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A B S T R A C T  
  

Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, 

from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational  

parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical proper- ties of agar (yield, gel strength, 

gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-L- galactose contents) was evaluated in a 24 orthogonal composite design. The 

quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85 °C) while reducing drasti- cally extraction 

time, solvent consumption and waste disposal requirements. Agar MAE optimum results were:  an  yield  of  14.4 ± 0.4%,  a  gel  strength  of  1331 ± 51 

g/cm2,  40.7 ± 0.2 °C  gelling  temperature, 
93.1 ± 0.5 °C melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose 
content. Furthermore, this study suggests the feasibility  of the exploitation  of  G.  vermiculophylla  grew in IMTA systems for agar production. 
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1. Introduction 

 
Aquaculture is one of the fastest expanding agricultural indus- tries in 

the world with a three times faster sector growth com- pared with 

terrestrial farm animal meat production. As main fishing areas have 

reached their maximum potential, and with the expected increase of the 

global population demand for aqua- tic food, wild living resources 

provided by capture fisheries are clearly insufficient. However, the 

massive production of aqua feed resources brings some negative impacts 

caused by intensive nutrients (nitrogen and phosphorus) released to the 

environment due to animal excretion. This release may cause 

environmental and socio-economic problems, compromising aquaculture 

activity itself (Matos et al., 2006). In this context, integrated multitrophic 

aquaculture, which promotes economic and environmental sus- 

tainability, is rising. In this farming approach, seaweeds and other extractive 

organisms convert dissolved nutrients produced by fed aquaculture (e.g., 

finfish and shrimp), into additional crops (Abreu et al., 2009). Autotrophic 

plants like seaweeds, work as biofilters, using solar energy and the excess 

nutrients to    photosynthesize 

  

 
new biomass, effectively stripping nutrients from aquaculture effluent 

prior to its release to the environment (Neori et al., 2004). 

 

 
2. Methods 

 
Agar, a cell-wall polysaccharide is extracted from selected mar- ine red 

algae including those of the genus Gracilaria and Gelidium. This 

biopolymer is extensively used in food and pharmaceutical industries as 

gelling and stabilizing agent. Agar is traditionally hot extracted with 

water for several hours. Gracilaria genus com- prises the greatest 

number of species in Gracilariaceae (Rhodo- phyta). Although 

Gelidium extracted agar has typically better quality (higher gel strength), 

the use of an alkali treatment prior to the extraction to enhance gelling 

properties, allows Gracilaria genus to be currently the major agar source 

worldwide (Marin- ho-Soriano et al., 2001; Freile-Pelegrín and Murano, 

2005; Pere- ira-Pacheco et al., 2007). 

Gracilaria vermiculophylla is a red algal species, originally de- scribed 

from Japan and recently established in European waters as an invasive 

species. One possible strategy to mitigate the impact of these invasive 

seaweeds, that threatens the ecological balance of coastal ecosystems, is 

its mechanical removal (harvesting) which would yield a tremendous 

biomass that can be utilized for various 
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applications. New populations of G. vermiculophylla seaweed  are new 

established in Ria de Aveiro (northwestern Portugal), and con- sequently, 

intensive studies are being conducted to the best knowledge  and  potential  

use  of  this  marine  alga   (Villanueva et al., 2009). Several studies were 

published concerning traditional extraction method of agar using G. 

vermiculophylla (Arvizu-Higuera et al., 2008; Mollet et al., 1998; Orduña-

Rojas et al., 2008a,b; Villanueva et al., 2009). This species may also be used 

in IMTA sys- tems, which is in fact under study at the moment by Maria H. 

Abreu from CIIMAR and co-workers in Coelho & Castro Aquacul- ture, Rio 

Alto, Portugal, with promising results so far (unpublished data). 

In the last decade, microwave-assisted extraction (MAE) has been 

successfully applied to various fields of analytical chemistry. This technique 

consists in using microwave energy to heat solvents (mostly organic 

solvents) in contact with a sample in order to par- tition analytes from the 

sample matrix into the solvent (Eskilsson and Bjorklund, 2000). The ability 

to rapidly heat the sample-sol- vent mixture is inherent to MAE and the 

main advantage of this technique (Srogi, 2006). By using closed vessels, 

the extraction can be performed at elevated temperatures accelerating 

the mass transfer of target compounds from the sample matrix. In 

most cases, reproducibility and extraction yields are improved com- 

pared to those reached by traditional methods, using less energy and 

solvent volume (Srogi, 2006; Portet-Koltalo et al., 2007; Her- bert et al., 

2006; Castro et al., 2009). Only two works were found concerning 

extraction of biopolymer seaweed with some kind of microwave-based 

technique. Navarro and Stortz (2005) used a domestic microwave oven 

to study the alkaline modification of three different red seaweeds 

galactans. Uy et al. (2005) suggested a microwave procedure as a 

promising and efficient commercial method for extraction of 

carrageenan. 

The main objectives of this work are the study and optimization of a 

new agar extraction process based on MAE, while providing fundamental 

information about the physical and chemical proper- ties of the extracted 

agar from G. vermiculophylla produced in an IMTA system along the 

northern coast of Portugal. As many factors can influence the characteristics 

of the resulting polymer, response surface methodology (RSM; 

Montgomery, 1991) was applied to fit and exploit mathematical models 

representing the relationship be- tween the responses (extraction yield, 

gel strength, gelling and melting temperatures, as well as, sulfate and 3,6-

anhydro-L-galact- ose contents) and input variables (extraction time, 

temperature, solvent volume and stirring speed). 

