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ABSTRACT 

 

A flow injection analysis (FIA) system comprising a cysteine 

selective electrode as detection system was developed for 

determination of this amino acid in pharmaceuticals. Several 

electrodes were constructed for this purpose, having PVC 

membranes with different ionic exchangers and mediator 

solvents. Better working characteristics were attained with 

membranes comprising o-nitrophenyl octyl ether as  mediator  

solvent  and  a  tetraphenylborate  based   ionic-sensor. 

 

 

Injection of 500 mL standard solutions into an ionic strength 

adjuster carrier  (3 x 10-3 M)  of  barium  chloride  flowing  at  

2.4 mL min-1, showed   linearity   ranges   from   5.0 x 10-5     

to   5.0 x 10-3 M,   with slopes  of  76.4 ± 0.6 mV  decade-1   

and  R2>0.9935.  Slope  decreased significantly  under  the  

requirement  of  a  pH  adjustment,  selected at   4.5.   Interference   

of   several   compounds   (sodium,   potassium, magnesium,  

barium,  glucose,  fructose,  and  sucrose)  was  estimated by  

potentiometric  selectivity  coefficients  and  considered  negligible. 

Analysis  of  real  samples  were  performed  and  considered  

accurate, with a relative error to an independent method of 

þ2.7%. 

 

Key Words: Cysteine; Potentiometry; Ion-selective electrode;  

FIA and pharmaceuticals. 

 

 

 

INTRODUCTION 

 

Cysteine   (Cys),   the   (±)-2-Amino-3-mercaptopropionic   acid,   is an 

amino acid, classified as nonessential, since the human body can synthe- size it. 

Its external administration may be, however, required and is per- formed by 

means of commercialized pharmaceutical formulations. For human safety 

reasons, these formulations are subjected to several quality control requisites, 

among which the amount of main active compound is included. For this, the 

United States Pharmacopoeia (USP) suggests an iodimetric titration with 

sodium thiosulfate, having starch as endpoint indicator, and requiring a 

blank procedure for the necessary corrections.
[1] 

This method is somewhat 

elaborate, which makes it inadequate for the routine determinations required 
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by industries. It involves a high number of manipulations by an operator, 

which may conduct to random errors as well as to unnecessary exposition to 

toxic compounds. Moreover, formu- lations concerned cannot present color, 

since it would conduct to an error at the end point estimation. 

As a consequence, several other techniques dedicated to the deter- 
mination of Cys in pharmaceutical formulations are described in literature, 

most of them implying optical techniques. Concerning UV/vis 

spectrophotometry, the reducing properties of Cys have been exploited 
allowing the establishment of indirect readings of the analyte. Concretely, 

Fe(III) is reduced to Fe(II) for formation of a colored complex with 1,10-

phenanthroline 
[2] 

or ferrozine.
[3] 

Other proposals are based in the chemical 

transformation of the analyte with 1,1
0

-thiocarbonyl- diimidazole
[4] 

or 

benzoquinone
[5] 

into an absorbing compound.  The latter suffers from high 
interferences at the analysis of real matrices, for which a previous HPLC 

separation has been regarded by the authors. Fluorimetric procedures based 

in the ability of Cys to inhibit the fluores- cence of 8-hydroxyquinoline-5-

sulphonic acid and Zn(II)
[6] 

or Cd(II)
[7] 

complexes are proposed as well. 

Other optical procedures employ the Flow Injection Analysis (FIA) 

technique, an adequate strategy for performing rapid and repetitive 

determinations; FIA has also distinct advantages in terms of cost, 

performance, and flexibility. The complexation of Co(II) and  Cys, attained 

under flow and monitored at 360 nm, is the basis of a proposal in Lit.
[8] 

The 

presented method has the particular feature of reducing consumption of Co 

by its entrapment into a solid phase reactor, which is an excellent strategy 

regarding economics and environment. Another flow spectrophotometric 

method is based as well in the redox properties of Cys, promoting a color 

change of Prussian blue to white.
[9] 

A low consumption of reagent is also 

here exploited, this time by means of an optical flow-through cell-detector 

with a transparent layer of Prussian blue incorporated. 

