

Complex Question Answering on Semi-Structured

Repositories

A user centric process enhanced with context

José Ricardo Marques de Jesus Brandão

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática, Área de Especialização em

Tecnologias do Conhecimento e Decisão

Orientador: Paulo Alexandre Fangueiro Oliveira Maio

Co-orientador: Nuno Alexandre Pinto da Silva

Júri:

Presidente:

Doutora Maria de Fátima Coutinho Rodrigues, Instituto Superior de Engenharia do Porto

Vogais:

Doutor António Jorge Santos Pereira, Instituto Superior de Engenharia do Porto

Doutor Paulo Alexandre Fangueiro Oliveira Maio, Instituto Superior de Engenharia do Porto

Doutor Nuno Alexandre Pinto da Silva, Instituto Superior de Engenharia do Porto

Porto, Outubro 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47137859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dedication

In honor of my great friend, Leão

v

Resumo Alargado

A Teia Mundial (Web) foi prevista como uma rede de documentos de hipertexto interligados

de forma a criar uma espaço de informação onde humanos e máquinas poderiam comunicar.

No entanto, a informação contida na Web tradicional foi/é armazenada de forma não

estruturada o que leva a que apenas os humanos a possam consumir convenientemente.

Consequentemente, a procura de informações na Web sintáctica é uma tarefa principalmente

executada pelos humanos e nesse sentido nem sempre é fácil de concretizar.

Neste contexto, tornou-se essencial a evolução para uma Web mais estruturada e mais

significativa onde é dado significado bem definido à informação de forma a permitir a

cooperação entre humanos e máquinas. Esta Web é usualmente referida como Web

Semântica. Além disso, a Web Semântica é totalmente alcançável apenas se os dados de

diferentes fontes forem ligados criando assim um repositório de Dados Abertos Ligados (LOD).

Com o aparecimento de uma nova Web de Dados (Abertos) Ligados (i.e. a Web Semântica),

novas oportunidades e desafios surgiram. Pergunta Resposta (QA) sobre informação

semântica é actualmente uma área de investigação activa que tenta tirar vantagens do uso

das tecnologias ligadas à Web Semântica para melhorar a tarefa de responder a questões.

O principal objectivo do projecto World Search passa por explorar a Web Semântica para criar

mecanismos que suportem os utilizadores de domínios de aplicação específicos a responder a

questões complexas com base em dados oriundos de diferentes repositórios.

No entanto, a avaliação feita ao estado da arte permite concluir que as aplicações existentes

não suportam os utilizadores na resposta a questões complexas.

Nesse sentido, o trabalho desenvolvido neste documento foca-se em estudar/desenvolver

metodologias/processos que permitam ajudar os utilizadores a encontrar respostas

exactas/corretas para questões complexas que não podem ser respondidas fazendo uso dos

sistemas tradicionais. Tal inclui:

(i) Ultrapassar a dificuldade dos utilizadores visionarem o esquema subjacente aos

repositórios de conhecimento;

(ii) Fazer a ponte entre a linguagem natural expressa pelos utilizadores e a linguagem

(formal) entendível pelos repositórios;

(iii) Processar e retornar informações relevantes que respondem apropriadamente às

questões dos utilizadores.

Para esse efeito, são identificadas um conjunto de funcionalidades que são consideradas

necessárias para suportar o utilizador na resposta a questões complexas. É também fornecida

vi

uma descrição formal dessas funcionalidades. A proposta é materializada num protótipo que

implementa as funcionalidades previamente descritas.

As experiências realizadas com o protótipo desenvolvido demonstram que os utilizadores

efectivamente beneficiam das funcionalidades apresentadas:

 Pois estas permitem que os utilizadores naveguem eficientemente sobre os
repositórios de informação;

 O fosso entre as conceptualizações dos diferentes intervenientes é minimizado;

 Os utilizadores conseguem responder a questões complexas que não conseguiam
responder com os sistemas tradicionais.

Em suma, este documento apresenta uma proposta que comprovadamente permite, de

forma orientada pelo utilizador, responder a questões complexas em repositórios

semiestruturados.

Palavras-chave: Pergunta Resposta, Questões Complexas, Dados Ligados, Web Semântica,

Ontologia

vii

Abstract

The World Wide Web (WWW) was envisioned as a network of interlinked hypertext

documents thus creating an information space where humans and machines should be able to

communicate. However, information published in the traditional WWW was/is unstructured

and therefore is (mostly) consumable by humans only. As a consequence, searching and

retrieving information in this syntactic and ever evolving WWW is a task that is mainly

performed by humans and therefore it may not be trivial.

