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Abstract 

Objective: To analyse the relation between contralesional and ipsilesional limbs 

in subjects with stroke during step-to-step transition of walking. 

Design: Observational, transversal, analytical study with a convenience sample. 

Setting: Patients from a physical medicine and rehabilitation clinic in Portugal 

(Braga). 

Participants: Sixteen subjects with post-stroke hemiparesis with the ability to 

walk independently and twenty-two healthy controls. 

Interventions: Not applicable. 

Main outcome measures: Bilateral lower limbs electromyographic activity 

(EMG) of soleus (SOL), gastrocnemius medialis (GM), tibialis anterior (TA), biceps 

femoris (BF), rectus femoris (RF) and vastus medialis (VM) muscles and ground 

reaction force were analysed during double support and terminal stance phases of gait. 

Results: The propulsive impulse of the contralesional trailing limb was negatively 

correlated to the braking impulse of the LEAD limb during double support (r=-0.639, 

p=0.010). A moderate functional relation was observed between thigh muscles (r=-

0.529, p=0.035), and a strong and moderate dysfunctional relation was found between 

the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional 

limb, respectively (SOL-VM, r=-0.800, p<0.001; GM-VM, r=-0.655, p=0.002). Also, a 

functional moderate negative correlation was found between the SOL and RF muscles 

of the ipsilesional limb during terminal stance and between the SOL (r=-0.506, 

p=0.046) and VM (r=-0.518, p=0.040) muscles of the contralesional limb during 

loading response, respectively. The trailing limb relative impulse contribution of the 

contralesional limb was lower than the contribution of the ipsilesional limb of subjects 

with stroke (p=0.02) and lower than the relative impulse contribution of the healthy 

limb (p=0.008) during double-support. 

Conclusions: The findings obtained suggest that the lower performance of the 

contralesional limb in forward propulsion during gait is not only related to contralateral 

supraspinal damage but also to a dysfunctional influence of the ipsilesional limb. 

 

Keywords: gait energy consumption; step-to-step transition; electromyographic 

activity; propulsive impulse.  



1. INTRODUCTION 

Gait disorders affect a large proportion of subjects with stroke, limiting their 

ability to ambulate in the community 1. The features of post-stroke walking vary 

according to stroke severity, location of infarct, time since stroke, type of rehabilitation 

received and other individual differences 2. Also, the mechanical energy cost per stride 

and metabolic energy expenditure 3 are typically higher in subjects with stroke in 

comparison to healthy subjects. 

Biomechanical models have shown the importance of interlimb relation during the 

double-support phase (DS) in unimpaired gait energy consumption 4. Indeed, the 

transition from one stance limb inverted pendulum to the next appears to be a major 

determinant of the mechanical work of walking 4, 5. An optimal mechanical relation 

between human limbs has been described as the trailing limb (TRAIL) plantar flexor 

action 6, 7 compensates the energy loss provoked by the leading limb (LEAD) during 

heel strike 5, 8 to maintain the velocity of the body’s centre of mass. Recent studies 

involving healthy subjects have demonstrated that the degree of plantar flexor activity 

during propulsion depends on the degree of muscle activity 9 and on the magnitude of 

the ground reaction force 10 of the contralateral limb during heel strike. This interlimb 

relation observed during step-to-step transition of unimpaired walking 9, 10, and also in 

standing-related tasks 11, 12, can be justified by the bilateral influence of group II fibres 

on spinal interneurons 13 and by the importance of vestibulo- and reticulo-spinal 

pathways on group II fibres 14. 

After a unilateral stroke, interlimb coordination is often impaired 15-17, it is either 

caused by the primary brain lesion itself and/or due to adaptive changes 18-21. Although 

studies about interlimb relation have been dedicated to the evaluation of upper limbs, 

neurophysiological and neuroanatomical findings indicate that the interlimb 

coordination of lower limbs can be impaired, particularly when there are subcortical 

injuries in the territory of the middle cerebral artery, such as in the internal capsule 22, 23. 