 

In a general point of view, all above-mentioned optical methods enable 

the reading, at low cost, of low amounts of Cys after several sample-

processing steps, established to eliminate interferences from color, turbidity, 

suspended solids, different refractive indexes, etc. Overall, chemical 

transformation or complexation of the analyte is here always regarded, 

which may, as a consequence, conduct to interference from excipients within 

the concerned matrices. 

Without these features, a capillary electrophoresis based method 

connected to a reverse-pulse amperometric system with a gold-mercury 

amalgam microelectrode is reported in Lit.
[10] 

This method enables the 

elimination of interfering compounds, yet one main safety problem may arise 

from exposing the operator to mercury, a highly volatile and toxic 

compound. 



 

Other alternatives in literature regard electro-analytical techniques, 

usually  less  expensive  than  separative  instrumental   strategies. Among 
them, one voltammetric-based stationary procedure is able to 

electrocatalytically oxidize Cys by means of a redox ruthenium(III)/ 
diphenyldithiocarbamate mediator, applied to the surface of a carbon paste 

electrode.
[11] 

Biamperometric methods with two platinum electrodes are 

also reported, regarding a direct oxidation of Cys
[12] 

at a pretreated 
electrode or an indirect reading after reaction of analyte with chloramine-

T.
[13] 

As a whole, techniques concerned present lack of selectivity, since 
every compound with redox properties may, under the applied potentials, 

give rise to analytical signals. This problem would be solved if the technique 
would be selective to   Cys. 

 

In fact, one Cys selective electrode, prepared by incorporating 

phthalocyanine into a plasticized PVC membrane, is reported.
[14] 

The 

resulting sensor shows Nernstian response and presents more than one-month 

lifetime. Although not a long lasting detection system, this potentiometric 

method does not required usual sample preparation steps. Nevertheless, it 

would be more adequate to a routine application if applied to flow  

conditions. 

A FIA potentiometric research work, involving a selective electrode of 

Ag/Ag2S, prepared by pretreatment of a silver tube, is indeed presented in 

Lit.
[15] 

The potentiometric response is sub-Nernstian and seems to be 

connected to the formation of an AgSR layer (the ionized thiol group of 

Cys complexes with silver), studied under batch conditions. 

This electrode seems however not adequate for flow media due to the 

stream of carrier to which the membrane surface is subjected. Low lifetime 

detectors and a strong drift at analytical readings would be therefore 

expected. The formed complex could  be  propelled  towards the waste, 

leading to a continuous leaching of sensor. The authors present another 

alternative, employing an Ag/AgI selective electrode, equally prepared by 

pretreatment of a silver tube. The carrier presents iodine that, once reduced 

to iodide by Cys, gives  rise  to  potential  changes. This is of course an 

indirect measure, for which any reducing species among real matrices 

would contribute to analytical  errors. 

Considering all above-described methods,  the  construction  of  a Cys 

selective electrode of proper configuration for  flow  conditions would  be  of  

interest  regarding  the  routine  control  of  Cys  required by industries. In 

this sense, selective electrodes will be proposed, constructed with a tubular 

arrangement. Since adequate working characteristics must be attained, 

several selective membranes will be established. Analysis of real samples 

will be attempted with the adequate membrane. 



 

 

  

 

 

 

 

EXPERIMENTAL 

 

Apparatus 

 

The potential differences between indicating and reference electrodes 
were measured by means of a Crison  mpH  2002  decimilivoltammeter (± 
0.1 mV sensitivity) coupled to a Metrohm E 586 recorder. The reference 
electrode was an Orion, 90-02-00, double junction electrode. 

The selective electrode, with no internal reference solution, presented   a 

 

tubular configuration and was constructed as described elsewhere.
[16] 

When 

necessary, pH values were controlled by  means  of  a Sentek 71728 combined 

glass electrode connected to a decimilivoltammeter. 

