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ABSTRACT 

 
 

Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will 

be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two 

of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to 

produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid 

recycling and heat integration. 

The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average 

deviation of results for each algorithm, capacity for produc- ing high purity product, screening of topologies, objective functions robustness in screening of 

topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions. 
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1. Introduction 

 
When using some heuristic hierarchical procedures for concep- 

tual process design (Douglas, 1988; Smith, 1995), the result is a set 

of feasible flowsheets that can be further quantified and developed 

by using a process simulator and optimized and screened by com- 

parison of their optimal performance in terms of some criterion 

(objective function). With this procedure (comparison included) it 

is possible to determine the global optimal solution that will allow 

the screening of the several feasible flowsheets as the performance 

of each flowsheet can be compared with the optimum. 

Full flowsheet optimization problems are constituted by a set of 

linear and/or non-linear equations, related with equipment design 

and/or mass balance equations solution, with multiple integer 

and/or continuous variables. These types of problems are combina- 

torial in nature due to the huge number of possible combinations 

of the multiple variables values that can solve that set of equations. 

Due to this combinatorial nature meta-heuristics are algorithms 

that can be suitable to solve these problems although not being 

able to guarantee global optimality but many times conducting to 

very good solutions. Among these algorithms, simulated anneal- 

 
 

 

ing (SA) and tabu search (TS), can be good candidates. They were 

chosen because they are potentially suitable for solving this kind 

of problems, they are quite different which will allow the compar- 

ison of the application of these different meta-heuristics to this 

type of problems and because there is almost no experience in 

applying these algorithms to full flowsheet optimizations prob- 

lems. Population search algorithms are another possibility that was 

not considered in this work particularly because they can put pre- 

mature convergence problems which deserve the development of 

similar indicators that were out of the scope of this research (Hertz 

&  Widmer, 2003). 

Historically, SA was successfully applied to solve the salesman 

problem and in the design of integrated complex circuits and its 

implementation is relatively simple (Press, Teukolsky, Vetterling, 

& Flannery, 1992). In the chemical engineering field some appli- 

cations can be mentioned like in heat exchange networks (Dolan, 

Cummings, & Van, 1990), in batch process scheduling (Cardoso, 

Salcedo, Azevedo, & Barbosa, 1997; Das, Cummings, & LeVan, 1990; 

Ku and Karimi, 1991; Patel, Mah, & Karimi, 1991), in the optimiza- 

tion of batch distillation processes (Hanke and Li, 2000) and in 

dynamic optimization (Faber et al., 2005). In what concerns opti- 

mization problems only involving continuous variables one can 

mention the works of Press and Teukolsky (1991) and Cardoso, 

Salcedo, and Azevedo (1996). 

TS was applied by Cavin, Fischer, Mosat, and Hungerbuhler 

(2005) in batch process scheduling and by Lin and Miller (2004) 
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Nomenclature 
 

C total annual cost (D ) 

CA global potential environmental impact cost (D ) 

CM worst value of the objective   function 
 C difference between values of the objective function 

in two consecutives iterations 

d depreciation 

GPEI global potential environmental impact 

GPEI-EPS global potential environmental impact (EPS 

methodology) 

i interest rate 

I total capital investment (D ) 

k actual iteration number in TS algorithm 

kcenter determines when the sigmoid function is equal to 
0.5 

M total number of iterations in TS algorithm 

n service life (year) 

NPV1 net present value (D ) 

NPV2 net present value with environmental costs (D ) 

P probability 

TSA temperature on SA algorithm 

TSA0 initial temperature on SA algorithm 
V annual income (D  ) 
vc optimization variable 

 vc vector optimization variables random increments 

vc(0) fresh reactant molar ratio 

vc(3) flash pressure (Pa) 

vc(4) benzene molar fraction in the purge 

vc(5) purge flowrate (mol/s) 

vc(6) reactor volume (m3) 

vc(7) column 2 top stream toluene molar fraction or ben- 

zene recovery 

vc(8) column 2 bottom stream benzene molar fraction or 

toluene recovery 

vc(9) column 2 operating pressure (Pa) 

vc(10) column  1  top  stream  benzene  molar  fraction or 

methane recovery 

vc(11) column 1 reflux ratio 

vc(12) column 1 operating pressure (Pa) 

vc(13) column 3 top stream toluene recovery 

vc(14) column 3 operating pressure (Pa) 

vc(15) column 1 number of trays 

vc(16) column 2 number of trays 

vc(18) column 3 number of trays 

vc(19) column 3 bottom stream diphenyl recovery 

 
Greek letters 

˛ SA algorithm parameter 

o TS algorithm parameter 

˚ income tax 

 
Acronyms 

A topology with one column without recirculation   of 

the toluene/diphenyl stream and without energy 

integration 

Ae similar to topology A but with energy  integration 

E topology  with  two  columns  without  recirculation 

of the toluene/diphenyl stream and without energy 

integration 

Ee similar to topology E but with energy  integration 

EPS Environmental  Priority Strategies 

Ge topology with three columns, recirculation of  the 

toluene/diphenyl stream and energy  integration 

 
 
 
 
 
 

 
in the optimization of some case studies of chemical engineering, 

namely heat exchange networks and pump systems. 

The experience in applying SA to full process optimization prob- 

lems even of the LP or NLP type is relatively scarce and there is 

practically no experience with TS. 

One of the objectives of this paper is then to analyze and com- 

pare the performance of these two algorithms in the optimization 

of flowsheets of different complexities essentially resulting from 

more or less mass and/or heat integration (reusing or recycling) for 

the same case study. 

Pollution prevention is nowadays an issue of concern implying 

the consideration of environmental aspects since the  concep- 

tual and preliminary process design steps, as a way to develop 

plants with less environmental impact but without losing economic 

competitiveness. Brennecke and Stadtherr (2002) identified some 

pollution prevention strategies and Cano-Ruiz and McRae (1998) 

presented a review on the strategies to incorporate environmen- 

tal aspects in the design of processes. Some researchers although 

using economic type objective functions dealt with mass and/or 

energy conservation issues (El-Halwagi and Manousiouthakis, 

1990). Dietz, Azzaro-Pantel, Pibouleau, and Domenech (2006) 

applied multiobjective optimization for multiproduct batch plant 

design using economic and environmental considerations. 

In terms of process optimization the number of works that 

include environmental concerns in the objective function is also 

relatively scarce. 

