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A procedure for the determination of seven indicator PCBs in soils and sediments 
using microwave-assisted extraction (MAE) and  headspace  solid-phase  
microextraction (HS-SPME) prior to GC-MS/MS is  described.  Optimization  of  the  
HS-SPME  was carried out for the most important parameters such as extraction  
time,  sample  volume and temperature. The adopted methodology has reduced 
consumption of organic solvents and analysis  runtime.  Under  the  optimized  
conditions,  the  method  detection  limit  ranged from 
0.6 to 1 ng/g when 5 g of sample was extracted, the precision on real samples 
ranged from 4 to 21% and the recovery from 69 to 104%. The proposed method,  
which  included the analysis of a  certified  reference  material  in  its  validation  
procedure,  can  be  extended to several other PCBs  and  used  in  the  monitoring  
of  soil  or  sediments  for  the  presence of PCBs. 
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1. Introduction 

 
In the last 30 years, growing awareness has been directed towards the risks posed to 

human health and the global environment by the increasing release of anthropogenic chemicals 

such as polychlorinated biphenyls (PCBs) into the   environment. 

 
 
 

 

There is no uniform approach  to  the  suite  of  PCBs  congeners  most appropriate for studies 

of terrestrial and freshwater ecosystems. The list known as ICES7 [1] (International Council for 

the Exploration of the Sea: CB 28, CB 52, CB 101, CB 118, CB 138, CB 153, CB 180) has 

increasingly become recommended for environ- mental monitoring, because this group of 

PCBs  contributes  largely  to  the  total amount found in most environmental samples   [2]. 

The aim of any extraction technique in analytical chemistry is to provide effective, rapid, 

and quantitative removal of the analyte from its matrix, with minimal solvent usage. 

Several researchers have compared a range of techniques for the extraction of organic 

pollutants from environmental matrices  [3]. 

Lopez-Avila et al. [4] tested microwave-assisted extraction (MAE) as an alterna- tive to 

Soxhlet, sonication, and SFE for the extraction of 95 organic pollutants pesticides listed in 

United States  Environmental  Protection  Agency  (US EPA) Method 8250.  The  results  showed  

the  highest  recoveries  for  MAE  and  Soxhlet, but the best precision was reached with the 

former [4]. Moreover, the employment of  MAE  has  many  advantages  over  other  classical  
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extraction  techniques,     such as  the  reduction  in  extraction  time  and  solvent  

consumption,  and  the  possibility of  multiple-sample  analysis  [5–8].  Unfortunately,   MAE   

cannot   separate   the target analytes from other extractable interferences  coexisting  in  the  

sample, requiring further purification steps, resulting in time-consuming and multi-step 

procedures. Solid-phase microextraction (SPME) coupled with high-resolution chro- matography 

with tandem mass spectrometry provides a solution to address this drawback. 

Solid-phase  microextraction  has  been  proposed  for  the  determination  of   PCBs in 

various matrices such as water [9–11] or soils and sediments [12]. Llompart et al. [12] 

extracted PCBs from soil samples by heating the slurry formed by mixing water with soil and  

performing  headspace  (HS)  SPME.  However,  the  presence  of slurry in the extraction vial 

produces a significant decrease in the SPME  efficiency. Therefore, the combination of SPME 

with other methods to extract the analytes in liquid or solid matrices has been studied, 

including  MAE  coupled  with  SPME, namely in the analysis of chlorinated pesticides in  plants  

or  water  [13,  14],  and PCBs in water or ash  [15,  16].  Furthermore,  other  authors  reported  

the  use  of MAE as an initial exhaustive extraction step, followed by HS-SPME of the MAE 

extract, as a selective extraction/concentration step, thus obviating time-consuming clean-up 

and concentration steps [16]. To our knowledge, none reported the applica- tion of MAE 

combined with HS-SPME to the analysis of PCBs in sediments and/or soils. This technique 

provides efficient enrichment and cleanup, and also a good selectivity and sensitivity. 

The aim of this study has been the modification of previously described MAE methods for 

PCBs by coupling HS-SPME and gas chromatography/tandem mass spec- trometry (GC-MS/MS) 

in order to skip the purification steps, and to analyse these compounds in soils and 

sediments. This work describes the development and validation of a simple and fast analytical 

procedure for PCBs, including the analysis of a certified reference material (a freshwater 

harbour sediment), and offers further evidence of the applicability of MAE-HS-SPME-GC-

MS/MS to the analysis of these compounds in solid samples. 