The FIA system comprised a Gilson Minipuls 2 peristaltic pump, fitted 

with PVC tubing (1.85 mm i.d.) and a four-way Rheodyne 5020 injection 

valve. All components were gathered by PTFE tubing (Omnifit, Teflon, 0.8 

mm i.d.), Gilson end-fittings and connectors. The support devices for tubular 

and reference electrodes as well as ground electrode were constructed as 

reported elsewhere.
[17]

 



 

 

  

 

 

Reagents and Solutions 

 

All    chemicals    were    of    analytical    grade    and    deionised    water 

(conductivity    <0.1 mS    cm
-1

)    was    used.    L-cysteine    hydrochloride 

monohydrate  (Cys-HCl,  Fluka),  barium  chloride  (Fluka),  o-phosphoric 

acid (85%, Merck), sodium dihydrogenphosphate (Riedel-deHae¨ n),  and 

ammonia (Merck) were employed throughout. For the selective membrane 

preparation, bis(triphenylphosphoranyliden)ammonium        (BTPPA) 

chloride  (Aldrich),  tetraphenylborate   (TPB)  sodium   (Aldrich),   bis(2- 

ethylhexyl)sebacate  (bEHS,  Fluka),  o-nitrophenyl  octyl ether (oNFOE, 

Fluka), poly(vinyl chloride) of high molecular weight  (PVC,  Fluka),  and  

tetrahydrofuran   (THF,    Riedel-deHaen)  were  used.  Evaluation  of  the 

effects  of  both  pH  and    interfering  ionic species at the potentiometric 

response required sodium hydroxide (Merck), hydrochloric acid (Merck), 

sodium  chloride  (Merck), potassium chloride (Merck), magnesium chloride 

(Riedel-de Haë  n),  barium chloride (Merck),  sucrose  (Merck), glucose  

(Merck), and  fructose (Merck). 

Ionic   strength   (IS)   was   adjusted   to   3 x 10
-3 

M   by   means   of   a 

1 x 10
-3 

M  BaCl2    solution.  Simultaneous  pH  and  IS  adjustment  

was 
established   with   a   H3PO4/NaH2PO4    buffer,   prepared   with   different 

ratios  of  acid/base  solutions  in  order  to  attain  the  intended  pH,  and 

having  always  a final  IS  of  1 x 10
-2 

M. 

Standard solutions ranging 1.0 x 10
-5  

to 5.0 x 10
-3 

M were prepared 

by  accurate  dilution  of  a  stock  Cys-HCl  solution  of  1.0 x 10
-2 

M,  all  

of these prepared in the carrier solution present at the concerned FIA trials 

(either  IS  or  simultaneous  pH  and  IS  adjusters). 

The  pH  influence  was  studied  for  a  5.0 x 10
-4 

M  Cys-HCl  solution 

prepared in IS adjuster. Interference from other chemicals was evaluated 

by  the  separated  solutions  method,
[18]   

for  which  1.0 x 10
-4

,  5.0 x 10
-

4
, and  1.0 x 10

-3 
M  solutions  of  Cys-HCl  and  sodium  chloride,  

potassium 

chloride,  magnesium  chloride,  barium  chloride,  sucrose,  glucose,     or 

fructose, were prepared. These solutions were made in buffer (4.5 pH and 1 

x 10
-2 

M IS). 

 



 

 

  

 

 

Construction  of  Cys  Selective Electrodes 

 

Ionic sensors were prepared by precipitation reaction after a mixture of    

50 mL    of    a    1.0 x 10
-1 

M    Cys-HCl    solution    and    50 mL    of    a 

1.0 x 10
-2 

M sodium  TPB or BTPPA chloride solution.  Before reaction, 

Cys solution was added of a few drops of concentrated HCl or NH3 

respectively, which increased the  extent  of  the  intended  ionization and led 

to the formation of Cys-TPB or BTPPA-Cys ionic exchangers, respectively. 

The resulting precipitate was isolated from solution by filtration. After 

thorough washing with water, the filtered  precipitate was kept in a dark 

flask inside a desiccator in order to prevent light and humidity alterations. 

Electrodes comprising the above ionic sensors will be further assigned as 

types P and N,   respectively. 

Several sensor solutions were prepared by accurately dissolving 

approximately 0.02 g of the ionic sensor in 1.00 g of oNFOE or bEHS. 

The   corresponding   membrane   solutions   were   prepared   by  mixing 

0.20 mL of the previous solutions with 0.09 g of PVC, formerly dissolved in 

about 2 mL of THF. Membranes comprising those solvents  will be after 

designated as types O and B,   respectively. 