In this work we will be exploiting mono-objective process 

optimization using different objective functions looking for the tra- 

ditional economic based optimum and to an optimum only based on 

environmental considerations, detecting eventual trade-offs exist- 

ing between both criteria. Another approach is also explored aiming 

at solving these trade-offs by using a mixed type objective function, 

e.g., economic plus environmental costs. So objective functions of 

the economic, environment and mixed type were used, namely net 

present value (NPV), global potential environmental impact (GPEI) 

and mixed (NPV + environmental costs). 

So in this work we compare the performance of SA and TS for 

different complexity flowsheets of the same case study and differ- 

ent objective functions and we compare and discuss the optimal 

conditions obtained. 

 
2. Algorithms and objective functions 

 
To perform process optimization we need a model, usually rep- 

resented by a set of non-linear algebraic equations, a numerical 

algorithm to solve it, an optimization algorithm, boundaries for the 

search space and an objective function. 

 
2.1. Simulator 

 
Instead of writing down all the equations to represent the full 

process model we preferred the use of a commercial simulator, 

PROII (SimScience, 2005). This is easier than constructing and solv- 

ing the “raw model” although presenting two main difficulties. The 

first one is the need for an interface between this type of simu- 

lator and the optimization algorithm. The second is linked to the 

identification of the causes for simulations failure. 

GPI 
LP 

NLP 

SA 

TS 

global potential impact 
linear problem 

non-linear problem 

simulated annealing 

tabu search 



  

 

Since the optimization programme has no direct access to the 

modular simulator an interface was developed to transfer data 

between them. The optimization programmes were constructed in 

Visual Basic for Applications (VBA) and are composed by several 

modules: 

 
 

- main 

- introduction of data (optimization algorithm parameters, number 

of variables, choice of objective function, etc.) 

- generation of next solutions 

- construction of simulator input files 

- simulator call and execution of simulation 

- analysis 1: code errors in simulations 

- extraction of output results 

- analysis 2: impossibilities analysis (ex.: no existence of a stream 

flow, equipment construction impossibilities, like column diam- 

eter higher/smaller than what is usually constructed/used, etc.) 

- economic calculations 

- environmental calculations 

- objective function calculation 

- optimization algorithms calculations 
 

 
Although no unit operation can disappear (that would change 

the topology) and since it is considered in the simulator input file 

(except pumps, because a check is done after the generation of the 

next solution; if it is not necessary it will be not be considered). 

 

 

 

Fig. 1.  Optimization with simulated annealing. Programme  flowchart. 



  

 
Each iteration solution (if feasible) and almost every data/results 

related are automatically saved in an excel worksheet. 

 
 

2.2. Algorithms 

 
2.2.1. Simulated annealing 

This multivariable algorithm was proposed by Kirkpatrick, 

Gelatt, and Vecchi (1983), being based on a random search, con- 

ditioned by a probabilistic function (e.g. Boltzman distribution), 

capable of exploring the whole solution space, avoiding local 

optima and reaching solutions independent from the starting one. 

Fig. 1 depicts the flowchart of the programme that involves several 

steps. Some more interesting details are described next. 

 
In order to apply SA to a problem it is necessary to perform the 

following steps: 

 
- define the objective function; 

- determine the initial temperature; 

- define the strategy to determine the next solution; 

- define the acceptance criteria and the annealing cooling schedule; 

- define the termination criteria. 

 
When applying SA to a given problem a set of preliminary opti- 

mizations should be done in order to establish the value of some 

of the algorithm parameters, like initial temperature, the value 

of the constant in the annealing cooling schedule, the number of 

cycles in the termination criteria, etc. This is called the tuning 

 

 

 

Fig. 2.  Optimization with tabu search. Programme  flowchart. 



  

 

phase. More details on SA algorithm can be found in Press et al. 

(1992). 

 
2.3. Initial temperature 

 

This temperature can be established by deciding  which frac- 

tion of the generated solutions will be initially accepted. Larger 

temperatures imply  the  acceptance  of  more  moves  and  a  bet- 

ter exploitation of the search space but also larger computational 

time (Patel et al., 1991). We considered the initial temperature 

(TSA0) as a function of the worst value of the objective function 

(CM) (Pibouleau, Domenech, Davin, & e Azzaro-Pantel, 2005). Some 

preliminary optimizations were done considering three possibili- 

ties, namely TSA0 = 0.01 × CM, TSA0 = 0.1 × CM and TSA0 =1 × CM. After 

analysing the results, using the deviation between the actual solu- 

tion to the best one, we concluded that TSA0 = 0.1 × CM is a good 

choice. 

 
2.3.1. Strategy to determine the next solution 

Next solution can be obtained by perturbation of the value of 

all or part of the optimization variables depending on the problem. 

These perturbations may be random or heuristic (Press et al., 1992). 

In the case of a chemical process with fixed topology there are 

continuous variables like the temperature and pressure and inte- 

ger variables like the number of stages in the columns. For each 

iteration and optimization variable a random number is generated, 

that will correspond to a certain percentage of the variation range 

of that variable. The value of each optimization variable is then the 

sum of its minimum value and the randomly calculated increment. 

In the case of integer variables that value is rounded to the closest 

integer; when it exceeds the maximum value a new increment is 

randomly calculated. By doing this some restrictions are incorpo- 

rated in the search space. The first solution was always viable and 

randomly generated. 

 
2.3.2. Acceptance criteria and annealing cooling schedule 

The Metropolis algorithm was chosen because it usually displays 

better performance than the Glauber algorithm as can be seen in 

the works of Cardoso, Salcedo, and Azevedo (1994), Das et al. (1990) 

and Patel et al. (1991). 

In the Metropolis algorithm the acceptance criteria for mini- 

mization is as follows: 
 

• accept the move if the value of the objective function decreases, 

since the new solution is better than the previous one; 
• If the value of the objective function increases the new solu- 

tion will be accepted with probability P, given by the Boltzman 

distribution (Press et al., 1992): 

  

where P is the probability (between 0 and 1), C is the difference 
between the values of the objective function in two consecutive 

iterations and TSA is the temperature. Nevertheless we always kept 

in memory the best solution ever  found. 

The Kirkpatrick cooling schedule can more easily converge to 

local optima than the one proposed by Aars and Laarhoven (1985), 

especially when the constant used is small. However it allows for 

convergence in a reasonable number of iterations. In this work we 

will be using Kirkpatrick’s approach: 

ity  by  considering  constant  values  near  1  (Faber,  Jockenhovel,  & 

Tsatsaronis,  2005).  That  corresponds  to  a  slow  cooling.  Thus  we 

only tested high values for ˛, namely 0.95 and 0.9. After performing 

some preliminary tests and looking to the solutions quality by com- 

parison with the best solution found, 0.9 was chosen. The number 

of iterations per temperature was also tested; better results were 

obtained when using at least two times the number of optimization 

variables. 

