minimum up and down time
constraints, minimum and maximum power production con-
straints (for problems that consider ramps), and the objective
function.

Several efforts have been made to improve and strengthen the
formulation of the UCP; pioneering work can be found in [14]. This
work considers three sets of binary variables that model the state
of each unit, start-ups, and shut-downs. The quadratic fuel cost
function is represented by a piecewise-linear cost function. Initial
attempts to solve the problem with standard branch-and-bound
(B&B) proved to be inefficient. As a result, an extended version of
the algorithm that considers problem-specific characteristics in
the branching process was proposed. Results are provided for prob-
lems with up to 16 units and 14 time periods.

A thorough discussion of model linearisation, considering a per-
fect electricity spot market and a single unit (self-scheduling), is
provided in [15]. The quadratic cost function is approximated using
a piecewise linear cost function with L segments. Three extra sets of
variables are required when compared to the model in [14]: 0/1



variables that are set to 1 if the unit is started-up at the beginning of
hour t and it has been off for k hours; integer variables to set the
number of hours the unit has been on or off at the end of hour t;
and 0/1 variables that are set to 1 if the power output of the unit
at hour t exceeds segment l of the piecewise linear approximation
of the quadratic cost function.

The authors of [16] focus their study on the accurate modelling
of start-up and shut-down power trajectories (that depend on
ramps). The authors of [17] present a model similar to [15], that
can adapt to centralised or competitive markets. The model is val-
idated with a 27 unit � 24 h instance but no information on the
efficiency of the algorithm is reported. Later, a model introduced
in [3] reduced both the number of binary variables and the number
of constraints from previous formulations. In [18] Wu presents a
methodology to determine segment partition points that will pro-
vide a tighter piecewise linear approximation of the quadratic cost
function. In this case the quadratic cost function is still approxi-
mated using a piecewise linear cost function with L segments but
each segment may have a different length.

Still within the scope of MILP formulations for the UCP, a study
on the quality of previously proposed valid inequalities was con-
ducted in [19]. The authors focus on the valid inequalities used
for minimum up and down time constraints and they show how
some inequalities can be improved. In [20] the authors proposed
a MILP formulation in which the ‘‘perspective cuts’’ concept (a fam-
ily of valid inequalities) is used to approximate the non-linear
objective function; according to the authors, this improves the sol-
ver’s effectiveness and efficiency.
4. A MILP formulation

Although the quality of MILP solvers has improved dramatically
in recent years, mathematical models such as the one given in [13]
are not suitable for these solvers due to the various non-linearities.
In order to fully utilise MILP solvers, these non-linearities must be
removed from the model, if possible. In the following subsections a
linearised mathematical model for the UCP is presented and dis-
cussed. The model was implemented in AMPL (A Modelling
Language for Mathematical Programming) [21], and the CPLEX MIP
solver was used to solve it.

4.1. System constraints

Two types of system constraints are considered: system power
balance (1) and spinning reserve requirements (2). The impact of
ramp constraints can be considered when setting reserve con-
straints. This can be achieved using the variable pmax

ut , rather than
the constant Pmax

u , in (2).X
u2U

put ¼ Dt ; 8t 2 T ; ð1ÞX
u2U

pmax
ut P Dt þ Rt ; 8t 2 T ; ð2Þ

with

pmax
ut 6 yutP

max
u ; 8u 2 U; for t ¼ 2 . . . T;

pmax
ut 6 pu;t�1 þ yu;t�1rup

u þ Pmax
u ð1� yu;t�1Þ;

8u 2 U; for t ¼ 2 . . . T:
4.2. Technical constraints

Technical constraints represent limitations of the generating
units and constrain the system’s overall performance (e.g., units’
minimum up and down times, production limits, and ramps).
4.2.1. Minimum up and down times
When a unit u is switched on (off), it must remain on (off) for at

least Ton
u Toff

u

� �
consecutive periods. Constraints (3) and (4) model

this aspect for the initial state, while constraints (5) and (6) do
the same for the remaining planning horizon. In (3) hon

u represents
max 0; Ton

u � tprev
u

� �
, and hoff

u in (4) stands for max 0; Toff
u � tprev

u

� �
.