In this sense, the evolution to a more structured and meaningful web where information is

given well-defined meaning thus enabling cooperation between humans and machines is

mandatory. This web is usually referred to as Semantic Web. Moreover, the Semantic Web is

only fully achievable if data from different resources is connected in order to create a Linked

Open Data (LOD) repository.

This new Web of Linked (Open) Data (i.e. the Semantic Web) has opened a new set of

opportunities but also some new challenges. Question Answering (QA) over semantic

information is now an active research field that tries to take advantage of the Semantic Web

technologies to improve the question answering task.

In this sense, the main goal of this work is to help users finding accurate answers for complex

questions that may not be answered using traditional systems. To achieve this goal, it is

proposed a user centric process comprehending a set of functionalities that are iteratively,

incrementally and interactively exploited. The proposed process and functionalities aim to

help users building complex queries against semi-structured repositories (e.g. LOD

repositories).

Keywords: Question Answering, Complex Questions, Linked Data, Semantic Web, Ontology

ix

Acknowledgements

I would like to thank all the people that in some way helped during this important path.

However, I would like to emphasize the special care and/or assistance provided by certain

people.

I would like to thank both my advisors for all the support and wisdom. It is with immense

gratitude that I acknowledge the unconditional support and help of my Professor Paulo Maio;

to Nuno Silva especially for his advices and constructive criticism.

I would like to thank the World Search project (QREN11495) for the opportunity of developing

my MSc thesis in its context; and the OOBIAN project (QREN 12677) for providing significant

knowledge that helped me elaborating this thesis.

I cannot find words to express my gratitude to my parents, José Brandão and Silvina Brandão,

for all the love, care and unconditional support.

I owe my deepest gratitude to my girlfriend, Sara Silva, for helping me in the most critical

moments and celebrate my accomplishments.

Finally, I thank all my colleagues at ISEP the companionship and friendship during all these

years.

xi

Table of Contents

1 Introduction ... 1

1.1 Context ... 1

1.2 Motivation ... 4
1.2.1 World Search Description ... 4
1.2.2 World Search Requirements .. 5
1.2.3 World Search Architecture ... 6

1.3 Thesis Statement ... 7

1.4 Research Contributions .. 8

1.5 Thesis Organization .. 8

2 Background Knowledge ... 9

2.1 Semantic Web Technologies .. 9

2.2 Ontology Modularization .. 11
2.2.1 Ontology Partitioning .. 12
2.2.2 Module Extraction .. 13
2.2.3 Ontology Summarization .. 13

2.3 Question Answering .. 14
2.3.1 Overview ... 14
2.3.2 Faceted Wikipedia Search .. 16
2.3.3 RelFinder .. 17
2.3.4 gFaceted ... 18
2.3.5 Virtuoso SPARQL Query Editor ... 20

3 State-of-the-Art Assessment .. 21

3.1 Set-Up .. 21
3.1.1 Questions .. 21
3.1.2 Participants and Tools ... 22
3.1.3 Procedure .. 23

3.2 Results .. 23
3.2.1 Answers .. 24
3.2.2 Questionnaire ... 27

3.3 Analysis and Discussion .. 28

3.4 Concluding Remarks ... 30

4 The Proposal ... 31

4.1 Informal Overview .. 31

4.2 Formal Specification ... 32
4.2.1 Object Mapping ... 33
4.2.2 Relationship Searcher ... 35
4.2.3 Entity Information .. 36