Subjects with stroke present low kinetic energy 24, 25 and an inadequate propulsion 

of the contra-lateral limb to the affected hemisphere (contralesional limb) during pre-

swing 26 as a result of low plantar flexor strength and power 2, 27. The major metabolic 

cost has been associated with the mechanical work done by the ipsilesional limb, mainly 

to lift the centre of mass 28. However, in spite of often being described as a 

compensatory limb that adapts to changes in the paretic limb 29, changes observed in the 



ipsilesional limb have also been attributed to a possible dysfunction of ipsilateral 

distributed pathways responsible for postural control 29-33. This could help us to 

understand why stroke subjects present lower performance of the contralesional limb 

when cyclic and antiphase ankle movements are executed with both limbs 34, 35. In fact, 

these findings suggest that the ipsilesional limb may lead to performance changes in the 

contralesional limb and reinforce the idea that step-to-step transition during gait could 

be highly demanding in terms of energy consumption in stroke subjects due to their 

need to coordinate contralesional and ipsilesional limbs.  

The main purpose of this study was to analyse the relation between ipsilesional 

and contralesional limbs during gait step-to-step transition in terms of individual muscle 

activity and global kinetic values in subjects with stroke. Taking into account the 

changes observed in both contralesional 26, 27 and ipsilesional 30 limbs during gait, a 

dysfunctional interlimb relation was hypothesised, compared to interlimb relation 

patterns observed in healthy subjects 9. Specifically, a higher dysfunctional relation 

would be expected between the ipsilesional heel strike limb and the contralesional 

propulsion limb. This hypothesis is based on the role of the ipsilateral and contralateral 

pathways, as the former is more related to postural control, highlighted in the moment 

of touchdown, and the later are more associated to movement control, highlighted 

during propulsion 22. 

To the best of our knowledge, no previous study has evaluated the interlimb 

relation during an asymmetric task implying a supportive role for the two limbs in 

subjects with stroke. Whereas correlation analyses have revealed that some EMG 

abnormalities such as spasticity 36, altered co-contraction 37, and muscle paresis 29 are 

higher in subjects with severe stroke, a cause-effect relationship of some of these 

abnormalities with poor locomotor performance 3 remains difficult to establish. The 

study of interlimb relation during step-to-step transition in subjects with stroke can give 

significant insights to improve our understanding of the low performance of stroke gait, 

considering the importance of step-to-step transition performance in global gait 

efficiency. Restoring gait is one of the major goals in stroke rehabilitation, and therefore 

understanding the interlimb relation is extremely beneficial for designing effective 

locomotor interventions. 

2. METHODS 



2.1 Subjects 

Sixteen (8 females; 8 males) patients who had suffered a stroke at least 6 months 

earlier and 22 healthy subjects (12 females; 10 males) participated in this study (Table 

1). For the subjects with stroke, the mean time between their stroke and the time of 

inclusion in this study was 26 months (SD=9). All subjects suffered an ischemic stroke: 

11 of them had suffered an infarction in their left hemisphere, whereas 5 had suffered an 

infarction in their right hemisphere. To be included, patients were required to: (1) have 

suffered an ischemic first-ever stroke involving the territory of the middle cerebral 

artery, as revealed by computed tomography, resulting in hemiparesis; (2) have a Fugl-

Meyer (Assessment of Sensorimotor Recovery After Stroke scale) score in the motor 

subsection below 34; (3) have the ability to walk 10 meters, with close supervision if 

necessary, but without physical assistance, as judged by the treating physiotherapist; (4) 

have provided written or verbal informed consent. Patients were excluded for one of the 

following reasons: (1) cognitive deficit that could hinder communication and 

cooperation (assessed by the Mini-Mental State Examination); (2) history of 

orthopaedic or neurological (other than stroke) disorders, known to affect walking 

performance; (3) history of stroke involving the brainstem or cerebellar areas; and (4) 

taking medication that could affect motor performance. Given the possibility of spastic 

hypertonus, an experienced neurological physical therapist assessed all subjects by 

testing limb resistance to passive movement and considering the definition of spastic 

hypertonus, all subjects included in the study were considered as not having spastic 

hypertonus in the lower extremity. Gait data of the group of subjects with stroke were 

compared with data obtained from the 22 healthy control subjects. All control group 

subjects were sedentary and were selected according to the same exclusion criteria 

applied to the stroke group, as well as being excluded if they had suffered any 

neurological disorder. The study was approved by the local ethics committee and 

implemented according to the Declaration of Helsinki. 

2.2 Instrumentation 

The values of the vertical (Fz), anteroposterior (Fy) and mediolateral (Fx) 

components of the ground reaction force (GRF) were acquired using two force plates at 

a sampling rate of 1000 Hz (FP4060-10 and FP4060-08 models from Bertec 

Corporation (USA), connected to a Bertec AM 6300 amplifier and to a Biopac 16-bit 



analogical-digital converter, from BIOPAC Systems, Inc. (USA)). The two force plates 

were mounted in series near the midpoint of the walkway. 