 

 

2. Experimental 

 

2.1 Materials 

Hexane and acetone Envisolv and ethanol analytical grade were purchased from Riedel-de Hae  ̈

n (Seelze, Germany). Selected indicator PCBs congeners (CB 28,  CB 52, CB 101, CB 118, CB 138, 

CB 153, and CB 180) were acquired from Restek (Bellefonte, PA) as analytical  standards. 

The polychlorinated biphenyls (PCBs) included in this study were used to prepare a 

‘working standard’ in ethanol with 10 mg/L of PCBs, on average. This solution was used to 

prepare diluted standard solutions and to spike sand samples to the required concentration. 

To comprise 1.8% of ethanol in all diluted standard, 720 mL of ethanol was added before HS-

SPME of each sample (40 mL). 

Certified Reference Material—CRM 536 (freshwater harbour sediment)—was obtained from 

the Institute for Reference  Materials  and  Measurements  (IRMM) (Geel, Belgium) and had 

12% organic matter and 1.28% moisture content (mass frac- tions). Additional information 

about this sediment is available on the European Commission report [17]. The  certified values  

for the selected  PCBs in this  material are included in the results section. Water was distilled 

and deionized. Helium carrier gas (99.9999% purity) was supplied by Praxair   (Madrid). 

To minimize adsorption and loss, or desorption of the studied compounds during 
handling and analysis, all glass material was silanized prior to utilization by soaking it 
overnight in a 10% dichlorodimethylsilane solution in toluene, then rinsing with toluene  

and methanol and drying  thoroughly for 4 h at  400oC. 

 

2.2 Soil-sample preparation 

The sandy soil sample (pH 7.8, 2.18% organic matter content, 0.17% water content) used 

for obtaining the MAE/HS-SPME/GC/MS-MS calibration curve was air-dried and sieved to a 

grain size of 2 mm. After homogenization, it was stored at 4oC, and subsequently analysed 

to confirm the absence of PCBs in order to be used as standard blank soil. 

Spiked soil samples were prepared by adding appropriate volumes of the PCBs 

concentrated stock solution to a 5 ± 0.1 g portion of soil. The spiked samples as well as the 

unknown landfill soil samples were allowed to stand for 24 h to air-dry and extracted by 

MAE thereafter. 

 

2.3 Microwave-assisted extraction of sediments and soil samples and SPME conditions 

Microwave-assisted extractions were performed with a MARS-X, 1500 W Microwave 

Accelerated Reaction System for Extraction (CEM, Mathews, NC) configured with a 14-

position carousel. The spiked soil samples (to obtain the MAE/HS-SPME/ GC/MS-MS calibration 

curve) or portions of samples were transferred quantitatively to the glass extraction vessels. 

Twenty millilitres of n-hexane–acetone (1:1) were used as extraction solvent. The  operational  

parameters  of  the  MARS-X  apparatus  were as follows: magnetron power 100%; time to reach 

settings 10 min; extraction tempera- ture  115oC;  extraction  duration  10 min;  medium  speed  

stirring;  maximum     vessel 



 

 

pressure cutoff 200 psi. After the extraction, the vessels were cooled to room tempera- ture 

before opening, and 15 mL of the supernatant was filtered through a Whatman No. 42 

filter paper and evaporated to dryness under a gentle stream of nitrogen. Immediately before 

GC-MS analysis, the residue was redisolved with 720 mL of ethanol and 40 mL of water, and 

subjected to HS-SPME using the procedure described above. The SPME device (fibre and fibre 

holder) was purchased from Supelco (Bellefonte, PA). The fibre was coated  with  100 mm  

polydimethylsiloxane  (PDMS).  Magnetic stir bars, PTFE-coated, 20 x 7.5 mm, were used in 

SPME. After each extraction, stir bars were rinsed consecutively with acetone, n-hexane, 

acetone and water, to prevent 

significant carryover between samples. 

For HS-SPME, 50 mL (nominal  size)  crimp  top  HS  vials  (actual  capacity about 55 mL), 20 

mm black Viton septa and aluminium seals were used, all from Supelco (Oakville, Canada). 

During extraction,  the  fibre  was  about  1 cm  above  the surface of the liquid and stirring set 

to give a vortex depth of 0.5 cm. 

Optimized HS-SPME conditions were: headspace during 60 min of 40 mL of sample (1.8% of 

ethanol) at 65oC, with 100 mm PDMS coated    fibre. 
 