xii

4.2.4 Constraints Specification ... 38
4.2.5 Query Building .. 42
4.2.6 Contextualization .. 43

5 Development .. 45

5.1 Object Mapping ... 46

5.2 Relationship Searcher .. 47

5.3 Entity Information .. 48

5.4 Constraints Specification .. 51

5.5 Query Building .. 53

5.6 Contextualization... 55

6 Evaluation .. 57

6.1 Set-up... 57
6.1.1 Questions .. 57
6.1.2 Participant and Tools .. 58
6.1.3 Procedure .. 58

6.2 Results .. 59
6.2.1 Answers .. 59
6.2.2 Questionnaire ... 61

6.3 Observations ... 61

6.4 Analysis and Discussion .. 62

6.5 Concluding Remarks .. 64

7 Conclusion ... 65

7.1 Summary ... 65

7.2 Thesis Validation ... 67

7.3 Future Work ... 67

xiii

List of Figures

Figure 1 – World Search Use Case Diagram excerpt .. 6

Figure 2 – The architecture of the World Search project .. 6

Figure 3 – The Semantic Web Stack [W3C 2007] ... 10

Figure 4 – Sample facets in the Faceted Wikipedia Search engine .. 16

Figure 5 – Complex question formulation using facets ... 17

Figure 6 – The ORVI process [Heim, Lohmann, and Stegemann 2010] 18

Figure 7 – Faceted graph navigation with the gFacet tool ... 19

Figure 8 – Percentile of given answers grouped by question .. 24

Figure 9 – Percentile of correct answers given (grouped by question) 25

Figure 10 – Correctness of the overall answers (grouped by question) 25

Figure 11 – Percentile of used tools for answering each question .. 26

Figure 12 – Correctness of the given answers according to the used tools 27

Figure 13 – System architecture .. 31

Figure 14 – Object Mapping GUI mockup .. 34

Figure 15 – Relationship Search GUI mockup .. 36

Figure 16 – Common Properties GUI mockup. (1) is the entity to retrieve the related

properties (2) ... 37

Figure 17 – Cristiano Ronaldo position example ... 38

Figure 18 – Conceptual specification made by the user .. 39

Figure 19 – The final specification made by the user .. 41

Figure 20 – Constraint GUI mockup ... 41

Figure 21 – Query Building exemplification ... 43

Figure 22 – Contextualization example .. 44

Figure 23 – The proposed components integrated in the World Search architecture 45

Figure 24 – “SoccerPlayer” entity recognition by text search input .. 47

Figure 25 – Relationship Search sample query .. 48

Figure 26 – Relationships between “SoccerPlayer” and “SoccerClub” 48

Figure 27 – Common Entity Properties sample query ... 49

Figure 28 – Common “SoccerPlayer” properties using the CQB tool .. 49

Figure 29 – Sample query for retrieving the Cristiano Ronaldo position................................... 50

Figure 30 – “position” property value of the “Cristiano Ronaldo” entity 50

Figure 31 – Sample query to retrieve all property values of a given entity 50

Figure 32 – “Cristiano Ronaldo” information ... 51

Figure 33 – Sample context-aware query for retrieve common property values 52

Figure 34 – “Soccer Player”’s “position” common property values ... 52

Figure 35 – Sample query for retrieve common property values .. 52

Figure 36 – “position” common property values ... 53

Figure 37 – Constraint creation example ... 53

Figure 38 – Query Building Panel ... 54

Figure 39 – Query results (i.e. the answer) .. 54

xiv

Figure 40 – Final SPARQL query ... 55

Figure 41 – Percentile of correct answers (grouped by question) ... 60

Figure 42 – Comparison on the number of given questions .. 62

Figure 43 – Overall correctness of the given answers for each question 63

xv

List of Tables

Table 1 – Questions description ... 22

Table 2 – Description of the test subjects .. 23

Table 3 – Analysis on the answered questions. ... 24

Table 4 – Percentile of correct resources retrieved in each question. 25

Table 5 – Tool(s) that the users used to answer each question. ... 26

Table 6 – Time used to answer all the questions. .. 27

Table 7 – The ontological entities for the “soccer” and “player” terms 34

Table 8 – The five most relevant relationships between “SoccerPlayer” and “SoccerClub” 36

Table 9 – The five most relevant attributes for “SoccerPlayer” ... 37

Table 10 – The applicable operators to the property “position” ... 39

Table 11 – The five most common values of the property “position” 40

Table 12 – The question’ requirements (i.e. the selected entities and constraints) 42

Table 13 – Current indexed selected properties. ... 46

Table 14 – Questions description ... 58

Table 15 – Answered and not answered questions. .. 59

Table 17 – Time spent to answer all the questions. .. 60

xvii

Acronyms and Symbols

List of Acronyms

API Application Programming Interface

DL Description Logics

DBMS Data Base Management Systems

GUI Graphical User Interface

HTML HyperText Markup Language

IR Information Retrieval

IT Information Technology

NLP Natural Language Processing

OWL Web Ontology Language

QA Question Answering

RDF Resource Description Framework

RDF-S Resource Description Framework Schema

SPARQL Simple Protocol and RDF Query Language

URI Uniform Resource Identifier

WWW World Wide Web

XML eXtensible Markup Language

1

1 Introduction

The aims of this chapter are five-fold:

 First, the context of this work is described, which refers to the technologies involved
and their evolution, as well as existing major problems;

 Second, the basis of this research work is detailed;

 Third, the main statements of this work are given;

 Fourth, the main contributions of this work are pointed out;

 Fifth, the organization of the document is presented.