The activity of the agonist muscles for propulsion (Gastrocnemius Medialis (GM), 

Soleus (SOL), Rectus Femoris (RF)38) and initial contact and loading response (Tibialis 

Anterior (TA), Vastus Medialis (VM) and Biceps Femoris (BF)38, 39) was assessed 

through electromyography (EMG). The bilateral EMG signal of these muscles was 

monitored using a bioPLUX research wireless signal acquisition system (Plux Ltda, 

Portugal). The signals were collected at a sampling frequency of 1000 Hz and were pre-

amplified in each electrode and then fed into a differential amplifier with an adjustable 

gain setting (25 - 500 Hz; common-mode rejection ratio (CMRR): 110 dB at 50 Hz, 

input impedance of 100 MΩ and gain of 1000). Self-adhesive silver chloride EMG 

electrodes were used in a bipolar configuration and with a distance of 20 mm between 

detection surface centres. The skin impedance was measured with an Electrode 

Impedance Checker (Noraxon USA, Inc.). The EMG and force platform signals were 

analysed with the Acqknowledge software (Biopac Systems, Inc., USA). The gait 

timing was measured using a photovoltaic system (Brower Timing IRD-T175, Utah, 

USA). All subjects used the same shoe type, in their adequate size. 

2.3 Procedures 

2.3.1 Skin preparation and placement of electrodes 

The skin surface of selected muscles’ mid-belly and patella was prepared (shaved 

and then the dead skin cells and non-conductor elements were removed with alcohol 

and with an abrasive pad) to reduce the electrical resistance to less than 5000 Ω, the 

EMG electrodes were placed according to anatomical references, and the reference 

electrode was placed on the patella. 

2.3.2 Data acquisition 

a) Kinetic and electromyographic data 

The EMG and GRF data were simultaneously acquired during walking. Subjects 

walked using a standard footwear over a 10 m walkway 40 without using any assistive 

devices and/or orthotics. 

Before the data acquisition, sufficient time was given so that the participants 

become familiar with the experimental settings. They were allowed to walk over the 



walkway without explicit instructions. In the meanwhile, we observed the starting point 

on the walkway from which they placed one foot on the first force plate (TRAIL) and 

the other on the second force plate (LEAD) according to their natural cadence. To 

ensure a low intra-group gait variability 41-44 and a similar rate of energy expenditure 3 

and muscle utilization ratios or levels of effort 45, 46 between the two groups the subjects 

walked at their self-selected speeds. Three successful trials, where the feet had full 

contact with the plate, were used for analysis for all subjects to reduce the within-

individual variability and increase statistical power 47. One minute breaks were provided 

between trials. 

2.3.3 Data processing 

a) Kinetic parameters 

The GRF data were low-pass filtered using a fourth-ordered Butterworth filter by 

using a zero-phase lag with a cutoff frequency of 8 Hz48 and normalised according to 

body weight. In spite of occurring mainly during DS, biomechanical models suggest 

that energy loss during step-to-step transition can be reduced by a propulsion impulse 

from the TRAIL limb immediately before collision of the LEAD limb 5. Also, studies 

about interlimb relation in healthy subjects demonstrate a relation between muscle 

activity of the TRAIL limb during terminal stance and biomechanical parameters of the 

LEAD limb during initial contact and loading response 9, 10. Thus, the stance phase was 

separated into three intervals (Figure 1) to analyse the impulse generation at various 

time points in the gait cycle: (1) DS corresponding to the initial contact and loading 

response of the contralesional limb until the start of the ipsilesional limb swing, (2) 

terminal stance (TS) of the contralesional and ipsilesional limbs, and (3) DS 

corresponding to initial contact and loading response of the ipsilesional limb until the 

start of the contralesional limb swing. Globally, each limb was evaluated during TS, 

pre-swing and loading response. The stance phase was defined as the interval where Fz 

presents a value equal to or higher than 7% of body weight (BW) 41, the DS corresponds 

to the time between the initiation of the LEAD stance phase and the initiation of the 

TRAIL swing phase, and the TS was defined as the time between the time where Fy 

assumes the value zero (Fy=0) and the beginning of the second DS (Figure 1). Variables 

derived from Fy were time integrated to assess the braking (negative Fy) and propulsive 

(positive Fy) impulses during each interval. The percentage of the propulsion impulse 