2.4 Chromatographic and MS/MS conditions 

For  the  chromatographic  separation  and  detection  of  the  studied    compounds,  a 

Varian (Walnut Creek, CA) CP-3800 gas chromatograph, equipped with a split/ splitless 

injector (model 1079), and a Varian Saturn 2000 ion trap detector were used. The analytical 

column was a  Varian  60 m x 0.25 mm  CP-Sil  8  CB  lowbleed/ MS (0.24 mm film 

thickness). Helium at 0.9 mL/min (constant flow) was used as carrier gas. 

The injection temperature was 260oC, in splitless mode. At 10 min, the split valve 

was open. SPME fibres remained in the injector for at least 15 min to minimize carryover. 

The oven-temperature programme was as follows: 80oC was held for 10 min; then 

ramped to 170oC at 20oC/min, and to 260oC at 3oC/min; then to 300oC at 5oC/min. 

After  holding  for  2 min  at  300oC,   the   temperature   returned   to   initial values. The total 

run time was 54.5 min. 

Tandem mass spectrometry was carried out under ionization with electron impact at 70 

eV in MS/MS mode with Multiple Reaction Monitoring    (MRM). 

The  transfer  line,  manifold  and  trap  temperatures  were  290oC,  50oC  and 210oC, 
respectively. The emission current was set to 60 mA  for  all  MS  segments  and the axial 

modulation voltage to 4.0  V. 

Detection was made by  resonant  collision-induced  dissociation  (CID)  MS/MS, with CID 

frequency offset kept at zero and excitation time to 40 ms for all compounds. The most critical 

parameters were  set  to  obtain  a  maximum  sensitivity,  and these are summarized in table  1. 

In the present work, the prescan time was set to 1500 ms in order to maximize the number of 

daughter ions formed, and a value of 2000 for the target TIC. The maximum ionization time 

employed was 25 ms for all  segments. 

The compounds were identified and quantified by extracting the characteristic ions of 

each studied compounds, monitored at the specific retention time, within a peak window 

of ±0.2 min. Quantification was carried out using an external standard with the most 

prominent ion(s) obtained in each   case. 



 

 

Table 1.   Ion preparation method parameters for each segment of the GC-MS/MS method.a 

 

 
Segmen
t 

 
Compounds 

 Start 
time 
(min) 

End 
time 
(min) 

Precursor 
ions 
(m/z) 

Quantificati
on ions 

Solvent –  0 10 – – 
delay       

2 2,4,40-Trichlorobiphenyl CB 28 28.2 35.5 256 186 
 2,20,5,50-Tetrachlorobiphenyl CB 52   292 257 
3 2,20,4,5,50-Pentachlorobiphenyl CB 101 36.2 38.5 326 291 
4 2,30,4,40,5-Pentachlorobiphenyl CB 118 39.2 43 326 256 

 2,20,4,40,5,50 -
Hexachlorobiphenyl 

CB 153   360 325 
5 2,20,3,4,40,50 -

Hexachlorobiphenyl 
CB 138 43 54.5 360 325 

 2,20,3,4,40,5,50  -
Heptachlorobiphenyl 

CB 180   394 359 

aCollision-induced dissociation frequency offset was set to 0 Hz to all   segments. 
 

 

3. Results and discussion 

 
Extraction is the first step in the analysis of POPs in soils, sludge, and other solid wastes. 

One of the most commonly used microwave-assisted solvent mixtures is hexane–acetone (1:1). 

Lopez-Avila et al. [4, 18, 19] found this to be advantageous for environmental 

contaminants such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides 

(OCPs), PCBs, phenols and organophosphorus    pesticides. 

The MAE procedure adopted in this study meets the requirements for sample extrac- tion of 

US EPA Method 3546, which recommends the use of hexane–acetone (1:1) as extractor and 

is suitable for the extraction of PCBs from soils, clays, sludges, solid wastes and sediments 

[20]. 

 

3.1 Optimization of the HS-SPME procedure 

Solid-phase, PDMS-coated microextraction fibres, have been successfully used for selective 

extraction of PCBs [9, 10, 12]. Although other fibre coatings have been studied for their 

efficiency on extraction of some  of  the  compounds of  our interest,  some even showing 

slightly better results than PDMS [21, 22], these are still those most used and best 

characterized, and were therefore used in this work. 

The HS-SPME procedure was optimized by studying the effect of several param- eters on 

the peak area (MS operating in full scan mode) of each of the studied compounds: extraction 

temperature, extraction time, flask/sample volume ratio, and desorption time. These 

experiments were conducted on a standard solution containing, on average, 1 mg/L of the 

studied  PCBs. 

The effect of temperature on the extraction efficiency was different for each compound, 

depending on the volatility. Three different temperatures  (22,  47,  and 65oC) were studied. For 
the most volatile PCB (CB 28), a higher extraction temperature slightly decreased the extraction 
efficiency. 