 
2.4. Termination criteria 

 
Various criteria were used to finish iterations (Aars & Laarhoven, 

1985; Patel et al., 1991; Press et al.,  1992). 

We used simultaneously a fix number of iterations and of suc- 

cesses. The number of successes in a normal situation will not be 

reached. To establish the maximum number of iterations we car- 

ried out several optimizations varying that number and looking for 

the improvement in the objective function value of the solutions; 

we concluded that 26 cycles were sufficient. Considering a higher 

number of cycles did not improve the value of the objective function 

for the solutions obtained. 

 
2.5. Tabu search 

 
TS is a stochastic optimization method based on memory 

(Glover, 1986). The search begins with a randomly obtained ini- 

tial viable solution that is used to generate other solutions. The 

best solution from the set of generated solutions if better than the 

initial one, is chosen as a new solution, to start a new cycle. When 

the best solution is not better than the initial one (beginning of the 

cycle), it is sent to the tabu list that is systematically actualized 

by a procedure of the type first in–first out. This memory is used 

to avoid local optima. Intensification strategies will allow the thor- 

ough exploration of promising areas while diversification strategies 

are used to perform search in unknown areas. The aspiration crite- 

rion is used to override the tabu list when a better solution (than 

all the others) is found. In the simplest way the aspiration criteria 

can retrieve that better solution from the tabu list and use it as a 

new starting solution. Fig. 2 shows the flowchart for the tabu search 

programme; next we analyze some more important details. 

In order to apply TS to a problem it is necessary to perform the 

following steps: 

 
- define the objective function; 

- define the strategy to determine the neighbourhood solutions; 

- define tabu lists; 

- define the aspiration criterion; 

- define the diversification strategy; 

- define the intensification strategy; 

- define the termination criteria. 

 
When applying TS to a given problem a set of preliminary opti- 

mizations should be done in order to establish the value of some of 

the algorithms parameters. 

 
2.5.1. Strategy to find neighbourhood solutions 

There are several strategies to find the neighbourhood solutions. 

Accordingly to Lin and Miller (2004) that can be done by adding to 

the vector initial solution a vector random increment,      vc,    deter- 
mined by multiplying a vector of random numbers (between −1 

 
  and 1) and the vector magnitude of the variables vc search space; 

where TSAi 1 
and TSA are, respectively the new and the actual tem- 

+ i 

peratures. 
The suggested values for the constant ˛, are between 0.5 and 

0.99.  A  global  optimum  can  be  achieved  with  high probabil- 

the random selection of a subset of possible changes was the cri- 

terion used by Cavin et al. (2005). The first method was selected 

because it is the most suitable for the problems studied (optimiza- 

tion that involves mostly continuous variables). 



  

2.6.  Tabu lists 

Specific solutions were saved in the tabu lists but the areas sur- 

rounding each of them are classified as tabu since in a continuous 

space the probability of visiting the same solution twice is very 

small. The tabu area is approximately 20% of the search space (cen- 

 
2.12.   Economic type 

 
Net Present Value (NPV1) was used as economic objective func- 

tion (Peters, Timmerhaus, & West,   2003). 

tred in the solution) along each dimension (Lin & Miller, 2004).  
 

  

 
2.7.  Aspiration criterion 

 
The method suggested by Lin and Miller (2004) was chosen for 

aspiration criteria. It achieves a balance between intensification 

and diversification important in this case because the number of 

iterations will not be very high. It is based on a sigmoid function: 

 

where Vl is the annual income in the year l, Cl is the total annual 

cost, d is the linear depreciation, ̊  is the income tax, i is the interest 

(constant), I is the total capital investment (entirely realized in year 

0) and n is the service life. 

 
2.13.   Environmental type 

 
A suitable way to quantify environmental performance is 

through the consideration of the potential environmental impacts 
   whose evaluation can be done by several methodologies. They 

imply the definition of the scope (space and time), the choice 
where k is the actual iteration number, kcenter determines when the 
sigmoid function is equal to 0.5, M is the total number of iterations 

ad is related to M. Its recommended range is between 5/M and 

10/M; in this work we used 5/M. 

 

 
2.8. Diversification strategy 

 
When in the tabu frequency list the frequency of a solution 

attains the maximum frequency (number of elements in the list) the 

search process is reinitialized by generating a new random solution 

(Lin and Miller, 2004). 

 

 
2.9. Intensification strategy 

 
The intensification strategy consists on choosing the best solu- 

tion of the long memory list as a new starting solution after a certain 

number of iterations (Wang, Quan, & Xu, 1999). 

 

 
2.10. Termination criterion 

 
The number of iterations as well as the number of solutions to 

be evaluated in each iteration was studied by performing some pre- 

liminary tests. From the results we could conclude that considering 

three solutions evaluation per iteration leads to good results. 

Thus in each iteration we have three solutions, one of them com- 

ing from the previous iteration, except in the case when there is a 

random generation of the starting solution. For this reason a num- 

ber of iterations equal to one-third of the number of iterations used 

in SA were used. This was also confirmed by doing runs with a larger 

number of iterations where no results improvement was observed. 

 

 
2.11. Objective functions 

 
Four objective functions were considered, later described in 

detail: 

 

• Net Present Value (NPV1)—maximization; 

• Net Present Value with inclusion of environmental impact costs 

(NPV2)—maximization; 
• Global Potential Environmental Impact (GPEI)—minimization; 
• Global Potential Environmental Impact according to EPS method- 

ology (GPEI-EPS)—minimization. 

of environmental impacts category, their characterization, nor- 

malization and weighting to obtain an aggregated indicator. The 

environmental evaluation should be compatible with the available 

information so a gate to gate approach was taken, considering only 

the impacts originated by the process and by its energy require- 

ments and a year of operation as the basis to do the calculations. 

Two methods were used: one based on the Guinée (2002) and on 

the IChemE (2007) methodologies and the other the Environmental 

Priority Strategies (EPS) methodology (Steen, 1999). 