(%PI) generated by the TRAIL limb during the DS in relation to the LEAD limb 

braking impulse was calculated according to the following equation 49: 

% 100trail

trail lead

Fy
PI

Fy Fy
= ×

+
∫

∫ ∫
, 

where trailFy∫  is the integral of Fy of the TRAIL limb during DS and leadFy∫  is the 

integral of Fy of the LEAD limb during DS. The percentage of propulsive contribution 

provides a quantitative measure of the coordinated output of each leg for forward 

propulsion during the DS of walking 49. 

b) Electromyographic activity 

The EMG of both limb muscles was analysed during the intervals selected to 

evaluate the propulsive and braking impulse (Figure 1). The EMG signals were filtered 

using a zero-lag, second-order Butterworth filter with an effective band pass of 20-450 

Hz, and the root mean square (RMS) was calculated for each interval. The EMG values 

obtained at each interval were normalised to the mean signal for each muscle over the 

entire gait cycle 50. Only the EMG activity of stroke subjects was analysed, as the 

interlimb relation in terms of EMG activity was analysed in our previous study 9. 

 

2.4 Data analysis  

The acquired data was analysed using the Statistic Package Social Science (SPSS) 

software from IBM Company (USA). Spearman’s and Pearson correlation coefficient 

tests were used to assess the relation between contralesional and ipsilesional limbs in 

terms of EMG and propulsive/braking impulse, respectively. As already mentioned, in 

healthy subjects, the interlimb relation was analysed only in terms of propulsive/braking 

impulse. The Paired Samples T-test was used to compare the propulsive and braking 

impulse levels and the relative propulsive contribution between contralesional and 

ipsilesional limbs. To compare the propulsive impulse level between limbs of subjects 

with stroke and between stroke and control group in the three stance subphases, the 

Bonferroni correction was used to reduce type I error. Statistical significance was set at 

p<0.05. 

3. RESULTS 



3.1 Interlimb relation: EMG activity 

Figure 2 shows that, during DS, the higher values of the ipsilesional GM, SOL 

and BF activity at initial contact and loading response are associated to lower values of 

the contralesional VM activity during pre-swing, while during TS higher values of 

ipsilesional SOL and RF activity are associated to lower values of contralesional SOL 

and VM activity at initial contact and loading response.  It was also interesting to note 

that the higher the contralesional VM activity was during pre-swing, the higher the RF 

(r=0.514, p=0.05) and GM activity were (r=0.539, p=0.038) for the same limb. 

3.2 Interlimb relation: propulsive and braking impulse 

Lower values of propulsive impulse and of relative propulsive contribution were 

found in the contralesional limb of the stroke group during pre-swing, Figures 3 and 4, 

respectively. In the control group there were statistically significant correlations 

between the propulsive impulse of the TRAIL limb and the braking impulse of the 

LEAD limb during DS (r=-0.568, p=0.004); however in the stroke group, only the 

braking impulse of the ipsilesional LEAD limb was related to the propulsive impulse of 

the contralesional TRAIL limb during DS (r=-0.639, p=0.010). 

4. DISCUSSION 

Healthy and stroke groups adopted different walking speeds, as they were asked 

to walk at their own comfortable speeds. The adoption of a low self-selected speed has 

been shown to provide stroke subjects with a rate of energy expenditure 3 and muscle 

use ratios or levels of effort 45, 46 that are similar to those of healthy subjects walking at 

their comfortable speeds. In this sense, it can be argued that the differences observed in 

self-selected speed did not interfere with our results.  

Each limb has been shown to affect the strength of muscle activation and time-

space behaviour of the other 9, 52. The results of our study demonstrate that in subjects 

with stroke, the EMG and impulse levels of the TRAIL limb were related to the ones of 

the LEAD limb during DS, but only when the LEAD limb was the ipsilesional limb and 

the TRAIL limb was the contralesional limb. The higher levels of  ipsilesional BF 

activity were associated with lower levels of the contralesional VM activity, which 

despite not developing an important role in this subphase is positively correlated to the 



level of activity of the GM that contributes to swing initiation 53 and of the RF that 

accelerates the trunk forward 38, 39. Taking into account that the BF muscle action has 

been related to impact reduction during initial contact and loading response 40, 54, 55, the 

inverted indirect relation established with the GM and RF activity during pre-swing is 

consistent with the inverted correlation observed between the ipsilesional braking 

impulse and the contralesional propulsive impulse. Based on the step-to-step transition 

model prediction 5 that the TRAIL limb propulsion compensates the energy loss of 

LEAD limb during initial contact and loading response, these results seem to 

demonstrate that the ipsilesional limb improves the coordination deficits of the 

contralesional limb during DS. This is probably because all appropriate ipsilesional  

sensorimotor information can be integrated by the nervous system and thus contribute to 

a more appropriate pattern in the contralesional limb. However, it should be noted that 

the SOL activity increases the horizontal energy of the trunk much more than the GM, 

especially in the late stance 53, 56, and no influence was exerted by this muscle in the 

ipsilesional limb. 