 
2.1. Agar extraction 

 
G. vermiculophylla samples were composed by a mixture of algal biomass 

from an integrated multitrophic aquaculture system  with a three week 

minimum period of cultivation. The biomass was sup- plied by Laboratório de 

Biodiversidade Costeira from CIIMAR and produced in IMTA located at 

Coelho & Castro Aquaculture, Rio Alto, Portugal. Biomass of different tanks 

(subjected to different nutri- ents amounts) was mixed, washed  with 

freshwater and  dried  in an oven at 60 °C. The pretreatment step of agar 

extraction proce- dure from G. vermiculophylla (alkali treatment and acid 

neutraliza- tion) was performed according to the traditional method using 

optimum  parameters  obtained   in   previous   work   (Villanueva et al., 

2009). Briefly, 1 g of dried sample was soaked in 100 ml alkali solution (6% 

(w/w) sodium hydroxide) at 85 °C for 3.5 h. The NaOH solution was then 

discarded and the algal material was washed with fresh water until the 

removal of the slimy feel. Then, the sam- ples were neutralized with 100 ml 

of 0.5% (v/v) acetic acid for 1 h at room temperature after which, the acid 

was discarded and sea- weed samples were again washed with freshwater. 

The algal mate- rial was then ready to the MAE. 

Traditional extraction method of agar using G. vermiculophylla was 

performed according to Villanueva et al. (2009). Briefly, 4 g of dried 

sample were hot extracted at 85 °C during 2 h, after the pretreatment 

step followed by acid neutralization, previously described. 

Microwave-assisted extractions were performed with a MARS- X 1500 

W (Microwave Accelerated Reaction System for Extraction and Digestion, 

CEM, Mathews, NC, USA) configured with a 14 posi- tion carousel. One-gram 

of dried sample was transferred to the glass extraction vessels with the 

tested desionized water volume; then the vessels were closed. The 

operational parameters of the MAE apparatus applied were the 

followings: magnetron power 100% and time to reach settings 10 min. 

During operation, both temperature and pressure were monitored in a 

single vessel (con- trol vessel). Magnetic stirring in each extraction vessel 

and a sensor registering the solvent leaks in the interior of the microwave 

oven were also utilized. 

After the extraction, the vessels were opened still warm because of the 

agar gelling properties. The mixture was filtered using filter cloth. Agar was 

recovered through freeze–thawing process after which it was washed 

and dehydrated with ethanol (96%, v/v) then oven dried at 60 °C. The agar 

yield (%) was calculated as percentage of dry matter. 

 
2.2. Optimization strategy of agar microwave-assisted extraction 

 
The optimization of agar MAE was made using RSM (Montgom- ery, 

1991). It is a combination of mathematical and statistical tech- niques used 

to analyze problems where the response of interest is affected by several 

factors with complex interactions. The main objective of RSM is to 

optimize this response or determine the re- gion that satisfies the 

operating specifications. This procedure in- volves fitting a function to the 

experimental data and then using optimization techniques to obtain the 

optimum parameters (Garg et al., 2008). 

Due to the lack of information related to agar MAE, the experi- mental 

domain was defined taking into account the operative lim- its of the 

instrument and all significant parameters in a   typical 

MAE process were chosen: extraction time (X1; min), temperature (X2; 

°C), solvent volume (X3; ml) and stirring speed (X4; four posi- tions are 

available in modern apparatus: turned off, minimum, medium and 

maximum speed). The response variables studied were, yield (Y1; %), 

gel strength (Y2; g/cm2), gelling (Y3; °C) and melting (Y4; °C) 

temperatures, and sulfate (Y5; %) and 3,6-anhy- dro-L-galactose (Y6; %) 

contents. An orthogonal central composite design with four parameters, 

24, was the approach made to the optimization problem. This design 

included 36 experiments to esti- mate the models coefficients: 16 points of 

a factorial design at lev- els a = ±1.000, eight axial points at a distance a = 

±2.000 from the center, and a center point with 12 replications (Table 1). 

The 12 replicates at center point allowed estimating experimental error 

and checking the fit. The results in the initial set of experiments (runs 1–

16 in Table 1) were fitted to a first order model and its ade- quacy was 

checked. If the lack of fit was not significant, steepest ascent method 

should be applied in order to move rapidly to the optimum region. On 

the contrary, if the first order model lack of fit reached significance, 

probably due to a quadratic effect, addi- tional runs were performed to 

improve model adjustment. Then, experimental data were fitted to the 

following second order model (Montgomery, 1991), 

Yi ¼ b0 þ 
X 

bi Xi þ 
X 

bijXi Xj þ 
X 

biix
2 þ e 

i ij i 

 
where Yi is the experimental response, Xi are the studied factors, b0 is 

the average response, bi are the average effects of the different factors, bij  
are the average effects of second interaction factors, bii 



 

 

Table 1 
Real values and coded levels for the experimental design 24 (X1 – extraction time; X2 – temperature; X3 – solvent volume; X4 – stirring speed) and 
results for all the response variables studied, yield (Y1; %), gel strength (Y2; g/cm2), gelling temperature (Y3; °C), melting temperature (Y4; °C), sulfate 
(Y5; %) and 3,6-anhydro-L-galactose (Y6; %) contents. 

 

Real and coded values Response values 

Exp. X1 X2 X3 X4  Y1 (%) Y2 (g/cm2) Y3 (°C) Y4 (°C) Y5 (%) Y6 (%) 