yut ¼ 1; 8u 2 U : yprev
u ¼ 1; for t ¼ 0; . . . ; hon

u ; ð3Þ
yut ¼ 0; 8u 2 U : yprev

u ¼ 0; for t ¼ 0; . . . ; hoff
u : ð4Þ

In (5) and (6), son
ut and soff

ut stand for max t � Ton
u þ 1;1

� �
and

max t � Toff
u þ 1;1

� �
, respectively.Xt

i¼son
ut

xon
ui 6 yut ; 8u 2 U; 8t 2 T ; ð5Þ

Xt

i¼soff
ut

xoff
ui 6 1� yut ; 8u 2 U; 8t 2 T : ð6Þ

In [22] the authors show that these inequalities are facets to the
convex hull of the set CT(Ton,Toff) which is the projection of the prob-
lem in the space of variables y and xon.

4.2.2. Generation limits and ramps
Power production levels of thermal power units are within the

range defined by the technical minimum and maximum produc-
tion levels in (7).

Pmin
u yut 6 put 6 Pmax

u yut; 8u 2 U; 8t 2 T : ð7Þ

If ramps are considered (i.e., if the difference of values in production
levels is limited to a maximum value in consecutive periods) addi-
tional constraints are needed. Constraints (8) and (9) model, respec-
tively, maximum up and down rates for each unit in consecutive
periods of time.

put � pu;t�1 6 rup
u ; 8u 2 U; 8t 2 T ; ð8Þ

pu;t�1 � put 6 rdown
u ; 8u 2 U; 8t 2 T : ð9Þ
4.3. Additional constrains

A set of additional constraints for the computation of auxiliary
variables allows relaxation of integrality for variables xon

ut and xoff
ut ,

as discussed below.

4.3.1. Setting and computation of variables shot
ut and scold

ut

Constraints (10) state that every time a unit is switched on, a
start-up cost will be incurred. The same type of constraint is used
in [23] for a more general case, where three start-up types are con-
sidered: hot, warm and cold start-ups.

shot
ut þ scold

ut ¼ xon
ut ; 8u 2 U; 8t 2 T : ð10Þ

Constraints (11) determine the start-up type of each unit, i.e.,
decide whether it is a cold or a hot start type. It will be a cold start
if the unit remained off for more than tcold

u periods of time, and a hot
start otherwise.

yut �
Xt�1

i¼t�tcold
u �1

yui 6 scold
ut ; 8u 2 U; 8t 2 T : ð11Þ

The same constraint is modelled in a similar way in [23]. How-
ever, instead of using variables yut the authors consider variables
xon

ut . In both cases, the constraint only models the problem properly
if hot start-up costs are smaller than cold start-up costs.

4.3.2. Setting and computation of variables xon
ut and xoff

ut

Constraints (12) determine each unit’s switch-on variables, and
(13) determine the switch-off variables.



yut � yu;t�1 6 xon
ut ; 8u 2 U; 8t 2 T ; ð12Þ

xoff
ut ¼ xon

ut þ yu;t�1 � yut ; 8u 2 U; 8t 2 T : ð13Þ
Fig. 1. Initial approximation of the cost function by two straight lines going through
the minimum and maximum operating power of the unit. If the current production
level for this unit is p, its cost (in this iteration) will be approximated by eF .
4.3.3. Relaxation of integrality constraints on variables xon
ut and xoff

ut

Constraints (10) and (13) make it possible to relax variables xon
ut

and xoff
ut . In fact, if shot

ut and scold
ut are defined as binary variables, using

(10) xon
ut will always be 0 or 1. Furthermore, since yut is binary, using

(13) xoff
ut will always be set to 0 or 1, for feasible yut.