 
2.13.1. Methodology based on Guinée & IChemE (GPEI) 

The chosen impact categories belong to the first set, namely the 

baseline impact categories and for which there is a characterization 

method available in the literature (Guinée, 2002) and are the fol- 

lowing: depletion of abiotic resources, impact of land use, climate 

change, stratospheric ozone depletion, human toxicity,  ecotoxic- 

ity, photo-oxidant formation, acidification and eutrophication. For 

the case of human toxicity there is no impact factor internation- 

ally accepted being more suitable to consider a characterization 

more linked to the process under study. For this reason we used the 

impact category from IChemE (2007), human health—carcinogenic, 

since in the process studied there are carcinogenic    chemicals. 

The normalization was done using a procedure similar to the 

WAR algorithm (Young & Cabezas, 1999). The normalization within 

each category allows for a more independent analysis from spatial 

and temporal references which in the case of process optimization 

can have some advantages, since sometimes that information may 

not exist. The weight for each category was considered equal to 1, 

since there is no location defined. 

 
2.13.2. EPS methodology (GPEI-EPS) 

The EPS system (Steen, 1999) was created to meet the require- 

ments of product development and it takes into account the 

ISO14042 norm. There is an index for each element (e.g. CO2 

expressed in environmental load unit (ELU)/kg or transport 

expressed in ELU/(t.km)) which allows for the calculation of the 

total environmental load by summing all the environmental loads 

(element index times mass flow in the case of a chemical). This sys- 

tem is based on the willingness to pay concept, aiming at obtaining 

a figure easily understandable by the designers and by the society. 

 
2.14.  Mixed type 

 
The mixed type objective function was constructed by con- 

sidering a NPV that includes GPEI costs evaluated by the EPS 

methodology, since one ELU is approximately one euro (Tanzil et 



  
 

                                               Fig. 4. Topology Ae. 

Fig. 3.  Topology A. 
 

 

al., 2002). The total annual cost is now calculated as the sum of Cl 

plus CA, where CA is the global potential environmental impact cost. 

 
3. Case study 

 

The non-catalytic hydrodealkylation of toluene to benzene 

(HDA) was selected as a case study mainly because it is quite well 

documented and several topologies with more or less complexity 

can be established. These different topologies are closely related to 

mass and heat conservation by reuse and recycling and thus with 

pollution prevention. 

The reactions of interest are 

  

  

The raw-material streams are toluene and hydrogen with 3% 

of methane at 3.964 × 106 Pa and 303.2 K, normally used in indus- 

try and referred by Douglas (1988), Luyben, Tyréus, and Luyben 

(1999) and Qiu, Krishnaswamy, and Rangaiah (2000). The product 

(benzene) should be of high purity (higher than  99.0%). 

 
3.1. Topologies 

 
The hierarchical heuristic procedures in conceptual design usu- 

ally lead to a set of feasible flowsheets that should be further 

evaluated. Statistical design was introduced in those procedures to 

reduce the number of flowsheets to be studied. Two types of criteria 

were used: quality requirements and economic or environmental 

or mixed criterion. When the quality requirement was used only a 

small decrease of the number of topologies was observed (30–21). 

When economic, environmental or mixed criteria were used a large 

reduction: 21 topologies to five topologies (Martins & Costa, 2008). 

These five topologies were considered for optimization and their 

schematic representations are presented in the following figures 

(Figs. 3–7) (Table 1). 

 
3.2. Optimization variables 

 
The optimization variables were chosen mainly considering the 

characteristics of the process and of the topology and the variable 

input set determined by the simulator. Since we used a process sim- 

ulator to model the process, degrees of freedom analysis was based 

on the available input set of variables established by the simulator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Topology E. 

 

 

For each piece of equipment considered, the simulator automati- 

cally carries a degrees of freedom analysis for that unit. For example 

when considering a column, the simulator will ask for the num- 

ber of trays so it is possible to give different values to this integer 

variable and it can be considered an optimization variable. 

 

 

 
Fig. 6. Topology Ee. 



 

 

 
Fig. 7. Topology Ge. 

 
Table 1 

Equipment and characteristics of each topology. 
 

Topology Adiabatic reactor Flash Compressor Colunm 1a
 Colunm 2b

 Colunm 3c
 Toluene recirculation Energy integration 

A 1 1 1  1  No No 

Ae 1 1 1  1  No Yes 

E 1 1 1 1 1  No No 

Ee 1 1 1 1 1  No Yes 

Ge 1 1 1 1 1 1 Yes Yes 

a  Separation hydrogenmethane\benzenetoluenediphenyl. 
b  Separation hydrogenmethane\benzene\toluenediphenyl or hydrogenmethane benzene\toluenediphenyl or benzene\toluenediphenyl. 
c  Separation toluene\diphenyl. 

 

In the simulation mode (the optimization process is con- 

tinuous and for each iteration the simulator runs  with  the 

values of the optimization variables of that iteration) the sim- 

ulator solves a problem where all the variables are specified, 

although  some  of  them  will  be  varied  in  each  iteration.    So 

degrees freedom analysis is imbedded in the simulator. Some of 

the available variables can be fixed (so this will decrease the 

number of degrees of freedom) using practical experience or 

process constrains. In the present case these were the follow- 

ing: 
 

Table 2 

Range for the optimization variables. 
 

Variables Maximum Minimum References Topologies 

Fresh reactant molar ratio 2.50:1.00 1.00:1.00  A, Ae, E, Ee, Ge 

Flash pressure (Pa) 

Benzene molar fraction in the purge 

3.4 × 106
 

0.01000 

3.4 × 105
 

0.00500 

3.4 × 105 Pa (Douglas, 1988); 3.4 × 106 psia (Luyben et al., 1999) 

0.0077 (Qiu et al., 2000) 

A, Ae, E, Ee, Ge 

A, Ae, E, Ee, Ge 

Purge flowrate (mol/s) 72.5 12.6  A, Ae, E, Ee, Ge 

Reactor volume (m3 ) 142 85 116 m3 (Douglas, 1988) A, Ae, E, Ee, Ge 

Column 2 top stream toluene molar fraction 0.0010 0.0003  A, Ae, E, Ee 

Column 2 top stream benzene recovery 0.999 0.990  Ge 

Column 2 bottom stream benzene molar fraction 0.0010 0.0003 0.0003 (Douglas, 1988; Luyben et al., 1999; Qiu et al., 2000) A, Ae, E, Ee 

Column 2 bottom stream toluene recovery 0.999 0.990  Ge 

Column 2 operating pressure (Pa) 