24  factorial design with twelve replicates at the  c.p. 
1 10 (-) 70 (-) 20 (-) min. (-)  3.0 291.7 37.9 82.5 2.09 31.3 
2 10 (-) 70 (-) 20 (-) max. (+)  3.4 382.0 39.2 83.8 2.69 26.6 
3 10 (-) 70 (-) 40 (+) min. (-)  2.2 n.d. n.d. n.d. n.d. n.d. 
4 10 (-) 70 (-) 40 (+) max. (+)  3.0 83.5 30.0 78.3 5.07 14.4 
5 10 (-) 90 (+) 20 (-) min. (-)  9.2 1020.8 40.5 91.1 1.96 30.8 
6 10 (-) 90 (+) 20 (-) max. (+)  13.5 686.6 40.1 85.7 1.83 32.4 
7 10 (-) 90 (+) 40 (+) min. (-)  9.6 714.2 39.9 86.9 1.69 39.4 
8 10 (-) 90 (+) 40 (+) max. (+)  12.1 695.2 39.6 86.9 3.22 25.9 
9 20 (+) 70 (-) 20 (-) min. (-)  2.5 n.d. n.d. n.d. n.d. n.d. 
10 20 (+) 70 (-) 20 (-) max. (+)  10.7 765.2 40.7 89.1 1.87 34.9 
11 20 (+) 70 (-) 40 (+) min. (-)  2.5 n.d. n.d. n.d. n.d. n.d. 
12 20 (+) 70 (-) 40 (+) max. (+)  5.1 255.7 37.6 81.0 2.94 20.5 
13 20 (+) 90 (+) 20 (-) min. (-)  13.7 743.8 39.6 88.9 1.96 32.9 
14 20 (+) 90 (+) 20 (-) max. (+)  11.6 1032.9 39.5 90.2 1.80 33.6 
15 20 (+) 90 (+) 40 (+) min. (-)  11.4 677.8 38.6 87.5 1.99 34.2 
16 20 (+) 90 (+) 40 (+) max. (+)  10.9 823.0 39.6 88.8 1.72 36.6 

17 (CP) 15 (0) 80 (0) 30 (0) med. (0)  6.2 814.4 39.6 92.7 2.14 28.9 
18 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.5 597.4 37.5 85.5 2.69 25.3 
19 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.4 786.2 38.6 87.7 1.65 26.8 
20 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.0 593.9 37.4 84.9 2.49 25.0 
21 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.9 608.0 37.8 87.9 2.58 23.2 
22 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.7 706.9 38.0 87.0 1.58 28.5 
23 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.5 698.0 38.5 88.2 2.00 28.7 
24 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.3 612.1 37.0 86.2 2.45 25.0 
25 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.0 717.4 38.6 89.2 1.82 30.2 
26 (CP) 15 (0) 80 (0) 30 (0) med. (0)  6.2 698.4 37.6 87.7 1.92 26.4 
27 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.3 749.2 38.3 88.6 1.72 34.9 
28 (CP) 15 (0) 80 (0) 30 (0) med. (0)  5.8 777.1 37.1 88.0 1.66 37.7 
Additional runs – model expansion 
29 5 (-24/4) 80 (0) 30 (0) med. (0)  5.3 1103.2 40.7 92.9 1.60 37.3 
30 25 (+24/4) 80 (0) 30 (0) med. (0)  7.0 911.6 39.9 92.4 1.91 34.4 

31 15 (0) 60 (-24/4) 30 (0) med. (0)  0.5 n.d. n.d. n.d n.d. n.d. 
32 15 (0) 100 (+24/4) 30 (0) med. (0)  11.0 717.2 39.1 87.3 2.34 33.6 
33 15 (0) 80 (0) 10 (-

24/4) 
med. (0)  n.d. n.d. n.d. n.d. n.d. n.d. 

34 15 (0) 80 (0) 50 (+24/4) med. (0)  7.7 436.8 36.7 85.7 3.17 21.8 

35 15 (0) 80 (0) 30 (0) t.o. (-
24/4) 

 4.0 810.6 39.7 89.0 2.28 29.4 
36 15 (0) 80 (0) 30 (0) n.a.  n.d. n.d. n.d. n.d. n.d. n.d. 

n.a. – not available, the equipment does not have a stirring speed higher than the maximum one; n.d. – not determined; C.P. – center point; t.o. – 
turned   off. 

 

are the quadratic components and e is the experimental error. The lack of fit 

in the second order model is desired to be not significant and, if it persisted, 

steepest ascent method should be    used. 

All statistical analyses were made using the software Statistica version 

6.0 (StatSoft, Inc., Tulsa, UK), namely, multifactor variance analysis (ANOVA) 

and response surface 3D plots. The two factors not represented by the 

horizontal axes were fixed at their 0 level values. 

In order to validate a model, appropriate analysis of variance 

(ANOVA) must be carried out (Masmoudi et al., 2008). The total sum of 

squares of the mathematical  model  is  divided  into  the sum of squares 

due to the regression (SS model in Table 2) and the residual sum of 

squares (SS residual in Table 2). The latter, can be divided in two parts: 

one part due to pure experimental er- ror and is computed as the sum of 

squared deviations (SS pure er- ror in Table 2) in the center point 

experiments, and the second part corresponds to the lack of fit (SS lack of 

fit in Table 2). The fitted models are considered adequate if  they  reach  

significance (p-va- lue < 0.05 for a 95% confidence level) and their lack of fit 

is not sig- nificant (p-value > 0.05 for the same confidence    level). 

Significance of each coefficient present in regression     equations 

was determined by the Student’s t-test and p-values. Optimum extraction 

conditions were obtained by surface 3D plots inspection and based on 

statistical information. The p-value at a 95% confi- dence level was also used 

to confirm the significance of the studied factors and their interaction 

effects. The relationship between   two 

agar characteristics was determined by Pearson’s correlation anal- ysis. All 

experiments were performed in randomized order to min- imize  bias effect. 

 
2.3. Agar physical and chemical properties 

 
The gel strength determination was made using a texture ana- lyzer 

(Stable Micro Systems model TA-XT2, Surrey, England). This equipment  has  

a  cylindrical  probe  with  a  10 mm  diameter  and penetrates  at  a  0.2 mm 

s-1   rate.  Gel  strength  is  defined  as  the stress required for breaking the 

gel surface. 

Gel preparation was made as described in Marinho-Soriano and Bourret 

(2003). A 1.5% (w/w) agar solution was prepared with dis- tilled water. The 

solution was boiled and stirred until complete dis- solution of the 

biopolymer. Approximately 15 g of the hot solution was transferred to a 

cylindrical container with 30 mm diameter, covered with aluminum foil 

and allowed to set at room tempera- ture for 20 h. The gel depth was 

approximately 21–22 mm. 