4.4. Objective function

The objective of this problem is to minimise the total produc-
tion cost over the planning horizon, expressed as the sum of fuel,
start-up costs and shut-down costs (14).

minimise
X
t2T

X
u2U

FðputÞ þ S xoff
ut ; yut

� �
þ Hut

� �
: ð14Þ

We consider the traditional quadratic function for F(put), as
follows:

FðputÞ ¼
cup2

ut þ buput þ au if yut ¼ 1;
0 otherwise:

(
ð15Þ

Shut-down costs Hut are assumed to be zero and start-up costs are
modelled as:

S xoff
ut ; yut

� �
¼ ahot

u shot
ut þ acold

u scold
ut : ð16Þ

This is a linearised version of the (non-linear) function proposed in
[24] to represent start-up-costs:

S xoff
ut ; yut

� �
¼ yutð1� yu;ðt�1ÞÞSx xoff

ut

� �
; ð17Þ

where Sx depends on the last period the unit was operating as
follows:

Sx ¼
ahot

u if coff
ut 6 tcold

u ;

acold
u otherwise;

(
ð18Þ

with coff
ut as the number of consecutive periods unit u was off before

period t.

5. Iterative linear algorithm

The new solution approach considers a piecewise linear approx-
imation of the quadratic fuel cost function (15), where a linear
MILP model is iteratively solved. The MILP will provide increased
precision at each iteration, until a user-defined proximity to the
quadratic function is reached.

The algorithm is an application of Kelley’s theorem on the cut-
ting plane method for convex programs (see [25]), which states the
conditions and method of obtaining a sequence of points that con-
verge to the minimum of a convex function in a compact, convex
set, using successive linear approximations. The theorem is the fol-
lowing: let G(x) be a continuous convex function defined in the n-
dimensional compact convex set S. Feasible points for this problem
are x 2 S: G(x) 6 0. An extreme support to the graph of G is an
(n + 1)-dimensional hyperplane that intersects the boundary of
the convex set P = {(x,y): x 2 S,y P G(x)} and does not cut the inte-
rior of P. Consider the extreme support y = p(x;t) to the graph of G
in a point t 2 S; this can be written as p(x;t) = G(t) +rp(x;t)(x � t).
Assume that, for some finite constant K, krp(x;t)k 6 K for all x 2 S.
Let cx be a linear form such that kck <1 and let R = {x 2 S:
G(x) 6 0} � S be non-empty. The optimisation problem is that of
finding a vector s such that c s = min{cx: x 2 R}. The theorem states
that if tk 2 Sk is determined such that ctk = min{cx: x 2 Sk}, for k = 0,
1, . . ., where S0 = S and Sk = Sk�1 \ {x: p(x;tk�1) 6 0}, then the
sequence tk contains a subsequence that converges to a point
s 2 R with cs 6 cx for all x 2 R. Therefore, it converges to the min-
imum of the optimisation problem.

The application of Kelley’s theorem to the model presented in
Section 4 is straightforward, and visually easy to explain. In this
case, besides being convex, the cost function is separable into the
sum of one-dimensional functions (one for each generator). For
each of these one-dimensional functions, a set of extreme supports
is determined and, for each of them, the cost is constrained to be
greater than or equal to the value of the corresponding linear func-
tion. This leads to a lower approximation of the cost. The process
proposed is to dynamically find linear functions that are tangent
to the true cost at points where it is being underestimated (i.e.,
the extreme support at these points) and add them to a set. The
cost at any production level p must then be greater than the max-
imum of these linear functions, evaluated at p.

For clarity, let us remove the indices u and t identifying the gen-
erator and time period, respectively. For any generator and any
period, we start by approximating its cost by means of two linear
functions: one going through (Pmin,F(Pmin)) and another going
through (Pmax,F(Pmax)), as shown in Fig. 1.