The   selective   electrodes   were   prepared   by   applying   membrane 
solutions   upon   a   tubular   shape   conductive   support   of   graphite   and 

epoxy resin.
[16]  

The membrane was let dry for 24 h and placed in contact 

with a 1 x 10
-3 

M Cys-HCl solution prepared in water. When not in use, 
the  electrodes  were  also  kept  under  these  conditions. 

The resulting selective electrodes, whose membrane composition is 

indicated in Table 1, will be further addressed as types PO, PB, NO, and 

NB, according to the sensor solutions they    contain. 

 

 

Procedures 

 

The working characteristics of the selective electrodes were evaluated in a 

single-channel manifold having as carrier either IS or pH and IS adjuster  

solutions,  an  injection  volume  of  500 mL  and  a  flow-rate  of 

2.4 mL min
-1  

(Fig.  1). 

For studying the effect of pH at the potentiometric response, a volume 

of 200.0 mL of a Cys standard solution was made to circulate into  a  

closed  loop  by  the  injection  valve  of  the  manifold  depicted in 



 

 

  

 

Table 1. Membrane overall composition (%, w/w) of the 

several Cys selective electrodes. 

 

Components PO PB NO NB 

Cys-TPB 

BTFFA-

Cys 

1.46 

— 

1.46 

— 

— 

1.4

0 

— 

1.34 
oNFOE 67.48 — 67.05 — 
bEHS — 67.42 — 67.47 
PVC 31.06 31.12 31.55 31.19 

 

 

 

 

Figure 1. Flow injection manifold. P: peristaltic pump; S: sample; C: 

carrier (BaCl2 for IS adjustment or phosphate buffer for both pH and IS 

adjustment); I: injection valve; GE: grounding electrode; CysSE: Cys 

selective electrode; RE: reference electrode; w: waste; mV: 

decimilivoltammeter; R: recorder. 

 

Fig. 1. Alterations in pH of this solution were promoted by addition of 

small amounts of saturated NaOH and  concentrated  HCl  solutions. These 

were selected regarding the nonintroduction of foreign chemical species. 

The  selectivity  study  was  made  by  separately  injecting  Cys-HCl  and 
other  possible  interfering  compound  solutions  into  a  carrier  stream  of 

phosphate  buffer  (pH  4.5  and  IS  of  1 x 10
-2 

M). 

The    pharmaceutical    preparation,    commercialized    as    capsules, 

Phakan
®

,   contained   a   labeled   amount   of   290 mg   of   Cys   per   unit, 
expressed in Cys-HCl. The average weight of each capsule was calculated in 
470.4 mg. An exact amount of about 0.0128 g of powder was dissolved and  

after  diluted  with  phosphate  buffer  (pH  4.5  and  IS  of  .1 x 10
-2 

M) to  a  
final  volume  of  50.00 mL,  leading  to  a  stock  solution  of  sample with  a  

concentration  estimated  in  1.0 x 10
-3 

M  Cys.  A  2500 mL  volume of  this  
solution  was  after diluted to  a final  volume  of  25.00 mL  with  the same   

buffer;   the   expected   concentration   was   of   1.0 x 10
-3 

M   Cys. 
Recovery trials were preformed with a similar solution added of 1000 mL 



 

 

  

 

of  a  1.00 x 10
-2 

M  Cys  standard  solution  before  completing  the  final volume  

up  to  25.00 mL,  equally with  phosphate  buffer. 

Results of the potentiometric analyses were compared with those 

obtained with USP method.
[1] 

For this, an amount of sample containing 

250 mg Cys-HCl was dissolved in water and potassium iodide. This solution 

was cooled in an ice bath, added of HCl and iodine, and was let stand in 

the dark for 20 min. Excess of iodine was titrated with thiosulphate sodium, 

having starch as end point indicator. A blank was required for corrections. 

 

 

RESULTS  AND DISCUSSION 

 

In the construction of adequate working characteristics Cys selective 

electrodes, four different membranes were prepared. Considering that Cys 

presents amphoteric properties, the possibility of preparing both positively 

and negatively charged electrodes arose. For this, two distinct ionic 

exchangers were prepared, with Cys positively charged at the amine group 

(Cys-TPB) or negatively charged at the carboxylic group (BTPPA-Cys). 