The gelling and melting temperatures of a 1.5% agar solution were 

studied through dynamic rheological measurements in a stress-

controlled rheometer (AR2000, TA Instruments, USA). The experimental 

procedure was analogous to the described by Hilliou et al. (2006). Parallel 

plate geometry was used with a crosshatched acrylic geometry (4 cm 

diameter, 2 mm gap) to avoid slippage. The agar solution was loaded on 

the peltier plate (pre-heated to 80 °C) after being degassed for 5 min in a 

vacuum oven, at 80 °C, to min- 



 

 

Table 2 

Analysis of variance (ANOVA) for regression  models. 

 

Response Source SS DF MS 
 

F-value p 

Yield, Y1 (%) Model 358.60 14  25.61 12.54 <0.0001 
 Residual 38.80 19  2.04   
 Lack of fit 37.27 8  4.66 33.52 <0.0001 
 Pure error 1.53 11  0.14 184.25 <0.0001 
 Total 

R2 

397.40 

0.9024 

33     

Gel strength, Y2 (g/cm2) Model 1,188,405 14 84886 5.28 0.0014 
 Residual 241,218 15 16081   
 Lack of fit 174,144 4 43536 7.14 0.0044 
 Pure error 67,074 11 6098 13.92 <0.0001 
 Total 1,429,623 29    
 R2 0.8313      

Gelling temperature, Y3 (°C) Model 97.43 14  6.96 6.71 0.0004 
 Residual 15.56 15  1.04   
 Lack of fit 9.32 4  2.33 4.11 0.0282 
 Pure error 6.24 11  0.57 12.27 <0.0001 
 Total 

R2 

112.99 

0.8623 

29     

Melting temperature, Y4 (°C) Model 232.85 14  16.63 3.76 0.0078 
 Residual 66.29 15  4.42   
 Lack of fit 22.55 4  5.64 1.42 0.2918 
 Pure error 43.74 11  3.98 4.18 0.0111 
 Total 

R2 

299.14 

0.7784 

29     

Sulphate content, Y5  (%) Model 10.54 14  0.75 2.84 0.0270 
 Residual 3.98 15  0.27   
 Lack of fit 2.22 4  0.55 3.46 0.0462 
 Pure error 1.77 11  0.16 4.69 0.0070 
 Total 

R2 

14.52 

0.7258 

44     

3,6-AG content, Y6 (%) Model 636.20 14  45.44 2.02 0.0704 
 Residual 309.18 15  20.61   
 Lack of fit 111.17 4  27.79 1.54 0.2568 
 Pure error 198.02 11  18.00 2.52 0.0647 
 Total 

R2 

945.38 

0.6730 

44     

SS = sum of squares; DF = degree of freedom; MS = mean square; R2 = quadratic correlation coefficient. 

 

imize the air influence in the tests (the degasification time chosen 

guaranteed a negligible water evaporation percentage of the sam- ple 

solution). Excess sample was removed and its periphery was coated with 

paraffin oil to minimize evaporation. Hot solutions were cooled down to 

25 °C at a rate of 2.33 °C/min, while small amplitude oscillatory shear 

strain with 1% amplitude was applied at 1 Hz, in order to probe the 

temperature evolution of linear vis- coelastic properties such as tan d, the 

tangent of the phase shift an- gle d between imposed sinusoidal strain and 

measured sinusoidal stress. The gelling temperature was defined as the 

point for which tan d = 1. The time evolution of the storage modulus G0 

and loss modulus G00 was followed at 25 °C (1% strain at 1 Hz) allowing 

the gel to equilibrate. Gels mechanical spectra were then measured in the 

linear regime by performing frequency sweeps at 1% strain. Finally, a 

heating scan (2.33 °C /min) to 95 °C was made with 1% strain at 1 Hz, 

enabling the determination of the melting tempera- ture defined as the 

point for which tan d = 1. 

Sulfate concentrations were determined based on the method 

described by Matos et al. (2008), using a Dionex ion exchange chro- 

matography system (Dionex Corporation, USA) constituted by an ED 50 

electrochemical detector, an Analytical AS9 (4 mm) column and an Anion 

Suppressor-ULTRA (4 mm). The mobile phase used was Na2CO3 9 m 

mol/L, pH 13, at a flow rate of 1 ml/min. Dried agar samples (20 mg) 

were hydrolyzed in 10 ml HCl 1 mol/L, by heating under reflux during at 

least 4 h. After that, the hydrolyzed solution was diluted to a final volume 

of 25 ml. Sulfate standards were prepared using Na2SO4 and an HCl 

solution with the same pH as the diluted hydrolyzed agar solution. 

The 3,6-anhydro-L-galactose content (3,6-AG) was determined by the 

colorimetric method of Yaphe and Arsenault (1965) using the resorcinol–

acetal reagent and with fructose as standard. Exper- iments were 

performed, at least, in triplicate. 

 

3. Results and discussion 

 
3.1. Yield 

 
Yield results obtained in the first set of runs were adjusted to a first 

order model (runs 1–16 in Table 1) which revealed a very sig- nificant lack 

of fit (p < 0.0001), probably due to a quadratic effect. Therefore, 

additional runs were performed in order to achieve opti- mum conditions 

(runs 29–36 in Table 1). Due to experimental lim- itations, runs 33 (10 ml 

of solvent are not enough for immersing totally the sample) and 36 (the 

equipment does not have a stirring speed higher than the maximum one) 

were not performed nor sta- tistically considered by the software. The 

second order model showed high statistical significance (p < 0.0001; 

Table 2) however, its remarkable lack of fit persisted (p < 0.0001; Table 2) 

suggesting steepest ascent method should be applied. This apparent 

contra- diction may be due to the insufficient number of experimental 

observations to produce an appropriate analysis of the residues be- cause 

of the high number of parameters studied (Domingos et al., 2008). The 

second order model quadratic correlation coefficient, R2 = 0.9024, can be 

considered acceptable for data of chemical nat- ure (>0.8; Lundstedt et al., 

1998), advocating a good correlation be- tween observed and predicted 

values. Steepest ascent method 



 