Moreover, an inverted strong/moderate correlation was also observed between 

ipsilesional SOL and GM activity during initial contact and loading response and the 

contralesional VM activity during pre-swing. Considering that the SOL and GM 

antagonists has an agonist roles in impact reduction 57, it would be expected, according 

to the reciprocal inhibition mechanism, that higher SOL and GM values would be 

associated with higher VM levels. This non-functional interlimb relation could be the 

result of excessive co-activation values of plantar flexor and dorsiflexor muscles of the 

ipsilesional limb 29 as a consequence of ipsilaterally mediated effects from the 

neurological lesion 30, 43 and/or to an adaptation for poor stability during gait 37. 

However, no differences were observed in the ankle muscle co-activation between the 

ipsilesional limb of subjects with stroke and control subjects (unpublished work). 

Another explanation could be related to recent evidence indicating that the spinal group 

II excitation from ankle dorsiflexors to knee extensors is particularly enhanced during 

post-stroke in initial stance walking 58. Considering that most midlumbar interneuron 

recipients from group II input are influenced by afferent fibres from both ipsilateral and 

contra-lateral sides 13, a relation from ankle dorsiflexors during initial contact and 

loading response to contra-lateral knee extensors during pre swing could be expected. 

However, our results did not support this relation.  



The contralesional limb muscle activity during initial contact and loading 

response was also correlated to the ipsilesional limb muscle activity during TS. 

Considering that TS precedes initial contact, the results seem to indicate that higher 

levels of the ipsilesional limb SOL could potentiate the activity of the contralesional 

limb TA during loading response through a decrease of SOL activity. This influence is 

close to the interlimb relation observed in healthy subjects 9. 

When comparing the EMG results obtained in this study with the ones obtained in 

healthy subjects from a global point of view 9, it is evident that the TA, BF and VM 

muscles in the healthy subjects have an important role in contralateral limb activity, 

while in the stroke subjects the ipsilesional SOL muscle has consistently more influence 

over the contralesional limb. Besides that, the TA did not have any role in interlimb 

relation in stroke subjects. The lack of influence that the ipsilesional limb has over the 

contralesional TA activity can be explained by the fact that this muscle depends more 

strongly on motor cortex input 59, 60 which can be influenced by lesions in the internal 

capsule via corticospinal tract affections The role of the SOL muscle in mediating the 

interlimb relation in stroke subjects can be justified by its higher dependence on sensory 

input in relation to supraspinal control 61, 62. However, results also demonstrated that the 

functional influence of the ipsilesional SOL muscle over the contralesional limb 

depends on its role in the task. When this muscle acts as an agonist for movement 

(during terminal stance it promotes forward progression of the trunk 53) it exerts an 

influence over the contralesional homolog muscle similar to the healthy subjects 9. 

However, when its activity is more related to postural control, like during loading 

response, it exerts a biomechanically disadvantageous influence over the contralesional 

limb, considering the double inverted pendulum model and the interlimb relation 

observed in healthy subjects 9. These findings support the argument for the dysfunction 

of the ventral-medial system over the ipsilesional limb, also hypothesised in other 

studies 30-32, as one of the causes for impaired interlimb relation in stroke subjects. This 

hypothesis assumes special relevance considering that the stroke participants in this 

study present lesions in the internal capsule, which can be associated to dysfunction of 

the cortico-reticular pathway 63, responsible for ipsilateral postural control. 

According to Bowden et al 49, 2006, the propulsive impulse provides a 

quantitative measure of the coordinated output of both lower limbs in stroke patients. 