Furthermore, membranes were prepared with either oNFOE or bEHS. 

Besides different chemical structures, these solvents present quite opposite 

properties in terms of polarity: dielectric constants of 23.6 and 4.6, 

respectively.
[19]

 

All prepared electrodes were evaluated under IS adjustment conditions, 

in order to select one for further   applications. 

 

 

Working Characteristics of the Cys Selective     Electrodes 

 

Working  characteristics  of  the  several  Cys  selective  electrodes  were 

established with the FIA manifold depicted in Fig. 1. A 500 mL injection 

volume   and   a   2.4 mL min
-1     

flow-rate   were   selected   regarding   the 

establishment  of  analytical  conditions  equivalent  to  those  of  stationary 

state. 

Under IS adjustment conditions, positively charged electrodes gave a 

more or less predictable response (types PO and PB) while negative ones 

showed no logical behavior (types NO and NB)—instead of decreasing 

potential readings while concentration increased, only small positive peaks 

with random heights were attained. Considering that an alkaline medium 

would favor ionization of the carboxylic group, calibrations of types NO 

and NB detectors were tried again, this time with carrier and standard 

solutions having a pH of 10.9. Yet, no agreeing results were 



 

 

  

 

Table 2.  Working characteristics of types PO and PB Cys selective 

electrodes. 

  
IS  (3 x 10-3 M) 

Working 
characteristics 

  

PO PB 

  
LLLR  (M)a 5 x 10-5 5 x 10-5 
Slope  (mV  decade-1) 76.4 ± 0.6 54.6 ± 0.1 
Repeatability   (±Mv)b ±1.1  (1.1%) ±0.6  (4.1%) 
R2 >0.9935 >0.9926 
Sampling  frequency (h-1) 63  54 

aLower limit of linear  range. 
bAverage of 6–15 readings of Cys standard   solutions. 

 

 

attained.  Opposing  these  results,  types  PO  and  PB  electrodes  showed 

good    working    characteristics    (Table    2),    with    linearity    ranges    of 5 

x 10
-5   

to  5 x 10
-3 

M  Cys.  High  sensitivities  were  recorded  for  both 

electrodes,  with  emphasis  to  those  of  type  PO.  Completely  unexpected, 

the  latter  presented  slopes  of  þ74 mV  decade
-1

;  they  had  also  better 

repeatability  and a  slightly quicker  response  than  type  PB  detectors. 

With regard to the intended analytical application, as well as to the 

acid/base properties of Cys, the influence of the pH at the potentiometric 

response was evaluated. Cys presents three distinct pKa values, concerning the 

loss of H
þ 

by the carboxylic group (1.86), by the thiol group (8.35) and 

by the amine group (10.34). In this sense, the amount of positively charged 

Cys molecules in solution is straightly connected to its pH. For a 2.0–11.0 

pH range, both detectors showed an increase of analytical readings as pH 

decreased (Fig. 2). Probably, this behavior was not only connected to an 

increase of the positively charged Cys molecules, but also to the decrease  of  

negative  charges  located  at  the  same analyte. These opposite charges 

within the same chemical structure could have promoted an opposite effect at 

the expected analytical readings. 

Though Reilley profiles were similar for both detectors, for an equal 

concentration of Cys peak heights were much smaller for type PB electrodes 

(Fig. 2), conducting to an apparent wide operational  pH range. Indeed, 

peaks were here so small that it was difficult not to find constancy among 

recordings. These electrodes were therefore considered of no interest to the 

aimed analytical application and further trials proceeded with only type PO 

detectors. Being so, this distinct amphoteric property of Cys could not be 

fully exploited at this study, albeit other membrane compositions could 

allow the attainment of adequate potentiometric  responses. 



 
 
 

PB 

 
 

 
PO 

 
 

pH 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
            

1 2 3 4 5 6 7 8 9 10 11 12 

 
Figure 2.    Reilley diagrams of types PO and PB electrodes for a Cys-HCl 
solution of  5 x 10-4 M  in  IS  adjuster. 