 

suggested operational parameters values impossible to apply, con- 

sequently, optimum yield was determined by 3D surface plots analysis and 

statistical information. Additional tests showed that higher temperatures, 

100 and 110 °C (with remaining parameters set at center point values) 

produced an increase on yield, respec- tively, 10.6 ± 0.4% and 12.4 ± 1.5%, 

although gel strength decreased but still fulfilling industrial standards (>700 

g/cm2 in a 1.5% solu- tion (Pereira-Pacheco et al., 2007)). Complete 

polysaccharide deg- radation occurred at 120 °C due to heating excess. Low 

temperatures (<60 °C) resulted in poor polymer recovery (less than 1%). As 

reported in other MAE studies concerning polymers (Mar- cato and Vianello, 

2000; Costley et  al.,  1997),  temperature had the most significant influence 

on yield (p < 0.0001) with higher temperatures clearly improving results (Fig. 

1 and Table 1). At high temperatures, the rate of extraction increases 

because the viscosity and the surface tension decrease, while solubility  and  

diffusion rate into the sample increase. However, draconian extraction con- 

ditions usually affect negatively the extraction selectivity. There- fore, 110 

°C was admitted as an optimum   possibility. 

Solvent volume showed a negative influence (p < 0.05) on yield (except 

on runs 5–7 where a slight increase in response was veri- fied when 

increasing solvent volume and runs 2–4, 9–11 which re- vealed equal 

yields, Table 1), contrary to its quadratic effect that positively influenced 

yield results (p < 0.05). 3D surface plots anal- ysis revealed that, enhanced 

yields were achieved with higher tem- peratures (100 °C or more) coupled 

with maximum solvent volume (50 ml). In order to ensure enough space in 

the vessels to promote solvent volatilization to attain the selected 

temperature (above solvent boiling point at atmospheric pressure), a 40 ml 

solvent vol- ume was chosen as the most appropriate to assure a 

reproducible and safe process. 

Stirring   speed   interacted    significantly    with   temperature (p < 0.05) 

with high temperatures needing lower stirring speed rates (minimum or 

without) in  order  to  achieve  better  yields (Fig. 1). Stirring speed quadratic 

effect also reached negative signif- icance (p < 0.05). On the contrary, all 

the runs performed at 70 °C (runs 1–4 and 9–12, in Table 1), produced 

enhanced yields when 

increasing stirring speed. This behavior was also observed for runs with 10 

min extraction time and 90 °C (runs 5–8 in Table 1). This pattern of 

variation inverted when high temperatures (P90 °C) and longer 

extraction times (P20 min) were applied (runs  13– 16, in Table 1) 

reaching the best yields. 3D surface plot analysis corroborated this 

information, where longer extraction times (20–25 min) and minimum 

speed of agitation seemed to produce the best results. Because 

extraction time was not an influent parameter in yield response (p > 

0.05), 20 min was the extraction time chosen as optimum (Fig. 1). 

Maximum yields were obtained with runs 6 and 13 operational 

conditions, respectively, 13.5% and 13.7% (Table 1). Therefore, possible 

optimum yield conditions were studied at 110 °C, 20 min of extraction, 40 

ml of solvent, and minimum/without stirring. Five replicates were done 

for each set of  operational  parameters.  Runs  6  (13.2 ± 0.4%)   and   13 

(13.4 ± 0.3%) were also investigated and no significant difference (p > 

0.05) was found among treatments. Regarding 110 °C opti- mum 

possibilities, the agar yields reached with the first set (with minimum 

stirring speed) were 14.8 ± 0.6% and 14.4 ± 0.4% with the second one 

(with no stirring). A Student’s t-test was applied and no significant 

difference (p > 0.05) between both groups was detected, consequently 20 

min, 110 °C, 40 ml of solvent and no agi- tation was chosen as best option. 

On the contrary, significant dif- ferences were observed when comparing 

runs  6  and  13 with 110 °C optimum, therefore, optimum yield conditions 

were defined as: 20 min extraction, 110 °C, 40 ml of solvent and no 

agitation. 

The traditional agar extraction method (2 h at 85 °C; Villanu- 
eva et al., 2009) was also applied to the same biomass and the obtained 

yield, 8.5 ± 1.9%, was remarkably lower (40.9% less) than the value reached 

using MAE (14.4 ± 0.4%). In addition, the tradi- tional agar extraction 

method from G. vermiculophylla grown in IMTA systems originated 

significantly lower yields when com- pared with biomass from the  same  

species  harvested  directly from Ria de Aveiro, Portugal:  29.4 ± 0.9%  

(Villanueva  et  al., 2009). Orduña-Rojas et al. (2008a,b) and Arvizu-Higuera 

et al. (2008) reported optimum yields of 9.6% and 16.5%, respectively, 

for G.  vermiculophylla  using  1.5–2 h  of  extraction in  boiling water. 

 

 

 

 

Fig. 1. Response surface of G. vermiculophylla agar MAE yield (Y1) as a function of temperature (X2) and stirring speed (X4) (extraction time (X1) 

= 15 min, solvent volume (X3) = 30 ml). 





 

 

Meena et al. (2008) studied the effect of alkali treatment in prop- erties 

of agar extracted from different species, namely, Gracilaria edulis, 

Gracilaria crassa, Gracilaria foliifera and  Gracilaria  corticata using 1.5 h 

extraction time. G. corticata revealed lower optimum yield 12 ± 0.9% and 

the remaining species showed yields in the range of 15–18% (Meena et al., 

2008). The diversity of reported yields are due  to  differences  in  the  

extraction  methods  used, but also, to the dependence of agar yield upon 

species, season, environmental parameters and stage of the life-cycle 

(Marinho- Soriano and Bourret, 2003). Although cultured Gracilaria 

vermicul- ophylla was used, the MAE results are in line with these 

reported studies concerning wild Gracilaria species. Furthermore, 

Marinho- Soriano and Bourret (2003) verified that environmental parame- 

ters, like nitrogen content, had a negative correlation with yield for 

species Gracilaria bursa-pastoris. The elevated nitrogen content in 

aquaculture systems environment, due to  animal  excretions, can explain 

the yield values obtained. Nevertheless, yields be- tween 15% and 25% are 

considered acceptable for industrial appli- cations and the optimum MAE 

value can be taken into account for this purpose (Pereira-Pacheco et al.,    

2007). 