Possibly, the rise  in  vapour  pressure  of  these  compounds  at  higher temperatures is 

counterbalanced by the decrease in  the  partition  coefficient  from  the  gas phase into the 

fibre. For the less volatile compounds, and thus with a greater difficulty in extracting from 

the headspace, increasing the extraction temperature enhances the sensitivity. To achieve an 

acceptable sensitivity and extraction time for all compounds, the temperature was set to   

65oC. 
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As expected, the extraction efficiency increased for all the compounds with the extraction 

runtime. In order to maximize sample output, the extraction time was set to 60 min (about 

the same for the chromatographic    separation). 

As other authors reported when performing HS [15, 23], the response increases as the 

headspace/sample volume ratio decreases, because of the greater concentration of 

volatilized compounds in the gaseous fraction. Using vials with different capacities (16, 40, 

and 55 mL), the effect of sampling at volume ratios (total vial volume to aqueous volume) 

of 4, 3, 2.7, and 1.4 was studied. In order to maximize the extraction efficiency while 

maintaining a sufficient headspace to allow the SPME fibre to stand about 1 cm above the 

liquid surface, the sample volume was set to 40 mL (volume ratio of 1.4) in 55 mL vials. 

Concerning desorption time, it was observed that at least 15 min was needed to avoid 

carryover on fibre re-desorption. During analysis, each fibre stood in the injector at least 

15 min before further use. Under the current conditions, the SPME fibre used during 

method validation was still presenting good adsorption capabilities after more than  60 

extractions. 

 

 

3.2 Method validation 

In the present work, six standards were used for the calibration  of  selected PCBs (figure 1). 

Appropriate volumes of standard solution containing PCBs were added to 5 g of model soil 

in order to build a calibration curve from 0.51 to 5.8 ng/g. Because different amounts of 

extracted sample could be subsequently used,  the  calibration curve was constructed based on 

the mass  of  each  PCB  present  on  each standard. The calibration functions were linear within 

the concentration range considered  for each compound. 

The method sensitivity decreased towards the most chlorinated (least volatile) PCBs. The 

best sensitivity was achieved for CB 52 and the worst for CB 180 (figure 1). 

 

1200000 
 

 
 

1000000 
 

 

800000 
 

600000 
 

400000 
 

200000 
 

0 

0 5 10 15 20 25 30 35 

Extracted mass (ng) 

 

Figure 1.    Standard calibration curves obtained for the selected   PCBs. 
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Table 2.    Method validation  parameters. 

 

 Retentio
n time 

Detectio
n 
limita 

Quantificati
on limitb 

Precision ± 
RSD% 

 
Recovery (%) ± 

CRM 
certified 
values Compoun

d 
(min) (ng/g) (ng/g) (n ¼ 4) RSD (n ¼ 4) (ng/g) 

CB 28 30.79 0.6 2.2 12 104 ± 12 44 
CB 52 32.46 0.4 1.2 21 74 ± 26 38 
CB 101 37.28 0.4 1.4 9 80 ± 9 44 
CB 118 40.9 0.7 2.3 10 70 ± 11 28 
CB 153 42.07 0.6 1.9 12 80 ± 13 50 
CB 138 43.66 0.6 1.9 4 69 ± 4 27 
CB 180 44.38 1 3.4 10 71 ± 11 22 

aCalculated by 3 x sy/x/calibration curve slope. bCalculated by 10 x sy/x/calibration curve slope, 

with (sy/x ¼ [
P

(yi - yicalc)2/ 
(n - 2)]1/2, with yi denoting experimental values and yicalc calculated by the calibration curve) and 
considering 5 g of sample extracted. 

 

 

The squared correlation coefficient (R
2

) for the studied compounds ranged from 0.997 (CB 52) 

to 0.979 (CB 180). 

Although there are other methods to calculate detection and quantification limits 

(based for example on the signal-to-noise ratio) with which lower  detection limits values   may  

be  obtained,  these  parameters  were  assessed  by  the  method     based in   the   calibration   

curve,   described   by   the   sum   of   the   intercept   and      three 

times  sy/x   (sy/x ¼ [
P

(yi - yicalc)
2

/(n - 2)]
1/2

,  with  yi   denoting  the  experimental  values 
and yicalc calculated by the calibration curve) and are presented in table 2. Detection limits 

ranged from 0.4 (CBs 52 and 101) to 1 (CB 52) ng/g when 5 g of standard samples were extracted, 
and quantification limits were 1.2–3.4 ng/g. 