After solving the problem using this approximation, a produc-
tion level of, say, p is obtained for a unit. The operating cost at this
point will be underestimated as the value of the highest straight
line at p. In Fig. 1 this is given as the value eF . In order to exclude
this point from the feasible region, we add a constraint based on
the extreme support of the cost at point p; this is the line that is
tangent to the quadratic function evaluated at p, represented as a
solid grey line in Fig. 2. When the problem is solved with this addi-
tional constraint added, the solution may change; the optimal pro-
duction level for this same unit may now be another possible value
p0, as shown in Fig. 2. As more and more extreme supports are
added and the highest is selected, this converges to an exact repre-
sentation of the true cost function.

5.1. Algorithm description

For each unit, we start with the corresponding quadratic fuel
cost function F(p) approximated by two linear functions, the first
being tangent to F(p) at the minimum power (Pmin,F(Pmin)), and
the second being tangent at (Pmax,F(Pmax)) (see Fig. 1).

Thereafter, more extreme support lines are iteratively added
into a set, until reaching one iteration with all production levels
correctly evaluated (up to an acceptable error).

Let P be a set of numbers identifying the power at which new
extreme supports to the true cost are added for a given unit; ini-
tially P ¼ fPmin; Pmaxg. At a given iteration, let the production level



Fig. 2. Approximation of the cost function by the maximum of three straight lines
after obtaining production at level p in the previous iteration.

Table 1
Results for instances P1–P6 (standard Kazarlis set).

Instance Size Iterative linear alg. Quadratic model

Objective CPU Objective CPU

P1 10 565,827.7 0.32 565,827.7 1.29
P2 20 1,125,997.4 4.99 1,125,997.4 115.8
P3 40 2,248,284.7 63.3 2,248,284.8 6080
P4 60 3,368,949.7 534
P5 80 4,492,173.1 54,330
P6 100 5,612,686.1 15,625

Table 2
Results for insctances R1–R6 (including ramp constraints).

Instance Size Iterative linear alg. Quadratic model

Objective CPU Objective CPU

R1 10 570,396.4 3.27 570,396.4 5.17
R2 20 1,135,452.3 215 1,135,452.4 1752
R3 40 2,267,535.7 4059
R4 60 3,398,614.4 4457
R5 80 4,531,720.8 38,690
R6 100 5,662,901.4 112,791
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Fig. 3. Number of extreme support constraints (i.e., the number of piecewise linear
segments) added up for all units, in terms of the iteration number.
obtained in the MILP solution be p and the corresponding cost
approximation (i.e., the maximum of the linear cost functions eval-
uated at p) be eF . For a given unit and a given period, point p is
added to the set P whenever jFðpÞ � eF j=FðpÞ > �, where � is a
user-defined tolerance. Otherwise, the current approximation is
accepted as accurate enough.

In the MILP solved at each iteration, the following constraints
are added (which, in this form, are only imposed if the correspond-
ing unit is on during the period considered):

Fut P ðaun � bun�pnÞyut þ bunput; for n ¼ 1; . . . ; jPj;

now using the actual variables put for production level and Fut for
production cost, for a given unit at a given period. For a given unit,
and for each production level �pn where the approximation does not
satisfy the tolerance, the constants for the above straight lines are
obtained by:

aun ¼ cu�p2
n þ bu�pn þ au;

bun ¼ 2cu�pn þ bu:

The algorithm stops when in a given iteration the set P is un-
changed, thus no extreme support constraints are added, meaning
that all the production costs are already being correctly evaluated
up to the specified tolerance �, for all units, in all periods. In this
experiment, � is set to 10�6; this allows an excellent approximation
of the quadratic function in all of the instances tested (actually, no
difference was observed between quadratic costs and the linear
approximation, concerning the solutions obtained).

Even though cutting plane algorithms are usually employed in
sophisticated branch-and-cut methods, in the context of this paper
it must be noted that they were only applied in iterative calls to a
solver black-box. This was very simply implemented in a mathe-
matical modelling language [26]. Therefore, the burden of imple-
menting a solver with a problem-specific branch-and-cut
method, as has been done in [20], is not required. Furthermore, dif-
ferent solvers can be used with no additional programming effort.