The extractions with yield values less than 3% were statistically ignored 

in terms of the other response   variables. 

 
3.2. Gel strength 

 
In the initial set of experiments (runs 1–16 in Table 1), the lack of fit of 

gel strength first order model was not significant (p > 0.05) suggesting 

steepest ascent method should be applied, however, it suggested 

parameters values impossible to put in practice. There- fore, additional 

experiments were carried out to achieve optimum conditions (runs 29–36 in 

Table 1). Second order model lack of fit was very significant (p < 0.01), as 

well as its statistical significance (p < 0.01) (Table 2). Steepest ascent 

method could not be applied and gel strength second order model did 

not compute a satisfac- tory solution. Gel strength quadratic correlation 

coefficient was considered satisfactory, R2 = 0.8313 (Lundstedt et al., 1998). 

ANO- VA results revealed that quadratic effect of extraction time reached 

positive significance in gel strength (p < 0.01) (runs 29 and 30 in Table 1). 

3D surface plots analysis showed that temperatures  in the  range  of  90–

100 °C  produced stronger gels  for  shorter  times 

(5 min) (Fig. 2), as well as maximum stirring speed and the same 

extraction time. Considering energy savings and that the highest gel 

strength value  was  obtained  for  5 min  extraction  time (1103.2 g/cm2),  

this  was  the  optimum time chosen. 

Solvent volume had a negative effect in gel strength response (runs 

2–4, 5–7, 10–12, 13–15 and 14–16 in Table 1) and 3D surface plots analysis 

revealed that higher gel strengths were obtained for 20 ml of solvent with 

shorter (5 min) and/or longer (25 min) extraction times. Also, low 

solvent volumes (20 ml) associated with temperatures in the range 80–

90 °C produced stronger gels. Clearly, maximum stirring speed favored gel 

strength (runs 1–16 in Table 1 with the exception of runs 5–6). This 

information was corroborated by 3D surface plots where temperatures in 

the range 80–90 °C with maximum speed ensured stronger gels, as well 

as low solvent volume (20 ml) with the same stirring rate. Therefore, MAE 

conditions for optimum gel strength were considered to be: 5 min of 

extraction, 90 °C, 20 ml of solvent and maximum stirring speed. Five 

independent extractions were carried out using the above referred 

parameters. Remarkably stronger gels, ca. 62.6%, were obtained using 

MAE (1331 ± 51 g/cm2) when compared with gels produced applying the 

traditional extraction method to the same set of algae samples (818 ± 

108 g/cm2). Furthermore, the reproducibility was clearly enhanced by 

the MAE process (3.8% vs. 13.1%). 

Regardless  the  extraction  method  performed,  agar  from  G. 

vermiculophylla produced in IMTA systems clearly revealed higher gel  

strengths  than  algae  harvested  directly  from  Ria  de  Aveiro (679 ± 54 

g/cm2; Villanueva et al., 2009). Certain parameters, such as tallus nitrogen 

content and plant growth can be related to gel quality  improvement  in  

seaweeds  produced  in  aquaculture  sys- tems  (Marinho-Soriano  and  

Bourret,  2003).  Arvizu-Higuera  et  al. (2008)  reported  an  optimum  gel  

strength  for  G.  vermiculophylla of   1064 g/cm2     and   González-Leija   et   

al.   (2009)   a   value   of 954 g cm-2  for G. lemaneiformis, applying a 60 

min extraction time at  121 °C  in  an  autoclave.  A  significantly  lower  

value  of  gel strength,  158.0 ± 1.5 g/cm2,  was  obtained  for  G.  

vermiculophylla by Orduña-Rojas et al., 2008a,b. Meena et al. (2008) 

presented infe- rior gel strengths for G. edulis, G. crassa, G. foliifera and G. 

corticata, respectively,  490 ± 8,  800 ± 15,  135 ± 8  and  110 ± 6 g/cm2.  

MAE drastically reduced extraction time when compared with the clas- 

 

 

 

 

Fig. 2. Response surface of G. vermiculophylla agar MAE gel strength (Y2) as a function of extraction time (X1) and temperature (X2) (solvent volume 

(X3) = 30 ml, stirring speed (X4) = medium). 



 

 

sical methods (performed in open vessels or in autoclaves) achiev- ing, at 

the same time, excellent results in terms of gel strength. Agar with 

superior gelling properties is used industrially to in- crease the viscosity 

of aqueous solutions, to form gels (jellies) with several degrees of firmness 

and to stabilize some products, such as ice cream. 

 
3.3. Gelling and melting temperatures 

 
For gelling temperature, the first order model lack of fit was sig- nificant 

(p < 0.05) probably due to a quadratic effect, and so, the remaining 

experiments were performed (runs 29–36 in Table 1). The second order 

model lack of fit was significant (p < 0.05) and the model reached high 

statistical significance (p < 0.001) (Table 2). Again, steepest ascent method 

could not be successfully applied, indicating values for the  operational  

parameters  impossible  to put in practice. Gelling temperature canonical 

form of the model predicted a saddle point,  as  so,  optimum  conditions  

were found by 3D plots observation and statistical analysis. The quadratic 

cor- relation coefficient, R2 = 0.8623, may be considered acceptable stating 

good model predictability (>0.8; Lundstedt et al., 1998). Globally, stronger 

gels revealed higher gelling temperatures, with the highest value, 40.7 °C, 

being associated to the strongest gel. Temperature and solvent volume 

had a very significant positive interaction (p < 0.001) on gelling temperature. 