 

Regarding type PO electrodes, the Reilley diagram showed no 

operational pH range (Fig. 2), with  a  continuous  potential  change  as pH 

drifted to lower values. This lack of constancy resulted most probably from 

the acid/base properties of the concerned analyte. In this sense, several 

calibrations were attempted at different acidic pHs. Results attained here 

pointed out an increasing interference from H
þ 

as pH decreased, since quite 

small sensitivities as well as unstable potentials were recorded; when pH 

was increased, nonlinear results were attained due to a significant raise at the 

lower limit of linear range. Acceptable recordings ranged only 4–5 pH  units. 

Best behavior under pH adjustment conditions was recorded for a 4.5 pH  
(Table  3),  though  the  slope  was  sub-Nernstenian,  and  quite  distinct from 
the one attained under IS adjustment (Table 2). This slope variation may 

regard the formation of different ratio complexes within the selective 
membrane, though no information in literature confirms this possibility. 
Moreover,  air  oxidation  of  thiol  groups  of  two  Cys  molecules  (forming 
cystine,  the  disulfide-linked  dimmer  of  Cys),  could  have  reduced  the 

concentration of protonated Cys in solution.
[20]  

Reductive cleavage could 
be accomplished by reaction with b-mercaptoethanol, converting cystine 

functional  groups  back  into  Cys.
[20]  

This  was  tried  out  for  a  1 x 10
-4 

M concentration   of   reducing   compound,   at   both   carrier   and   standard 
solutions.   Results   did   not   improve   significantly   and   a   higher   con- 
centration  of  b-mercaptoethanol  was  not  recommended  due  to  its  high 
impact  at  the  environment. 

Interference of other compounds regarding Cys determinations was also     

evaluated     under     the     previously     selected     pH  conditions. 

1
0

0
 m

V
 



 

  

 

Table 3.   Working characteristics of type PO detector at several pH values. 

  
 

Working 

characteristics 

pH 

  

4.0 4.5 5.0 

  

LLLR  (M)a  5x10-5  5x10-5  5x10-4 

Slope  (mV  decade-1) 25.48 ± 0.20 34.38 ± 0.30 40.96 ± 
1.01 
Repeatability (± mV)b ± 0.49 (1.5 %) ± 0.44 (1.0 %) ± 0.54 (1.0%) 
R2 >0.9928 >0.9959 >0.9910 
Sampling  frequency (h-1) 79 75  76 

aLower limit of linear  range. 
bAverage of 6–15 readings of Cys standard   solutions. 

 

 
Table   4.    Potentiometric    selectivity   coefficients    of   type   PO   Cys    
selective electrodes  for  concentrations  of  1.0 x 10-4   (A),  5.0 x 10-4   (B),  
and  1.0 x 10-3 

(C) M. 

Interference  A  B  C 

Sodium -0.363 ± 0.008 -1.062 ± 0.013 -1.315 ± 

0.006 

Potassium -0.172 ± 0.001 -0.879 ± 0.002 -1.157 ± 0.001 

Magnesium -2.160 ± 0.006 -2.477 ± 0.012 -2.551 ± 0.003 
Barium -2.413 ± 0.020 -2.714 ± 0.007 -2.780 ± 0.004 
Fructosea -2.477 ± 0.021 -2.824 ± 0.034 -2.978 ± 0.017 
Sucrosea -2.480 ± 0.003 -2.819 ± 0.001 -2.929 ± 0.013 
Glucosea -2.182 ± 0.003 -2.542 ± 0.010 -2.670 ± 0.009 

  

aAssuming ionization of a þ1 charge. 

 

Potentiometric selectivity coefficients were calculated for several con- 

centrations and for several compounds, as indicated in  Table  4. Basically, 

interference of inorganic cations was considered negligible. Lower 

coefficients for doubly charged ions were recorded and potassium showed a 

higher effect than sodium due to its volume size, more proximal to an 

ammonium ion. Among organic compounds, only carbohydrates were tested. 

Since they were not positively ionized, and in order to assume its higher 

interference possible (theoretically), they were assumed as singly charged 

cations. Results were similar for all carbohydrates, and indicated a 

negligible interference as well. All calculated selectivity coefficients, which 

can only be assumed as mere indication of the electro- de’s behavior when in 

contact with coexisting ions, suggest that Cys selective electrode will behave 

accurately at the analysis of real matrices. 