1.1 Context

The World Wide Web (WWW or simply Web) as introduced in [Berners-Lee 1989] was first

designed as an hypertext information space where humans and machines should be able to

communicate [Berners-Lee and Hendler 2001]. Hypertext is human/machine-readable

information that contains links to other hypertext and may be accessible through the internet.

In order to access/link a specific hypertext document, it is necessary to know its Uniform

Resource Identifier (URI), an identifier that uniquely identifies each hypertext in the WWW.

Accordingly, the WWW is a network of interlinked hypertext documents represented in

HyperText Markup Language (HTML) providing the means to navigate through the

information space. The HTML language is a markup language – a language that allows the

creation of annotations within a document – for displaying pages in the WWW that may be

displayed in a web browser. However, although the content of hypertext documents can be

stored in a structured way (e.g. relational databases), the information published in the

traditional Web was/is unstructured and therefore is (mostly) consumable by humans only

[Berners-Lee, Hendler, and Lassila 2001]. For instance, the hypertext documents usually

contain text described in a natural language fashion and discards some other important data

(e.g. authorship). In order to tackle this flaw, some syntax was added to hypertext documents

through the addition of HTML annotations (e.g. author, title). However, syntax is ambiguous

and is primarily meant to be interpreted by humans and not by machines.

1 Introduction

2

As a consequence, searching information in the traditional (syntactic) Web is a task that is

mainly performed by humans and therefore it may not be trivial. According to [Morville and

Callender 2010], information navigation and search are very hard to formulate, ultimately

depending on the user’s incomplete, contradictory and evolving requirements, leading to an

always incomplete process. Additionally, traditional search engines are not able to properly

handle such unstructured hypertext documents because they are syntax based and only allow

users to make unstructured queries based on keywords which results in a list of links to other

hypertext documents. Accordingly, syntactic search use words or multi-word phrases as

search elements (i.e. the keywords). This kind of search engines basically perform two

different, but complementary, operations: (i) the search engine crawls (i.e. processes) the

documents (e.g. the WWW) and creates an index for the documents based on their content

(e.g. page title, page content), (ii) it allows the retrieval of documents based on a set of

keywords. Accordingly, to enhance the results, the search engines (may) exploit some Natural

Language Processing (NLP) techniques (e.g. tokenization, lemmatization, stemming) to match

content previously indexed with the keywords being searched. As a result, the documents

containing such content (usually referred to as hits) are retrieved. NLP techniques intend to

process data described in a natural language in order to extract relevant information to be

used by humans and/or machines. Nevertheless, although using NLP techniques to enhance

search, the search is still a syntactic search and presents some of the same flaws. Accordingly,

this kind of search usually perform low precision and good recall [Giunchiglia, Kharkevich, and

Zaihrayeu 2009]. In this sense, as syntactic search does not take into account the documents’

semantics the search results are inherently bad which difficult the task of finding information

in the ever growing WWW. For instance, the user usually needs to manually analyze several

documents in order to find the one he is interested in. Besides, it does not perform well for

answering complex questions as for properly answer such questions it is usually necessary to

access and relate information present in multiple documents.

Further on, the great evolution of an ever evolving WWW has highlighted such problems

forming some obstacles to its usage. The proliferation of data and information in the WWW

led to an increase on the size and complexity of its content, such that the users have problems

coping with it causing the information navigation and search processes to be cumbersome

and difficult to execute. In order to ease the users’ role in these processes, machines should

be used. Therefore, it became necessary to evolve from a syntactic traditional Web to a more

structured and meaningful Web [Berners-Lee, Hendler, and Lassila 2001] where machines

should be able to communicate. This Web is usually referred to as Semantic Web. In this

context, the Semantic Web was envisioned as a way of “bringing the Web to its full potential”

[Fensel et al. 2003] as an extension of the traditional Web “in which information is given well-

defined meaning” [Berners-Lee, Hendler, and Lassila 2001] hence fostering machine-based

information processing enabling data sharing across different applications and communities

[W3C 2012a]. In this sense, the Semantic Web aims to bridge the gap between a Web of

Documents and a Web of Data thus allowing advanced information processing (e.g. reasoning).