6. Computational results

The algorithm was tested in two sets of instances: one without
ramp constraints but that is a reference for comparing UC algo-
rithms [24] (instances P1 through P6); and the other with ramp
constraints (instances R1 through R6). CPU times were obtained
with CPLEX 12.1 on a computer with a Quad-Core Intel Xeon pro-
cessor at 2.66 GHz and running Mac OS X 10.6.6. Only one thread
was assigned to this experiment. Models were written in the AMPL
language [21] and the default CPLEX parameters were used for the
linear models. For the quadratic models to converge to the correct
solution, the following parameters had to be changed: mipgap,
absmipgap and qcpconvergetol were set to 10�12, and inte-

grality was set to 10�9.
Tables 1 and 2 present the results obtained using the algorithm

proposed for different sets of UCP instances. Instances P1–P6, in
Table 1, are the standard Kazarlis benchmarks [24], which do not
include ramp constraints. Ramp constraints are considered in in-
stances R1–R6 (Table 2), resulting from instances P1–P6, by setting
ramp up-and-down maximum values identical to the minimum
production level for each unit. All instances are for a 24-h planning
horizon, with one period per hour, and the number of units ranged
from 10 to 100. Empty entries in the tables mean that the solver
could not find the solution within 24 h of CPU time.

In Tables 1 and 2, columns Quadratic model provide the optimal
result for the base problem using quadratic programming, and col-
umns Iterative linear algorithm provide the results obtained using
the method we propose, confirming that the algorithm converges
to the optimal solution. Columns CPU refer to the time (in seconds)
taken by each of the methods to solve the problem. Attempts to
solve the problem with the quadratic formulation without ramps
were not successful for instances with more than 40 units. For
the problem with ramps, the quadratic formulation was unsuccess-
ful for instances with more than 20 units.
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The number of segments added during the solution process as a
function of the iteration number is shown in Fig. 3 for the standard
instances P1–P6. The evolution of the error with respect to the iter-
ation number for the same instances, is shown in Fig. 4. It can be
seen that the total absolute error of evaluation for the quadratic
costs rapidly decreases with the iteration number.

In order to compare the effectiveness of the iterative linear
algorithm, with respect to standard piecewise linear formulations,
Table 3 provides the value of the absolute error in the representa-
tion of the cost function (i.e., the quadratic cost minus the linear
Table 3
Comparison of results obtained for a model with a fixed number of five segments, and th

Instance Size Five linear segments

Error #Segm CPU

P1 10 3.54 50 0.20
P2 20 12.16 100 0.62
P3 40 27.36 200 3.62
P4 60 44.23 300 43.0
P5 80 69.83 400 1213
P6 100 83.69 500 261
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Fig. 5. Power at which support points have been adde
approximation, added up for all units and all periods) for the case
of a fixed number of five segments for each unit, as well as the
measure for the solution of the iterative linear algorithm with
� = 10�6. In the former the error is considerable and in the latter
is under half a unit for all instances. The cost for this increased pre-
cision is an increase in the CPU time required, which is higher for
the linear iterative algorithm (although it is much lower than that
required by the quadratic programming solver). One explanation
for having relatively few segments and greatly increased accuracy
in the iterative linear algorithm concerns the distribution of the
support points. Indeed, they are added as needed in irregular pat-
terns that vary widely from unit to unit, as shown in Fig. 5.

It should be mentioned that the CPU time required to solve
these instances shows a rather random pattern; it seems that the
solver used (CPLEX) is sometimes trapped, taking much more time
to finish than usual. This was observed in the solution of successive
iterations of the same instance: the CPU time required varied
widely, as shown in Fig. 6 (note that ordinate is in logarithmic
scale).

Table 4 presents the results obtained using the algorithm pro-
posed in this paper when start-up costs are evaluated by (19);
these instances will be referred to as M1–M6. This equation was
first proposed in [27] and was later used by several authors.

Sx ¼
ahot

u if Toff
u < coff

ut 6 Toff
u þ tcold

u ;

acold
u otherwise:

(
ð19Þ

Again, coff
ut is the number of consecutive periods unit u was off before

period t.
e results of the iterative method.