Microwave-assisted extraction of the certified reference material CRM 536 followed by HS-

SPME showed a repeatability for the whole procedure of 4–21% for all considered congeners 

(table 2). 

In the recovery experiments, 1 g  of  the  CRM  536  was  extracted  and  2.5 mL of the  extract  

dried  in  order  to  obtain  the  quantification  within   the   calibration range. However, when 

unknown soil samples  were  analysed,  5 g were taken,  as for the  calibration standards. 

If compared  with  other  methods  directed  to  the  same  target  analytes  and sample 

types, the combination of MAE-HS-SPME and GC-MS/MS as studied here showed similar or 

better characteristics, namely in terms of quantification limits, precision, accuracy, analysis 

time, and solvent consumption (table   3). 

 

 

3.3 Analysis of real samples 

Figure 2 shows the chromatographic separation of the selected PCBs in the CP-Sil 8 

analytical column obtained from a HS-SPME of MAE extracts from the CRM 536 (1 g 

extracted) and from a soil sample (5 g extracted) collected in a landfill  (42.8% humidity and 

2.79% total organic matter    content). 

The elution order obtained for PCBs compares to previously  reported  order  for PCBs within 

a homologue group on non-polar stationary phases according to their number of ortho-

chlorines [28]. The landfill soil sample was obtained from an already sealed landfill, with 

uncontrolled waste deposition for more than 10 years. Although 



 
 
 
 
 
 
 
 
 

 
Table 3.    Comparison of the performance of some reported methods for PCBs extraction and analysis. 

 

 Limit of 
quantificati
on 

 
Precision 

 
Recovery 

Organic 
solvent 
consumption 

 
Analysis 
runtime 

 

Extraction method (mg/kg) (RSD %) (%) (mL) (min)a Observations Referenc
e 

MAE n.r. n.r. 75–157 33 76 5 g of soil samples; 187 
compounds 

4 
      and 4 Aroclors  
HS-SPME 0.9 <10b 79–94 0 60 0.1–2 g of sample; soil and 12 

      sediments; Aroclors  
MAE-HS-SPME 0.2–1.5 4–12 83–111 30 106 1.5 g of sample; ash; 10 

individual 
16 

      congeners  
Automated  Soxhlet 0.16–0.8 n.r. 80–90c >50 146 2–30 g of sample; 19 individual 24 

congeners 
51–66d 

Subcritical  water extraction n.r. 10–15 80–130e 0 101 0.5 g of sample, soil and 
sediments; 

12 individual congeners 
MAE n.r. 2–30 53–149 67 149 2 g of sample; PAHs, OCPs  and 

18 individual congeners; 
include an HPLC purification 
step 

Soxhlet 0.1–0.4f n.r. 86–92 90 180 1 g of sample; 
sediments; 

PBDEs, OCPs and 7 
individual congeners 

MAE-HS-SPME 1.2–3.4g 4–21 69–104d 20 135 5 g of sample; soil and 
sediments; 

7 individual congeners 

 
24 

 
25 

 
 
 

26 
 

 
this 

work 

  
aExtraction, clean-up and quantification; n.r.: not reported. bIntermediate precision. cSpiked soil. dCertified reference material. eObtained by 
comparison with values obtained by Soxhlet. 
fDefined as three times the standard deviation of the procedural blank level. gDefined as 10 x sy/x/calibration curve slope. 





 

 

 

Figure 2. Extracted ion chromatograms of a landfill soil sample (A) and CRM 536 (B). (1) CB 28, (2) 
CB 52, (3) CB 101, (4) CB 118, (5) CB 153, (6) CB 138, (7) CB 180. 

 
 

 
exempt of any of the studied compounds above the respective quantification limits, the analysis 

of the sample showed the presence of several PCBs, as confirmed by the respec- tive MS/MS 

spectra. 

Apart from the seven indicator PCBs studied in this work, CRM 536 contains several other 

PCBs that can in the future be quantified by the same method and, therefore, also in the 

unknown soil samples or sediments, providing that these compounds are included  in  the 

standards. 



 

 

4. Conclusions 

 
The combination of the microwave-assisted extraction, using a small volume of the mixture 

n-hexane–acetone (1:1; v/v), followed by headspace solid-phase microextrac- tion  allowed  the  

determination  of  seven  indicator  PCBs  in  soil   and sediments with reduced sample 

preparation time and very low consumption of organic solvents. The method can be further 

improved by including appropriate internal standard(s) in order to avoid differences 

between extraction efficiencies among different samples. As a part of an ongoing project, 

the method will be applied to a larger number of landfill soil samples and sediments. 
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