The relative propulsive impulse of the contralesional limb was lower than the observed 



in the control group (≈ 40%), which means that the ipsilesional limb energy loss during 

initial contact and loading response probably may not be compensated by propulsion of 

the contralesional limb 5, 7. The contralesional limb of stroke subjects has been shown to 

produce significantly less mechanical work output than of the healthy subjects 64. The 

relative propulsive impulse of the ipsilesional limb exceeds the braking impulse (≈ 

60%) of the contralesional limb during initial contact and loading response and 

probably accelerates the centre of mass 5, 7. It is important to note that in the control 

group, this propulsive impulse of the TRAIL was also higher than 50%. In fact, 

previous studies on healthy subjects demonstrate that the positive mechanical work of 

the TRAIL during DS exceeds the negative mechanical work performed by the LEAD 9. 

Study limitations 

The relationship between muscle activity and mechanical output depends on a 

number of nonlinear intrinsic properties; that is, on force–length–velocity relations that 

make the relationship difficult to predict. Given this limitation, it would be important to 

analyse the relation of joint moment power between limbs during DS and between the 

propulsive and braking impulse of each limb. This knowledge would help 

understanding the role of each muscle in both lower limbs of stroke subjects on gait 

mechanical output during step-to-step transition. 

5. CONCLUSIONS 

The results obtained in this study as to the propulsive impulse demonstrate that 

the contralesional limb presents lower performance in forward propulsion when 

compared with the ipsilesional limb and the control group. Despite exerting an indirect 

functional influence over the activity of plantar flexors, the ipsilesional limb exerted a 

dysfunctional influence during initial contact and loading response over the 

contralesional limb during pre-swing. The influence of the ipsilesional limb over the 

contralesional limb was classified based on the interlimb relation observed in healthy 

subjects 9, the double-inverted pendulum model 5, 7 and the role of individual muscles 

during the stance phases associated to step-to-step transition 38, 53. These findings 

suggest that the lower performance of the contralesional limb in forward propulsion is 

not only related to contralateral supraspinal damage, but also to the influence of the 

ipsilesional limb in stance subphases of increased postural control demand. 



The results here present arguments for considering an indirect impact of a postural 

control dysfunction of the ipsilesional limb on the performance and efficiency of gait in 

stroke subjects. Future works should be developed to explore this possibility as the 

lower performance and lower efficiency of gait in subjects with stroke has been 

attributed mainly to alterations in the contralesional limb. 

Considering the above, rehabilitation strategies should pay special attention to the 

ipsilesional limb to potentiate the contralesional limb activity in subjects with stroke 

affecting the subcortical structures in the territory of medial cerebral artery, such as in 

the internal capsule. Specifically, the results obtained suggest that improving postural 

control of the ipsilesional limb could have positive effects over the interlimb relation 

during step-to-step transition and consequently, over the walking performance. 
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FIGURE CAPTIONS 

Figure 1: The intervals used to assess the interlimb relation during the stance phase of 

walking in stroke subjects were defined using the variation of the ground reaction force. 

The intervals are shown for each series: a) when the ipsilesional limb was the TRAIL 

limb and the contralesional limb was the LEAD limb, and b) when the ipsilesional limb 

was the LEAD limb and the contralesional limb was the TRAIL limb. 

Figure 2: Representation of statistically significant correlations between the limbs 

found in the stroke group. Statistically significant correlations occurred in EMG activity 

between the paretic TRAIL limb and the non-paretic LEAD limb during DS (a), and 

between the non-paretic TRAIL limb during TS and the paretic LEAD limb during DS 

(b) and (c) (*significant correlation (p<0.05)). 

Figure 3: Mean (bars) and standard deviation (error bars) of propulsive and braking 

impulse observed in paretic and non-paretic limbs of subjects with stroke and healthy 

controls during DS and TS (*significant correlation (p<0.05)). 

Figure 4: Mean (bars) and standard deviation (error bars) values of the percentage of 

TRAIL propulsive contribution of the paretic and non-paretic limbs of subjects with 

stroke and of TRAIL propulsion contribution in healthy controls during DS 

(*significant correlation (p<0.05)). 
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TABLE CAPTIONS 

Table 1: Mean and standard deviation (SD) values of age, height and weight of the 

healthy and stroke groups, and the average values of the self-selected walking speeds 

adopted by each group. 

  



TABLES 

 

Table 1  

Variables 
Stroke group Control group 

p-value 
Mean±SD Mean±SD 

Age (years) 53.87±7.17 49.24±7.69 0.070 

Height (m) 1.65±0.10 1.66±0.09 0.942 

Body weight (Kg) 75.29±7.03 67.40±8.76 0.006 

Self-selected gait speed (m.s-1) 0.57±0.13 1.00±0.03 <0.001 

 

 