Iterative linear algorithm

Error #Iter #Segm CPU

0 2 37 0.32
0.072 8 187 4.99
0.153 11 395 63.3
0.259 10 603 534
0.327 16 758 54,329
0.497 15 1042 15,624
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d with instance P3: results for the first 20 units.
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Fig. 6. CPU time required to solve the linear problem in each iteration.

Table 4
Results for instances M1–M6 (modified cost function).

Instance Size Iterative linear alg. Quadratic model

Objective CPU Objective CPU

M1 10 563,937.7 0.58 563,937.7 1.73
M2 20 1,123,297.4 16.4 1,123,297.4 150
M3 40 2,242,575.4 960
M4 60 3,359,954.8 271
M5 80
M6 100 5,597,770.1 6341

Table 5
Previous results for instances P1–P6: best solution found.

Instance Size LR [24] GA [24] LR–MA [28]

P1 10 565,825 565,825 565,827
P2 20 1,130,660 1,126,243 1,127,254
P3 40 2,258,503 2,251,911 2,249,589
P4 60 3,394,066 3,376,625 3,370,595
P5 80 4,526,022 4,504,933 4,494,214
P6 100 5,657,277 5,627,437 5,616,314

ICGA [29] GRASP [13] CON [30]

P1 10 566,404 565,825 565,825
P2 20 1,127,244 1,126,805 1,126,070
P3 40 2,254,123 2,255,416 2,248,490
P4 60 3,378,108 3,383,184 3,370,530
P5 80 4,498,943 4,524,207 4,494,140
P6 100 5,630,838 5,668,870 5,615,410

Table 6
Previous results for instances M1–M6: best solution found (using the modified cost
function).

Instance Size MILP-UC [3] OGS [31] ELR [32]

M1 10 561,436 563,937
M2 20 1,121,751 1,122,637
M3 40 2,243,245
M4 60 3,363,376
M5 80 4,484,915
M6 100 5,605,189 5,604,470

IQEA-UC* [33] SFLA [34] MM [35]

M1 10 563,938 564,769
M2 20 1,123,297 1,123,261
M3 40 2,242,980 2,246,005 2,247,162
M4 60 3,362,010 3,368,257 3,366,874
M5 80 4,482,826 4,503,928 4,490,208
M6 100 5,602,387 5,624,526 5,609,782
Table 5 presents the results reported in the literature for in-
stances P1–P6, using different heuristic methods. Although the
objective function value reported in this paper (565827.7) for the
10 unit instance using the iterative linear algorithm is higher than
the one reported in some papers (565,825), the actual solution is
the same. Small differences in values can be attributed to the pos-
sible rounding of values by other authors. Similarly, Table 6 pre-
sents the results reported in the literature for instances M1–M6,
when start-up costs are modelled using (19). Naturally, the results
reported in Tables 5 and 6 cannot be compared. At most, the results
in Table 6 could be seen as lower bounds for instances P1–P6, if they
were optimal. Note that some of the results presented are below the
optimum values in Table 4; for the cases that were possible to ver-
ify, not all problem contraints were being observed. Limited floating
point precision may also be a reason to explain those results.

To the best of our knowledge, no optimal solutions have ever
been reported for instances P1–P6, with a quadratic cost function,
not even for the smallest one. We have shown that for instances up
to 40 units, optimal solutions can be obtained using current,
state-of-the-art MIP solvers. Moreover, with the iterative approach
based on the linear approximative model, it was possible to reach
the optimal solution with dramatic reductions in CPU times, when
compared to the direct solution approach with the quadratic solver
of CPLEX, having determined the optimal solutions (with a toler-
ance � = 10�6 on production costs) for all of the instances. These
can be compared to the best published values for the quadratic
models (see Tables 5 and 6).

Similar conclusions may be drawn for the ramp problem. The
quadratic solver of CPLEX was capable of reaching optimal solu-
tions for problem instances of up to 20 units. Optimal values for
the whole set of instances were, again, reached using the iterative
linear algorithm, albeit using larger CPU times. All the solutions ob-
tained are available for download in [26].