Column 1 top stream benzene molar fraction 

1.0 × 106
 

0.10 

1.0 × 105
 

0.06 
 A, Ae, E, Ee, Ge 

E, Ee 

Column 1 top stream methane recovery 0.999 0.990  Ge 

Column 1 reflux ratio 5 0.25  E, Ee, Ge 

Column 1 operating pressure (Pa) 

Column 3 bottom stream diphenyl recovery 

1.0 × 106
 

0.999 

1.0 × 105
 

0.990 

(Douglas, 1988) E, Ee, Ge 

Ge 

Column 3 operating pressure (Pa) 

Column 1 number of trays 

1.0 × 106
 

10 

1.0 × 105
 

3 

 
5 (Qiu et al., 2000) 

Ge 

E, Ee, Ge 

Column 2 number of trays 42 23 27 (Qiu et al., 2000) A, Ae, E, Ee, Ge 

Column 3 number of trays 12 5 7 (Qiu et al., 2000) Ge 

Column 3 top stream toluene recovery 0.999 0.990  Ge 

 

Table 3 

Impact categories, models and indicators. 
 

Impact categories Scale Model Reference chemicals Necessary or emitted compounds 

Climate change Global Guinée CO2 CO2 

    CH4 

Acidification Regional/local Guinée SO2 NOx 

 
Eutrophication 

 
Local 

 
Guinée PO4

3−
 

SO2 

NOx 

Photo-oxidant formation Local Guinée Ethylene C6 H6 ; CH4 

    C7 H8 ; SO2 

Human  health—carcinogenic Local IChemE Benzene C6 H6 

Depletion of abiotic resources Global/regional/local Guinée Antimony Fuel 



  
 

Table 4 

SA and TS optimization performance. 
 

Topology–objective function Average deviation (%) 

SA 

 Opt Best 

 

 
TS 

 

 Best 

Optimal solutions 

SA 

Opt 

 
 
 

 
Best 

 
 
 

 
Purity 

 

 
TS 

Opt Purity 

A–NPV1(MD ) 4.9 0.8 2.2 −150  0.941 −148 0.941 

A–NPV2 (MD ) 5.3 1.7 3.9 −203  0.939 −200 0.951 

A–GPEI 26.8 4.9 10.4 2.21 × 105
  0.951 2.05 × 105

 0.949 

A–GPEI-EPS 10.1 3.5 6.4 1.54 × 107
  0.963 1.47 × 107

 0.959 

Ae–NPV1(MD ) 2.7 1.3 2.6 −144  0.947 −143 0.944 

Ae–NPV2(MD ) 6.6 3.2 2.0  −190 0.937 −194 0.941 

Ae–GPEI 10.1 4.1 2.6  2.48 × 105
 0.938 2.53 × 105

 0.965 

Ae–GPEI-EPS 14.2 3.2 7.9 1.49 × 107
  0.957 1.46 × 107

 0.956 

E–NPV1(MD ) 13.1 1.0 2.1  −157 0.999 −156 1.000 

E–NPV2(MD ) 7.0 4.9 2.9 −209  1.000 −206 1.000 

E–GPEI 28.0 15.3 4.4 1.89 × 105
  1.000 1.98 × 105

 0.999 

E–GPEI-EPS 19.9 6.9 5.5  1.53 × 107
 0.999 1.53 × 107

 1.000 

Ee–NPV1(MD ) 148.2 137.7 6.7 −178  0.999 −175 0.999 

Ee–NPV2(MD ) 151.5 151.5 144.8 −225  0.999 −214 0.999 

Ee–GPEI 244.1 244.1 141.0 3.51 × 105
  0.999 3.19 × 105

 1.000 

Ee–GPEI-EPS 31.7 29.2 98.0 3.60 × 107
  0.999 1.69 × 107

 1.000 

Ge–NPV1(MD ) 5.0 2.2 8.4  −154 0.997 −148 0.998 

Ge–NPV2(MD ) 15.9 8.9 10.2  −198 0.999 −198 0.991 

Ge–GPEI 31.7 14.6 5.9  2.50 × 105
 0.998 2.59 × 105

 1.000 

Ge–GPEI-EPS 21.0 17.7 16.4  1.48 × 107
 0.997 1.44 × 107

 0.996 

Opt: optimum value of the objective function; Best: best value of the objective function; Purity: benzene molar fraction in the  product. 

 
 

• Reactor feed temperature = 894 K (below this temperature the 

reaction is too slow and above 978 K undesired reactions occur 

(Douglas, 1988)). 
• Cooling water temperature = 293 K (inlet); 313 K (outlet). 
• Reactor pressure = 3.4 × 106 Pa (Douglas, 1988). 
• Stream temperature after cooling in the heat exchanger placed 

after the reactor = 311 K (Douglas, 1988). 
• Coolant flowrate for rapid cooling of the outlet stream of the 

reactor to avoid coke formation = 19.6 mol/s (Luyben et al., 1999). 
• Minimum temperature difference in the heat exchangers=5K 

(Biegler, Grossmann, & Westerberg, 1997). 

• Compressor outlet pressure = 3.8 × 106 Pa (Douglas, 1988). 

In the simulation of the distillation columns we considered par- 

tial condensers and kettle reboilers. 

Table 2 indicates the optimization variables  for  each  topol- 

ogy. For Ge topology component recoveries (= component molar 

flowrate in the selected stream/component molar flowrate in the 

column feed stream) were used instead of molar fractions since the 

simulator performed better this  way. 

The range for the optimization variables was established using 

data available in the literature (Douglas, 1988; Luyben et al., 1999; 

Qiu et al., 2000) and by doing some preliminary calculations. 

Table 2 presents the boundaries for each optimization variable. 

 
3.3. Impact categories 

 
The impact related to land use was not considered since at this 

stage neither the area needed for the plant nor its location is known. 

Also there are no compounds for the impact category stratospheric 

ozone depletion. The impact category human toxicity from the 

Guinée model (Guinée, 2002) was replaced by the impact category 

human health—carcinogenic from IChemE (IChemE, Janeiro/2007). 

The impact category ecotoxicity was not considered since the fac- 

tors for the chemicals present in this process are very low and for 

that reason their impact would not be   meaningful. 

Table 3 resumes impact categories, models and indicators that 

were used. 

 
4. Results 

 
SA and tabu search optimization methodologies usually find dif- 

ferent optima for each run although the values of the objective 

function are not too different. So there is a certain dispersion of 

results, meaning that smaller dispersion increases the chance of 

obtaining a result closest to the best (global optimum) when per- 

forming only one run. Thus a way to assess performance can be 

based on observed dispersion measured in the present case by 

an average deviation. For SA two types of deviation where cal- 

culated: the average deviation relatively to the optimum solution 

found in all SA runs for the same topology and objective function 

and the average deviation relatively to the best solution found. 