On the contrary, extraction time and temperature produced a negative 

interaction, with temperatures in the range of 90–100 °C and 5 min 

extraction time producing the highest gelling temperatures. Extraction time 

quadratic effect was very significant (p < 0.01). 3D surface plot analysis also 

revealed that shorter extraction times (5 min) and lower solvent volumes 

(20 ml) produced best responses. The same happened with shorter 

extraction times and maximum stirring speed or longer extractions (25 min) 

with no agitation (Fig. 3). A positive correlation was found between gel 

strength and gelling temperature results (r = 0.73, p < 0.01). Therefore, the 

set of opera- tional parameters to attain the optimal gelling temperature is 

the same of optimal gel strength: 5 min extraction, 90 °C, 20 ml solvent 

volume and maximum stirring   speed. 

Five independent experiments were also performed to verify the 

selected conditions. MAE produced agar with ca. 15% lower gel- ling 
temperature (40.7 ± 0.2 °C) than agar extracted from the same biomass 

aquaculture samples by the traditional method (48.1 ± 

4.2 °C) but, once again, a gain in reproducibility was achieved. Using a 2 h  

extraction  with  the  traditional  method,  Villanueva et al. (2009) reported 

gelling temperatures in the range of 31.0– 

35.8 °C for G. vermiculophylla harvested directly from Ria the Ave- iro 
(Portugal) and Arvizu-Higuera et al. (2008) reported a maxi- mum gelling 
temperature of 37.8 °C. Orduña-Rojas et al., 2008a,b indicated 41.8 ± 3.6 °C 
as optimum gelling temperature for the same  species  and  a  lower  value  
for  Gracilaria  longissima,  37.5   ± 

2.0 °C, after a 1.5 h traditional extraction. 
The conversion of L-galactose-6-sulphate to 3,6-anhydro-L-gal- actose 

is associated with an increase in gel strength, as well as in gel transition 

temperatures (Marinho-Soriano and Bourret, 2005). Therefore, it would be 

expected that MAE agars, with stronger gels, possessed higher gelling 

temperatures, however, it was not veri- fied. A plausible reason may be 

the important role that molecular weight and molecular weight 

distribution may have on agar gela- tion process (Freile-Pelegrín and 

Murano, 2005), which may suffer modifications during microwave heating 

(under microwave radia- tion, a polarized molecule rotates to align itself 

with the electro- magnetic field at a rate of 4.9 x 109 times per second). 

Nevertheless, agar produced by MAE had gelling temperatures in the range 

defined by the US Pharmacopoeia (32–43 °C; Orduña-Ro- jas et al., 2008a,b) 

and is suitable for international market (except in run 4, a 83.5 g/cm2 gel 

strength corresponded to a 30 °C gelling temperature; Table 1). 

For melting temperature, the lack of fit of the first order model was not 

significant (p > 0.05) suggesting steepest ascent method should be 

applied in order to move more rapidly to optimum vicin- ity. This 

technique could not be successfully applied and so, the remaining 

experiments were carried out (Table 1, runs 29–36). As desired, second 

order model lack of fit was not significant (p > 0.05) and it revealed 

high statistical significance (p < 0.01) (Ta- ble 2). The model predicted a 

saddle point, thus optimum melting temperature was obtained by 

statistical information and 3D sur- 

 
 

 

 

 

Fig. 3. Response surface of G. vermiculophylla agar MAE gelling temperature (Y3) as a function of extraction time (X1) and stirring speed (X4) 

(temperature (X2)= 80 °C, solvent volume (X3) = 30 ml). 



 

 

face   plots   analysis.    The    quadratic    correlation    coefficient (R2 = 

0.7784) was slightly below  the  minimum  value  acceptable for data of 

chemical nature. In accordance with several authors (Villanueva et al., 1999, 

2009; Freile-Pelegrín and Murano, 2005; Orduña-Rojas et al., 2008a,b), 

gelling and melting temperatures were positively correlated (r = 0.72, p < 

0.01), and both tempera- tures had the same kind of correlation with gel 

strength (for melt- ing temperature, r = 0.92, p < 0.01), with best results for 

the three responses occurring in the same run (run 29 in Table 1). Tempera- 

ture and solvent volume had a significant positive interaction in melting 

temperature (p < 0.05). Extraction time quadratic effect reached positive 

significance (p < 0.01). 3D surface plots analysis revealed that short 

extraction times (5 min) and temperatures in the range of 90–100 °C, as 

well as long times (25 min) coupled with temperatures in the range of 70–80 

°C, produced the best re- sponses. This information was corroborated by 

runs 29 (5 min extraction time; 92.9 °C) and 30 (25 min; 92.4 °C). Also, 

solvent volumes in the range of 20–45 ml and 5 min extraction time pro- 

duced higher melting temperatures, and  the  same  was  verified for longer 

extractions (25 min) and 20–40 ml of solvent. Maximum stirring speed was 

the most favorable parameter for shorter and longer extractions times 

(Fig. 4). Also, 20 ml solvent volume pro- duced best results when using 

maximum speed (runs 1–2 and 13–14). Therefore, melting temperature 

optimum conditions were considered to be the same as gel strength and 

gelling temperature and were verified performing five independent     

experiments. 

Melting temperature for MAE agar (with higher gel strength) was 
lower (93.1 ± 0.5 °C) than that of agar extracted by the tradi- tional 

process (>95 °C) probably due to molecular weight influence. The higher the 
molecular weight, the higher the probability of forming stable interactions 

within gelling sequences in the poly- mer, with the consequent increment 

in melting temperature. How- ever, melting temperature for MAE agar still 

meet commercial standards (>85 °C, Orduña-Rojas et al., 2008a,b). Using the 
tradi- tional process  and  G.  vermiculophylla,  melting  temperatures  in the 

range 73.6–80.4 °C were reported for biomass harvested di- rectly from Ria 

the Aveiro (Villanueva et al., 2009). For the same 

species from the Gulf of California, Mexico, Orduña-Rojas et al., 2008a,b  
reported  81.4 ± 2.7 °C  and  Arvizu-Higuera  et  al.  (2008) 

98.1 °C. 