Accordingly, the information that was originally stored in a structured manner is structurally

published in the Web. In this way, the Semantic Web may enable the cooperation between

1.1 Context

3

humans and machines in order to efficiently navigate/exploit through the WWW which

ultimately leads to ease the find and process information task. However, in order to fully

exploit the Semantic Web it is necessary to connect the data in different sources to create a

Web of Linked (Open) Data [Berners-Lee 2009]. The term Linked Data refers to a guide on how

to publish data on the Web [Linked Data 2012]. According to this guide, Linked Open Data (or

simply LOD) is achievable by connecting different data, information and knowledge through

the Semantic Web by using the resources’ URIs [Bizer, Heath, and Berners-Lee 2009]. In this

sense, querying this new data space where both documents and data are linked opens

possibilities not conceivable before. For instance, data from different data sources can be

integrated in order to expand the search space thus creating a more complete view. However,

querying over the Web of Linked Data also poses new challenges that do not arise in

traditional query processing. In this sense, mechanisms supporting information retrieval are

required.

Therefore, the evolution of the traditional Web of Documents to a Web of Linked Data (i.e.

the Semantic Web) has opened a new set of opportunities to exploit but also some new

problems to exceed. For instance, semantic search is now seen as a possibility. Semantic

search gives a new meaning to the search term as it perceives the actual meaning of the terms

to search and content to retrieve thus providing better results. Accordingly, there are Linked

Data search engines that crawl the Web of Data allowing more expressive query capabilities to

these systems (e.g. Watson [Watson 2012]). However, when the user aim to find an answer to

some kind of question questions (e.g. factoid questions), these systems not always produce

the best results. Therefore, mechanisms that help users answering questions are necessary.

Question Answering (QA) is a computer science field that tries to build systems that

automatically answer to questions posed by humans in natural language [Kolomiyets and

Moens 2011] and it attempts to deal with a wide range of question types (e.g. fact, how, why)

[Chali, Joty, and Hasan 2009]. Usually, this kind of systems access structured data in a

repository (e.g. knowledge bases) in order to answer the questions. In this sense, the

Semantic Web is seen as a tremendous repository of data, where information and knowledge

are ready to be exploited by such systems. However, these systems are usually fully automatic

and not always perform well. This is mainly because natural language is ambiguous and

therefore natural language processing is always a complicated task. In this sense, it is clear

that such systems may benefit from the help of humans in such task. For instance, humans

may help in the disambiguation process while defining a question. By doing this, humans are

bridging the gap between the language that they express themselves and the language that is

understandable by machines.

In this sense, the work presented in this document is focused in studying/developing

methodologies/processes that may help users to find accurate answers for complex questions

which cannot be answered using traditional systems. This includes:

(i) Exceed the users’ difficulty to envision the knowledge repository schema;

1 Introduction

4

(ii) Bridge the gap between the natural language expressed by the user and the (formal)

language understandable by the repository;

(iii) Process and retrieve relevant information in order to properly answer the user

questions.

1.2 Motivation

The work described in this document was developed in the research context of the World

Search [World Search 2010] project. Therefore, a brief description of the project is provided as

follows:

 First, the World Search project is briefly introduced;

 Second, the observations resulting from the requirement analysis are succinctly
described;

 Third, the project’s system architecture is presented.

1.2.1 World Search Description

The World Search project [World Search 2010] aims at developing search technologies with

semantic relevance for the Portuguese culture and market for both enterprises and public

web domains. Accordingly, it aims to provide applications for specific domain that supports

domain experts during their quest for information in the Portuguese language. This project

should be materialized with the development of two pilots in two well defined domains,

namely, the Health Care domain and the Local Public Administration.