For tabu search only the first average deviation was evaluated. 

For each topology, algorithm and objective function five runs were 

performed. The SA algorithm always stores the best solution ever 

found during the optimization and not only the last solution. Table 4 

shows the results. 

Retaining the best solution ever found in SA is a good strat- 

egy since the average deviation is normally smaller than when the 

optimum solution is  considered. 

We consider that an algorithm has good performance (bold in 

Table 4) when the average deviation is equal or smaller than 5% and 

reasonable performance (italic in Table 4) for average deviations 

between 5 and 10%. 

SA presented good performance for topologies A and Ae 

whichever the objective function, for topology E with NPV type 

objective functions and for topology Ge for the NPV1 objective func- 

tion. Reasonable performance was observed for topologies E and Ge 

with GPEI-EPS and NPV2 objective functions, respectively. In the 

remaining cases the performance is poor, especially for topology 

Ee. 

TS presented good performance for topologies A, Ae and E when 

the objective functions are of the NPV type and also for topologies 

Ae and E with GPEI objective function. Reasonable performance was 

observed for topology A with GPEI and GPEI-EPS objective func- 

tions, for topologies Ae and E with the GPEI-EPS objective function, 

for topology Ee with NPV1 objective function and for topology   Ge 



Table 5 

Objective functions used for optimization (bold) and calculated values of the other objective functions using the values found for the design variables by optimization with 

the chosen objective functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
with NPV1, NPV2 and GPEI objective functions. Resuming we can 

say that the algorithms are not efficient for more complex topolo- 

gies (e.g. Ee and Ge) particularly with environmental impact type 

objective functions and that in average and from this point of view 

SA performs better than TS. 

The process we are using as case study aims at producing high 

purity benzene (purity above 0.990). From Table 4 we can see that 

only topologies E, Ee and Ge are able to reach that stage, due to 

the addition of a second distillation column. During optimizations 

with topologies A and Ae we found a few solutions leading to 

purities higher than 0.990. These were not retained because con- 

ducted to objective functions values worse than those observed for 

topologies E and Ge. The reason for this relies in increased capi- 

tal costs and energy consumption due to higher streams flowrates 

(e.g. gas recirculation system). Usually the use of global impact type 

objective functions leads to better purities. From this point a view 

both algorithms show almost similar performance, with a marginal 

advantage for TS. 

We take now the perspective of choosing a topology based on 

the value of an objective function. For NPV1 and NPV2 the best 

topology is Ae for both SA and TS, although high purity cannot be 

reached for the final solutions. This is possibly due to not consid- 

ering a penalty for benzene price when purity is lower than 0.990. 

If this was the case Ge topology would possibly had been elected. 

In the case of GPEI and of GPEI-EPS both algorithms conducted to 

the same topologies, respectively E and Ge. Topology Ee got the 

worse values for all objective functions. This is essentially linked to 

high flowrates that are not economically neither environmentally 

favourable. 

Comparing now the values of the objective functions obtained 

by SA and TS for each topology we can conclude that from this point 

of view TS performed quite better than SA, although those values 

were not too  different. 

If we choose an objective function and optimization method to 

screen among various topologies, how invariant is this choice to 

using other objective functions. Table 5 shows the value of other 

objective functions calculated with the optimum values for the 

design variables obtained by optimization with the chosen objec- 

tive function (bold). 

When using SA with NPV1 as objective function the best topol- 

ogy is Ae. Calculated NPV2 points to the same choice but GPEI gives 

topology E and GPEI-EPS, topology Ge. TS gives similar results. If 

we look to other objective functions we get results in the same line 

as described. So we can conclude that NPV1 and NPV2 give very 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 8.  Comparison among various objective functions when using SA. 

 

 

close results in terms of selecting a topology. Taking now the envi- 

ronmental potential impact type objective functions we can easily 

conclude that topology selection is not invariant with the choice of 

this kind of objective function. 

Another issue is the possibility of the existence of trade-offs 

when using different objective functions. Figs. 8 and 9 compare 

several objective functions: NPV1 with GPEI (2nd quadrant) and 

NPV2 (3rd quadrant), GPEI with GPEI-EPS (1st quadrant) and NPV2 

with GPEI-EPS (4th quadrant), respectively for optimizations using 

SA and TS. 

 

 

 
Fig. 9.  Comparison among various objective functions when using TS. 

Objective function A   Ae   E   Ee   Ge  

 SA TS  SA TS  SA TS  SA TS  SA TS 

NPV1 × 10−8 D −1.50 −1.48  −1.44 −1.43  −1.57 −1.56  −1.78 −1.75  −1.54 −1.48 

NPV2 × 10−8 D −2.04 −2.01  −1.97 −1.98  −2.12 −2.09  −2.34 −2.40  −2.04 −1.97 

GPEI × 10−5
 2.15 2.08  2.62 2.83  2.49 2.35  3.31 3.60  4.70 3.40 

GPEI-EPS × 10−7
 1.64 1.58  1.57 1.65  1.65 1.59  1.70 1.95  1.51 1.46 

NPV1 × 10−8 D −1.51 −1.51  −1.40 −1.44  −1.56 −1.55  −1.70 −1.63  −1.48 −1.55 

NPV2 × 10−8 D −2.03 −2.00  −1.90 −1.94  −2.09 −2.06  −2.25 −2.14  −1.98 −1.98 

GPEI × 10−5
 2.23 2.05  2.50 2.51  2.46 2.22  3.23 2.97  3.45 6.09 

GPEI-EPS × 10−7
 1.54 1.46  1.51 1.49  1.59 1.55  1.66 1.54  1.51 1.30 

NPV1 × 10−8 D −1.48 −1.49  −1.43 −1.52  −1.71 −1.73  −1.84 −1.90  −1.89 −1.81 

NPV2 × 10−8 D −1.98 −1.99  −1.93 −2.04  −2.57 −2.54  −2.47 −2.47  −3.03 −2.80 

GPEI × 10−5
 2.21 2.05  2.48 2.53  1.89 1.98  3.51 3.19  2.50 2.59 

GPEI-EPS × 10−7
 1.52 1.51  1.51 1.58  2.59 2.44  1.91 1.72  3.47 3.01 

NPV1 × 10−8 D −1.58 −1.57  −1.48 −1.46  −1.53 −1.61  −2.56 −1.70  −1.68 −1.50 

NPV2 × 10−8 D −2.09 −2.06  −1.97 −1.94  −2.04 −2.12  −3.75 −2.26  −2.17 −1.98 

GPEI × 10−5
 2.44 2.23  2.56 2.53  2.28 2.45  6.68 3.30  5.64 4.67 

GPEI-EPS × 10−7
 1.54 1.47  1.49 1.46  1.53 1.53  3.60 1.69  1.48 1.44 

 



  
 

Table 6 

Some optimum values for the design variables. 
 