 

 

  

 

It is important to state that results here were attained at the same pH and IS 

values that are to be used at the intended analytical application. 

 

 

Optimization of the FIA Set-Up 

 
Optimization   was   accomplished   by   checking   one   parameter   and 

keeping  others  constant,  regarding  100–1000 mL  sampling  volumes  and 

2.0–10.0 mL min
-1  

flow rates. Recordings from previous conditions were 

mainly  evaluated  in  terms  of  dispersion
[21]   

and  sampling  rates.  Whilst 
injection of 200 mL gave rise to high dispersion (3.3), 500 mL ensured the 
necessary  low  dispersion  (1.2).  Though  nondispersion  was  only  attained 
with 1000 mL, this condition was coupled to a 47% decrease in sampling rate  
if  compared  to  results  of  500 mL.  Thus,  the  latter  was  selected  for further  

trials.  The  flow  rate  increase  after  4 mL min
-1   

conducted  to  a 
significant increase in dispersion, up to a maximum of three units. For a 

more  or  less  constant  dispersion  ranging  2.6–3.4 mL min
-1

,  the  lowest 
flow-rate  was  selected.  Due  to  the  fact  that  sampling-rates  did  not  vary 

significantly within this range (around 90 to 100 samples h
-1

), the reagent 
consumption and environment where here a main concern. 

 

 

Application to Real Samples 

 

Cys  was  potentiometrically  determined  in  the  only  commercialized 

pharmaceutical   preparation   after   calibrating   the   FIA   system   under 

fixed  pH  and  IS  (Fig.  3).  Before  injection,  every  sample  was  diluted  in 

order  to  fit  the  calibration  curve.  The  results  obtained  are  indicated  in 

Table  5,  and  correspond  to  average  and  standard  deviation  of  eight 

determinations.  The  resulting  FIA  records  indicated  that  the  proposed 

system  was  able  to  analyze  about  81  diluted samples  h
-1

. 

Accuracy of potentiometric results was ascertained by relative deviations 

lower than 3%, when compared to the USP method (Table 5). Recovery trials 

were also performed, and confirmed the accuracy of the potentiometric 

method. Additionally, considering as null hypothesis that variances of the 

two methods are in agreement, F two tail test for a 5% level of significance 

gave a calculated F (22.12) below the critical F-value (F0.025(2,7) ¼ 39.36), 

therefore accepting the null hypothesis. 

Regarding  reagent  consumption  in  the  analysis  of  real    samples, 

calibration  of  the  proposed  method  required  about  30 mL  of  phosphate 

buffer   and   1.5 mL   of   each   standard   solution,   with   concentrations 

ranging  5 x 10
-5

–5 x 10
-3 

M (considering  three injections  per standard). 
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Figure 3. FIA output for a diluted pharmaceutical sample and its recovery after 

calibration. 

 

 

Table 5. Determination of Cys by the potentiometric FIA method (POT), its 

recovery, and by the comparison method (USP), as well as the 

corresponding relative error (RE) and the calculated F  value. 

  
Cys-HCl  (mg 

capsule-1) 

 

Sample 

 

labeled POT

 USP 

Recover
y 

(%) 

RE 
(%) F test 

  

Capsules 290 256.15 ± 6.35 249.38 ± 2.35 99.8 ± 1.8 þ2.71 22.12 

  
 

 

Moreover, several FIA determinations demonstrated the possibility of 

analyzing four different diluted samples without requiring re-calibration. 

Effect to the environment of the emitted effluents was, generally, considered 

of no concern, both due to its low volume and to its com- position 

(phosphate and Cys). An adjustment of pH before discard is most certainly 

required, and the intensity of further pollution depends 

on the receptor; phosphate may be of interest to   agriculture. 
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CONCLUSIONS 

 

Regarding type PO membrane, Cys determination in pharmaceutical 

preparations using potentiometric detection presents a good alternative to 

both USP and other methods previously described in literature. The 

proposed system is simple, accurate, inexpensive regarding reagent 

consumption and equipment involved, and not of concern in terms of 

emitted effluents, for which it is adequate for routine procedures. Aside from 

dissolution and dilution, no sample preparation steps are required. Lifetime 

of the detector is estimated for at least four months; longer periods were not 

tested. 
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