In both domains, information is characterized as being stored in an unstructured fashion and

without any associated semantics. Thus, finding the necessary information to answer complex

questions in such systems is a difficult task. Complex questions, unlike simple questions,

usually seek different types of information and merges different answers in order to fully

answer the proposed question. So, the quest for information in multiple non-structured

repositories is cumbersome and users do not always achieve the best results. Also, although

users are aware of the domain, they do not usually know how to access and retrieve

information from the repositories. In this sense, it is desirable to add semantics to the

information and then to store it in a (semi-)structured manner thus allowing complex question

answering through machine-supported processes. By the creation of knowledge bases (i.e. an

information repository), one is allowing the development of mechanisms that allows a user

driven non-structured search but that might be enhanced with semantic information.

Since the two World Search application domains are too specific and may require knowledge

that is not broadly known, within this document context a third application domain is adopted:

the open domain knowledge. Hopefully, this domain does not requires any further knowledge

by the reader since it is about persons, their roles and activities, places, etc. This domain is

1.2 Motivation

5

mainly used for exemplifying purposes only. In this sense, Wikipedia [Wikipedia 2012] is seen

as a good information space to exploit. Wikipedia is considered as the largest community

encyclopedia [Völkel et al. 2006]. Accordingly, Wikipedia users are able to participate in the

expansion of the Wikipedia by adding some information to its articles. In this sense, users

usually add some information in natural language which ultimately leads Wikipedia to consist

primarily of unstructured information. Nevertheless, Wikipedia does not only contain

unstructured data but also some structured information, which is captured by the Wikipedia

Infoboxes. Wikipedia Infoboxes constitutes a summary of some important information about

Wikipedia articles in a structured and easy to read manner. However, Infoboxes are not

properly exploited by the Wikipedia search engine neither by the most used search engines

(e.g. Google, Bing) [Hahn et al. 2010]. The DBPedia [DBPedia 2007] project is a community

effort to extract structured information from Wikipedia – mainly from the Wikipedia

Infoboxes but also exploiting some NLP processing upon Wikipedia articles. Accordingly, the

DBpedia is a knowledge repository where information from Wikipedia is well described and

the different resources are explicitly connected. As a result, the DBPedia knowledge base is

considered one of the most important parts of the Linked Data project [Berners-Lee 2008] and

therefore it is an appropriate repository to exploit. An example of a common-sense complex

question is given in the DBPedia. However, for simplifying purposes, it is only used an excerpt

of the original question as depicted in Sample Question 1.

Sample Question 1 – All soccer players, who played as goalkeeper for a club that has a

stadium with more than 40.000 seats.

Answering complex questions like the one in Sample Question 1 requires the gathering of

data/information from multiple resources. Additionally, these resources are available in

multiple and heterogeneous repositories. In the context of this project, a resource is either (i)

a text document, (ii) an user annotation of a (part of a) document or (iii) a set of facts in a

knowledge base.

1.2.2 World Search Requirements

During the analysis of requirements, the development team observed that the users were

interested neither in text-based searches only, nor in formal queries to the structured

repository. Instead, users are interested in an elaborated combination of both. I.e. users want

to have the chance to make a query that includes free-text and semantic specification of

content. This combination is formally captured by the next function:

() ()

where:

 is a user entered free-text;

 is a set of resources (documents, annotations or facts) in which the user is
interested for. It serves as example of the resources to retrieve;

1 Introduction

6

 is a (partial) formal specification of the required content based on a
model, typically in the form of a set of taxonomy entities or ontological entities. It
serves as formal constraints to the query, i.e. only those resources semantically
defined/annotated/related with those entities should be retrieved;

 is the set of resources retrieved to the user for visualization. This includes both
the text-based retrieved resources (documents) and ontology-based retrieved
resources (annotations and facts);

 is the set of relevant semantic entities that (i) belong to the formal
modal describing the resources, (ii) is representative of the semantics of the output
resources () and (iii) enables the user to further refine the query.

Furthermore, three search’ related use cases where identified as depicted in Figure 1.

Figure 1 – World Search Use Case Diagram excerpt

Notice that the aims of this thesis work only focus on the semantic search/navigation features

of the identified requirements. Accordingly, the syntactic search is not addressed.

1.2.3 World Search Architecture

To fulfill the identified requirements and the overall project purposes, a generic system

architecture was defined. This architecture is illustrated in Figure 2.