7. Conclusions and further developments

The main contributions of this paper are a complete formulation
of the standard thermal unit commitment problem in quadratic
programming and a novel and efficient methodology for approxi-
mating the quadratic cost of electricity generating units, with an
iterative method that uses a linear model, converging to the exact
solution. Using this method we were able to solve all instances of a
widely used benchmark testbed, for which to the best of our
knowledge no optimum results were previously reported. The pa-
per also establishes optimal solution for small instances of the qua-
dratic model (with and without ramp constraints) showing that a
simple method exploring the potential of current state-of-the-art
solvers can tackle problems that were not previously solvable. This
achievement is particularly relevant in markets were the indepen-
dent system operator performs a centralised commitment and
where there is a guarantee that units will receive their optimal dis-
patch and pay-off only when problems are solved to optimality.
Previously proposed techniques for unit commitment could not,
in general, guarantee that this goal was achieved as they were
mostly based on (meta) heuristics. Prior approaches based on
mixed-integer programming provided approximations, and did
not seek for convergence to optimality.

A computational analysis has shown that the iterative linear
method is capable of reaching the optimum of the quadratic model,
when it is known, using much less computational time than re-
quired for its quadratic programming solution. For large problem
instances, where the quadratic model could not be solved directly
in a reasonable time, the iterative linear algorithm has found the
optimal solution.

Similar conclusions could be drawn when ramp constraints are
considered. The iterative linear algorithm was also capable of reach-
ing the optimum for all of the instances. This is particularly important



for instances with more than 20 units, for which the straightforward
use of the quadratic programming solver was not successful.

As future work, we plan to extend the algorithm in order to
solve a broader set of models, for example, to include other elec-
tricity generating technologies in addition to thermal units. The ap-
proach used to approximate the quadratic cost can be applied to
any convex function. In terms of practical applications, this is a fea-
ture that should be explored, as it may lead to a better model for
the true cost function (instead of quadratic).
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Appendix A. Satisfaction of problem’s constraints

In order to illustrate how the problem’s constraints for mini-
mum up and down times are verified, let us consider solutions to
Table A.1
Solutions to the 10 units instance P1. Left: without considering minimum off and on peri

Table B.1
Solution to the 100 units instance P6.
the 10 units instance P1 with and without considering them, as
shown in the left-hand side of Table A.1. In this instance, the min-
imum number of periods that unit 3 must be off is five, which in
the relaxed instance is not verified in period 18. In the left-hand
solution, we observe that, for generator 3, Eq. (13) implies that
xoff

3;16 ¼ xon
3;16 þ y3;15 � y3;16 ¼ 1. However, Eq. (6) implies xoff

3;14þ
xoff

3;15 þ xoff
3;16 þ xoff

3;17 þ xoff
3;18 6 1� y3;18; as the left-hand side here is

1, this equation forces y3,18 to be 0 (which is not observed in the
relaxed solution).

Similarly, for generator 7—which has a minimum up time of
three: in period 20 Eq. (12) becomes xon

7;20 P y7;20 � y7;19 ¼ 1. Eq.
(5) implies that xon

7;20 þ xon
7;21 þ xon

7;22 6 y7;22 forces y7,22 to be 1 (which,
again, is not observed in the relaxed solution).

It can be trivially shown that the correct solution (on the right-
hand side of Table A.1) satisfies these equations, in both cases.
Appendix B. Solution to 100 units instance

Table B.1 displays the solution to the 100 units instance using
the original cost function (instance P6). The way the instance is
generated, by replicating 10 times the units of instance P1, leads
to profuse symmetry; many solutions with the same objective
ods. Right: actual instance (with those constraints).



can be obtained by exchanging the states of equivalent generators,
when they are different in a given period (e.g., generators 5 and 15
in period 23). The amount of symmetry in the solution space is typ-
ically one of the causes of difficulty in solving exactly a combinato-
rial optimisation problem.
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