 
3.4. Sulfate content 

 
Sulfate content first order model did not show a significant lack of fit (p 

> 0.05) suggesting steepest ascent application in order to move more 

rapidly to optimum vicinity. This technique could not be operationally 

applied.  Remaining  experiments  were  carried out and second order 

model reached high statistical significance (p < 0.05), yet, revealing 

significant lack of fit (p < 0.05) (Table 2). The model did not compute a 

satisfactory solution (R2 = 0.7258), therefore, optimum conditions were 

found by surface graphs observation and statistical information analysis. 

Temperature qua- dratic effect reached positive significance (p < 0.05), with 

tempera- tures in the range of 85–100 °C and 5 min extraction time giving 

best responses. Experimental data revealed that increasing the temperature 

(70–90 °C) resulted in decreasing sulfate contents (runs 1–5, 2–6, 4–8, 10–

14 and 12–16 in Table 1). Low solvent vol- ume (20 ml) and time (5 min) 

originated the best results. Maxi- mum stirring speed applied 

simultaneously with  a  90 °C extraction temperature and 20 ml solvent 

volume (runs 5–6 and 13–14) presented better  experimental  responses.  

Interpretation of 3D plots corroborated this   behavior. 

Sulfate content was negatively correlated with gel strength and gelling    

and    melting    temperatures    (respectively,    r = -0.72 (p < 0.01); r = -

0.76 (p < 0.01); r = -0.69 (p < 0.01)). Therefore, the 

optimum conditions selected were  the  same  (5 min  extraction, 90 °C, 20 

ml solvent volume and maximum speed). Five indepen- dent extractions 

were performed and allowed to verify this assumption. Agar produced from 

G. vermiculophylla,  cultured  in the integrated multitrophic aquaculture  

system, using MAE  had an average sulfate content of 1.73 ± 0.13% which  

was  similar to the obtained by the traditional method, 1.78 ± 0.19%. 

Sulfate con- tent of G. vermiculophylla harvested directly from  Ria  de  

Aveiro was determined as 1.86 ± 0.02% (Villanueva et al., 2009). The inter- 

 

 

 

 

Fig. 4. Response surface of G. vermiculophylla agar MAE melting temperature (Y4) as a function of extraction time (X1) and stirring speed (X4) 

(temperature (X2)= 80 °C, solvent volume (X3) = 30 ml). 



 

 

national food market currently requires sulfate content less than 4%, 

usually 1.5–2.5% (Armisen, 1995) and all results reached are within the  

acceptable range. 

 
3.5. 3,6-Anhydro-L-galactose content 

 
3,6-AG content first order model did not reveal a significant lack of fit (p 

> 0.05) suggesting steepest ascent method should be ap- plied. This 

technique suggested operational parameter values impossible to apply; so, 

remaining experiments were performed (Table 1). In the second order 

model the lack of fit was not signif- icant (p > 0.05) however, the model 

did not reach statistical signif- icance (p > 0.05). The  quadratic  correlation  

coefficient  was  low, R2 = 0.6730, meaning that only 67.30% of the 

variability in the data was accounted by the model. This poor model 

predictability may be due to more complex parameters interactions that 

were not suf- ficiently explained by the number of runs performed. 

Therefore, optimum 3,6-AG content was found based only on the 

experimen- tal results (Table 1). 

Five experiments were carried out at maximum 3,6-AG content 

operational conditions: 10 min extraction, 90 °C, 40 ml of solvent and 

minimum stirring speed (run 7 in Table 1) reaching an average value  of  39.4 

± 0.3%.  The  agar  samples  extracted  with  the  tradi- tional  process  from  G.  

vermiculophylla  produced  in  the  selected IMTA system presented 20.6% 

less 3,6-AG (31.3 ± 1.5%) than those recovered with MAE. An increase in 3,6-

AG content corresponds to an  improvement  in  gel  strength  (Marinho-

Soriano  and  Bourret, 2005) and this relationship was also observed in 

this study with MAE enabling remarkable stronger agar gels. For wild G. 

vermicul- ophylla,  Villanueva  et  al.  (2009)  reported  a  content  of  3,6-

AG (42.5 ± 0.9%), in the agar traditionally extracted, similar to that of the  

agar  obtained  in  this  work  with  MAE.  These  results  are  also in   agreement  

with   those   presented  by   Arvizu-Higuera  et   al. (2008)    for    the    same    

wild    species    collected    in    Mexico (44.4 ± 0.7%).  Pearson’s  correlation  

analysis  revealed  that  all  gel properties  were  correlated  positively  with  

3,6-AG  content  (gel strength, r = 0.67 (p < 0.01); gelling r = 0.70 (p < 0.01) 

and melting r = 0.64 (p < 0.01) temperatures), except the sulfate content 

which was  negatively  correlated  (r = -0.81  (p < 0.01)).  Marinho-Soriano 

and Bourret (2005) reported for Gracilaria dura a positive correla- tion 

of 3,6-AG with gel strength, however no significant correlation between 

sulfate content and gel strength was observed. Consider- ing that agars are 

to be used as food additives fitting international norms (FAO or World 

Health Organization), a more thorough char- acterization  of  the  chemical  

and  physical  properties  of  agar  ex- tracted by MAE should be conducted. 

 

4. Conclusions 

 
This first study of the chemical and physical properties of agar extracted 

from red seaweed G. vermiculophylla, grew in an IMTA system (Ria de Aveiro, 

Portugal), clearly demonstrated that, apply- ing MAE, higher yields and 

reproducibility, as well as agar with the most desirable performance in terms 

of gel  strength  were achieved, when compared  to  conventional  

extraction methods. The MAE approach supports sustainable development, 

as it re- quires less energy and solvent than conventional processes, while 

generating fewer wastes. This work suggests the feasibility of the 

exploitation of G. vermiculophylla produced in IMTA systems for production 

of agar gels with superior   quality. 
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