Figure 2 – The architecture of the World Search project

Syntactic Search

Generic User

System

Semantic Search

Semantic Navigation

«extends»

«extends»

Repository (FAST + LOD)

GUI

Query Dispatcher

Syntatic
Query

Semantic
Query

Ontological
Services

1.3 Thesis Statement

7

This architecture has six main modules with the following responsibilities:

 Graphical User Interface (GUI) is responsible for the interaction with the user: (i) it
enables the user to formulate queries and (ii) presents the respective responses (i.e.
the retrieved results);

 Query Dispatcher is responsible for forwarding the queries to the proper answering
module;

 Ontological Services module is responsible for managing the semantic information of
the system (e.g. maintain the ontologies underlying the system) and providing
semantic services (e.g. correspondences between concepts, synonyms) to the other
system’ modules;

 Syntactic Query is responsible for retrieving resources based on a text-based search
only. It might make use of the ontological services to expand the query based on the
synonyms of the words specified in the query;

 Semantic Query is responsible for retrieving resources based on the semantic entities
specified by the user. The ontological services are exploited in order to perceive the
relations between those entities and other ontological entities;

 Repository is where all the data/information supporting both the syntactic and the
semantic queries is maintained. Currently, this module is mainly composed by (i) FAST
technology [Microsoft-Corporation 2008] for indexing purposes and (ii) a data source
meeting the Linking Open Data principles [Berners-Lee 2009].

In the context of this thesis, the focus is on the semantic component of the World Search

project. Accordingly, the remaining of the document presents the efforts made in the

development of the Semantic Query and the Ontological Services components of the World

Search architecture (cf. Figure 2).

Moreover, in the context of this work, it is assumed that the LOD fragment of the Repository

component is an ontology-based repository where the data/information/knowledge

necessary to answer the user complex questions is maintained. Ontologies may be expressed

in a variety of ontology languages (e.g. OWL [Smith, Welty, and McGuinness (eds.) 2004]) that

define the ontology entities. Fortunately, most of these languages share the same kind of

entities, often with different names but comparable interpretations.

1.3 Thesis Statement

This work advocates that answering complex questions on semi-structured repositories is a

task that ultimately depends on the users. Therefore, to foster the task accomplishment users’

supporting mechanisms are needed for helping them searching, navigating and querying

iteratively, incrementally and interactively such semi-structured repositories in order to bridge

the gap between the users’ conceptualization underlying the question and the domain

conceptualization expressed in the repository that is used to answer such question.

1 Introduction

8

1.4 Research Contributions

In order to achieve the main goal of answering complex questions, several contributions have

been proposed. Accordingly, this thesis work describes a set of basic functionalities that helps

users in their information navigation and search tasks through ontology described repositories

thus allowing the user to answer complex questions. The main contributions of this work are

listed as follows:

 The identification of a required set of users’ supporting functionalities that a Question
Answering system should provide;

 A formal definition of the identified functionalities;

 A prototype containing the proposed functionalities.

Most of these contributions were previously published in [Brandão, Maio, and Silva 2012a].

1.5 Thesis Organization

This document is organized as follows:

 Chapter 1 presents the context of this work while providing its main objectives and

motivations. Moreover, it presents the research project where this work is framed.

Finally, it presents the thesis statement and enumerates the main contributions of

this work.

 Chapter 2 provides a succinct overview over the Semantic Web and some of its

associated technologies. Moreover, it describes and defines the ontology

modularization process. Finally, it surveys search technologies while relating them to

the Semantic Web and presents some state-of-the-art applications.

 Chapter 3 demonstrates some experiments performed with state-of-the-art tools and

draws some conclusions according to the observed results.

 Chapter 4 outlines the drafted proposal that supports the complex querying task.

Accordingly, the proposed features and architecture are presented. Moreover, the

proposed system is formally described.

 Chapter 5 describes the system’s implementations details and presents the developed

prototype.

 Chapter 6 presents the evaluation performed to the system. Accordingly, it describes

the accomplished user study and shows the obtained results. Finally, some

conclusions based on the observations are achieved.

 Chapter 7 contains some conclusions about the described work, presents some

justifications for the thesis statement, and indicates some future work.

9

2 Background Knowledge

The purpose of this chapter is three-fold:

 First, a survey over Semantic Web related technologies is presented;

 Second, the Ontology Modularization process and techniques are described;

 Third, an overview over Question Answering and Information Retrieval is presented.
Furthermore, a description on state-of-the-art applications is performed.