Design variables NPV1 (Ae)  NPV2 (Ae)  GPEI (E)  GPEI-EPS (Ge)  

 SA TS SA TS SA TS SA TS 

vc(0) 1.601 1.751 1.675 1.626 1.331 1.101 1.467 1.126 

vc(3) 2.63 × 106
 2.95 × 106

 3.35 × 106
 3.05 × 106

 3.11 × 106
 2.45 × 106

 7.05 × 105
 3.05 × 106

 

vc(4) 0.0076 0.0055 0.0073 0.0087 0.0071 0.0054 0.0052 0.0060 

vc(5) 59.9 65.2 62.3 59.4 58.1 48.5 52.1 39.1 

vc(6) 92.9 87.8 94.5 124.6 108.7 138.8 102.0 107.6 

vc(7) 0.00057 0.00030 0.00071 0.00095 0.00043 0.00099 0.99252 0.99499 

vc(8) 0.00070 0.00037 0.00039 0.00042 0.00050 0.00045 0.99459 0.99200 

vc(9) 

vc(10) 

3.27 × 105
 9.00 × 105

 2.34 × 105
 1.76 × 105

 5.32 × 105
 

0.089 

5.79 × 105
 

0.089 

5.97 × 105
 

0.992 

4.03 × 105
 

0.994 

vc(11)     2.62 1.80 0.63 1.15 

vc(12) 

vc(13) 
    8.58 × 105

 5.90 × 105
 5.03 × 105

 

0.99423 

3.21 × 105
 

0.99202 

vc(14) 

vc(15) 
     

9 

 
9 

3.18 × 105
 

4 

1.02 × 106
 

3 

vc(16) 38 39 32 35 29 40 34 29 

vc(18)       7 8 

vc(19)       0.99792 0.99300 

 
 

The observation of these figures shows that there is no evidence 

of trade-offs in the sense of having one objective function increas- 

ing while the other decreases. We also can conclude that NPV1 is 

quite independent of GPEI (2nd quadrant), NPV2 and GPEI-EPS (4th 

quadrant) almost do not vary, NPV1 and NPV2 (3rd quadrant) dis- 

play some proportionality and GPEI and GPEI-EPS (1st quadrant) 

also demonstrate some proportionality although the data is quite 

scattered. 

Since no trade-offs were observed it is also not possible to see if 

the combination of economic and environmental concerns in NPV2 

could solve them. 

Table 6 shows the optimum values of the design variables for 

each objective function best topology and algorithm. These values 

vary with the objective function and algorithm even in the cases 

where the objective functions have values quite close. Reactor vol- 

ume varies between 87.8 and 138.8 m3  and columns 1, 2 and 3 

number of stages varies, respectively between 29 and 40, 3 and 9 

and 7 and 8. Molar fractions, recoveries, reflux ratios and streams 

flowrates also vary. 

 
5. Conclusions 

 
This work analyzed the behaviour of two optimization algo- 

rithms, simulated annealing and tabu search, combined with four 

objective functions: two of the net  present  value  type,  one  of 

them including environmental costs and two of the global potential 

impact type. The hydrodealkylation of toluene to produce benzene 

was used as case study, considering five topologies with different 

complexities mainly obtained by including or not liquid recycling 

and  heat integration. 

The performance of the algorithms together with the objective 

functions was observed from various angles: 

 
(a) both optimization methodologies usually show a certain dis- 

persion of results that can be assessed by an average deviation, 

smaller dispersion meaning better performance. 

We concluded that both algorithms performance was poor 

for more complex topologies, particularly with environmental 

impact type objective functions and that in average and from 

this point of view SA (with memory) performs better than TS. 

(b) For this case study we aim at producing high purity benzene. 

This can only be reached with reasonable economic and envi- 

ronmental impacts (costs) when using topologies with at least 

two distillation columns. 

Generally we can say that impact type objective functions 

lead to higher purities and that, from this point of view, the 

algorithms have essentially the same performance. 

(c) When using hierarchical heuristic procedures in process con- 

ceptual design it is common to reach a point where a small 

number of topologies need to be screened and one of them 

chosen, for example based on the value of an objective 

function. 

NPV type objective functions conducted to the choice of 

similar topologies and the same was observed for GPEI type 

objective functions, although with the choice of other topolo- 

gies. The values of the objective functions obtained by SA and 

TS were not too different, although TS performed quite better 

than SA; 

(d) We have to take one objective function to perform this screening 

process it would be interesting to know how dependent on that 

choice are the results. 

In present case NPV type objective functions give very close 

results in terms of selecting a topology. This was not observed 

in the case of using environmental potential impact type objec- 

tive functions that lead to results not only different from those 

obtained with NPV type objective functions but also different 

from one another. 

(e) Since we are dealing with economic and environmental objec- 

tive functions it is interesting to look for possible trade-offs, in 

the sense of having one objective function increasing while the 

other decreases. 

We observed no evidence of this kind of trade-offs, despite the 

detection of some proportionality between NPV and between 

GPEI type objective functions. 

(f) For best topologies the optimum values found for the design 

variables vary with algorithm and objective function, even 

in the cases where the objective functions have quite close 

values. 

 

As main conclusions we can say that these algorithms should be 

carefully used with complex topologies since they shown difficul- 

ties in these cases, although SA performed better than TS for this 

aspect. For NPV and GPEI type objective functions both methods 

point to the same topologies although with the choice of differ- 

ent topologies. SA and TS obtained similar values for the objective 

functions, although TS performed quite better than SA. In the cases 

where the objective functions have quite close values the values 

found for the design variables vary. 



 
References 

 
Aars, E. L. H., & Laarhoven, P. J. M. (1985). Statistical cooling: A general approach 

to combinatorial optimization problems. Philippines Journal of Research, 40, 

193–226. 

Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. (1997). Systematic methods of 

chemical process design. New Jersey: Prentice-Hall,  Inc. 

Brennecke, J. F., & Stadtherr, M. A. (2002). A course in environmentally conscious 

chemical process engineering. Computers & Chemical Engineering, 26,   307–318. 

Cano-Ruiz, J. A., & McRae, G. J. (1998). Environmentally conscious chemical process 

design. Annual Review of Energy and the Environment, 23,   499–523. 

Cardoso, M. F., Salcedo, R. L., & Azevedo, S. F. D. (1994). Nonequilibrium simulated 

annealing: A faster approach to combinatorial minimization. Industrial & Engi- 

neering   Chemistry   Research,   33, 1908–1918. 

Cardoso, M. F., Salcedo, R. L., & Azevedo, S. F. D. (1996). The simplex-simulated 

annealing approach to continuous non-linear optimization. Computers & Chem- 

ical   Engineering,   20, 1065–1080. 

Cardoso, M. F., Salcedo, R. L., Azevedo, S. F. D., & Barbosa, D. (1997). A simulated 

annealing approach to the solution of minlp problems. Computers & Chemical 

Engineering,  21, 1349–1364. 

Cavin, L., Fischer, U., Mosat, A., & Hungerbuhler, K. (2005). Batch process optimization 

in a multipurpose plant using Tabu search with a design-space diversification. 

Computers & Chemical Engineering, 29,   1770–1786. 

Das, H., Cummings, P. T., & LeVan, M. D. (1990). Scheduling of serial multiproduct 

batch processes via simulated annealing. Computers & Chemical Engineering, 14, 

1351–1362. 

Dietz, A., Azzaro-Pantel, C., Pibouleau, L., & e Domenech, S. (2006). Multiobjective 

optimization for multiproduct batch plant design under economic and environ- 

mental considerations. Computers & Chemical Engineering, 30,   599–613. 

Dolan, W. B., Cummings, P. T., & Van, M. D. L. (1990). Algorithmic efficiency of 

simulated annealing for heat exchanger network design. Computers & Chemical 

Engineering,   14,   1039–1050. 

Douglas, J. M. (1988). Conceptual design of chemical processes. Singapore: McGraw- 

Hill Chemical Engineering Series. 

El-Halwagi, M. M., & Manousiouthakis, V. (1990). Automatic Synthesis of Mass- 

Exchange Networks with Single-Component Targets. Chem. Eng. Sci., 45(9), 

2813–2831. 

Faber, R., Jockenhovel, T., & Tsatsaronis, G. (2005). Dynamic optimization with sim- 

ulated annealing. Computers & Chemical Engineering, 29,  273–290. 

Glover, F. (1986). Future paths for integer programming and links to artificial intel- 

ligence. Computers and Operations Research, 13,    533–549. 

Guinée, J. B. (2002). Handbook on life cycle assessment. Operational guide to the ISO 

standards. Dordrecht: Kluwer Academic Publishers. 

Hanke, M., & Li, P. (2000). Simulated annealing for the optimization of batch distil- 

lation processes. Computers & Chemical Engineering, 24,  1–8. 

 
 

Hertz, A., & Widmer, M. (2003). Guidelines for the use of meta-heuristics in combi- 

natorial optimization. European Journal of Operational Research, 151, 247–252. 

IChemE (January, 2007). The sustainability metrics. www.icheme.org. 

Kirkpatrick, S. C. D., Gelatt, J., & Vecchi, M. P. (1983). Optimization by simulated 

annealing.  Science,  220,   671–680. 

Ku, H., & Karimi, I. (1991). An evaluation of simulated annealing for batch process 

scheduling. Industrial & Engineering Chemistry Research, 30,  163–169. 

Lin, B., & Miller, D. C. (2004). Tabu search algorithm for chemical process optimiza- 

tion. Computers & Chemical Engineering, 28,   2287–2306. 

Luyben, W. L., Tyréus, B. D., & Luyben, M. L. (1999). Plantwide process control. New 

York: McGraw-Hill. 

Martins, F., & Costa, C. A. V. (2008). Conceptual design of sustainable processes. Using 

heuristics with stastistical design. In Proceedings of the 4th IASME/WSEAS inter- 

national conference on ENERGY, ENVIRONMENT, ECOSYSTEMS and SUSTAINABLE 

DEVELOPMENT (EEESD’08) (ISBN: 978-960-6766-71-8) , pp.  484–494 

Patel, A. N., Mah, R. S. H., & Karimi, I. A. (1991). Preliminary design of multiproduct 

noncontinuous plants using simulated annealing. Computers & Chemical Engi- 

neering,  15, 451–469. 

Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant design and economics for 

chemical engineers. Boston:  McGraw-Hill. 

Pibouleau, L., Domenech, S., Davin, A., & e Azzaro-Pantel, C. (2005). Expérimentations 

numériques sur les variantes et paramètres de la méthode du recuit simulé. 

Chemical Engineering Journal, 105,   117–130. 

Press, W. H, & Teukolsky, S. A. (1991). Simulated annealing optimization over con- 

tinuous spaces. Computers in Physics,  426–429. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical 

recipes in C. New York: Cambridge University   Press. 

Qiu, Q. F., Krishnaswamy, P. R., & Rangaiah, G. P. (2000). Modelling and simulation of 

HDA process for plant-wide design and control studies. In Chemical and Process 

Engineering Conference (CPEC) Singapore. 

Simulation Sciences Inc. (1994–2005). ProII  7.1. 

Smith, R. (1995). Chemical process design. Singapore: McGraw-Hill, Inc. 

Steen, B. (1999). A systematic approach to environmental priority strategies in product 

development (EPS). Version 2000—Models and data of the default method. Centre 

for the Environmental Assessment of Products and Material Systems. 

Tanzil, D., Murphy, K., Schwarz, J., Restoske, M., Beloff, B., and Beaver, E. (2002). 

Incorporating total cost assessment methodology to enhance chemical complex 

optimization. Final Report. Gulf Coast Hazardous Substance Research Center 

(GCHSRC). BRIDGES to Sustainability. Houston, TX. 

Wang, C., Quan, H., & e Xu, X. (1999). Optimal design of multiproduct batch chemical 

process using Tabu search. Computers & Chemical Engineering, 23,  427–437. 

Young, D. M, & Cabezas, H. (1999). Designing sustainable processes with simulation: 

The waste reduction (WAR) algorithm. Computers & Chemical Engineering, 23, 

1477–1491. 

http://www.icheme.org/