2.1 Semantic Web Technologies

In order to evolve from the traditional Web to the Semantic Web, some changes had to be

made. For instance, for the Semantic Web purpose it is necessary to store information in a

structured manner that may be accessed, understood, and manipulated by computers. Hence,

it is required to add machine-readable knowledge in the WWW documents. Knowledge

representation systems are seen as adequate to gather knowledge as they may be accessed

by users and machines [Berners-Lee, Hendler, and Lassila 2001]. In this sense, although

machines do not really understand the meanings of the vocabulary, they are able to

manipulate the data in a more effective way (e.g. automated reasoning).

In this respect, ontologies are seen as an appropriate formalism to capture and represent

knowledge as they provide the vocabulary and its formal specification [Hepp, De Leenheer,

and de Moor 2007]. One of the most accepted definitions of ontology is from [Gruber 1993]

who defines ontology as “an explicit specification of a conceptualization”. A conceptualization

refers to the description of the world (the knowledge domain) by the means of concepts and

their relationships [Gruber 1995]. Explicit means that all the used vocabulary (i.e. concepts

and relationships) are explicitly defined [Studer, Benjamins, and Fensel 1998]. Moreover,

based on Gruber’s definitions Borst [Borst 1997] defined an ontology as “a formal

specification of a shared conceptualization”. Such definition emphasizes the need of

agreement between the parties that share the conceptualization. Moreover, formal refers to

the necessity of such specification be machine readable [Studer, Benjamins, and Fensel 1998].

2 Background Knowledge

10

More recently, Description Logic (DL) has been used to build ontologies. DL is a family of

knowledge representation languages that are used to provide “high-level description of the

world that can be effectively used to build intelligent applications” [Baader et al. 2007].

Intelligent means that the system is able to reason about the explicitly represented knowledge.

Therefore, DL provides the means to deal with the knowledge semantics while providing the

means to automatic reasoning.

However, at this point the knowledge representation system and the traditional WWW

technologies were not compatible. In order to effectively combine the WWW and the

knowledge representation systems, knowledge representation and annotation languages had

been developed in the top of the WWW infrastructure [van Ossenbruggen, Hardman, and

Rutledge 2006]. In this sense, eXtensible Markup Language (XML) and Resource Description

Framework (RDF) were proposed. XML is a meta markup language that defines a set of rules in

order to encode documents in a way that is both human and machine readable. RDF is a XML-

based markup language that provides a simple data model for expressing statements about

resources (e.g. hypertext) as (subject-predicate-object) triples. Due to the RDF representation,

a new type of databases – the triple stores – where designed in order to store and retrieve

triples [Broekstra, Kampman, and Van Harmelen 2002; Bishop et al. 2011]. Moreover, as in

traditional databases and database management systems (DBMS), it was also necessary to

develop specific mechanisms to access such specific repositories. Despite any RDF model can

be serialized in a XML notation, RDF is different from just XML as it has its own data model

[Broekstra, Kampman, and Van Harmelen 2002]. Therefore, XML query languages (e.g. XQuery

[Boag et al. 2010]) are not suitable to query RDF structures. The SPARQL Protocol and RDF

Query Language (SPARQL) [Prud’hommeaux and Seaborne 2008] was developed in order to

query RDF data structures and, therefore, to access data stored in these so-called triple stores.

Figure 3 depicts the architecture of the Semantic Web.

Figure 3 – The Semantic Web Stack [W3C 2007]

Starting from the bottom, the most basic technology in the stack is the URI that identifies each

document/resource in the WWW. Further, XML is the adopted structure to serialize the

2.2 Ontology Modularization

11

information while RDF is the language in which information is described. Moreover, in order

to add some expressivity to the RDF data model, some other knowledge representation

languages for authoring ontologies, providing different (logical) expressivity, had been

developed (e.g. Resourse Description Framework Schema (RDF-S) [Lassila and Swick 1999;

Brickley and Guha 2000], Web Ontology Language (OWL) [Smith, Welty, and (eds.) 2004]).

Further, some Rule mechanisms (an ongoing standard) that allows the description of relations

that cannot be described using DL where suggested (e.g. Rule Interchange Format (RIF)[W3C

2012b]). On the top of that is the Unifying Logic layer that is intended to provide a global

coherent logical theory. Moreover, the Proof and Trust layers intend to provide explanations

on the found answers and measure the belief on the proofs, respectively. Accordingly, the

Proof layer intends to provide proofs that an answer in the Semantic Web is correct by (i)

proving how it was derived (logic), (ii) checking from which resources it was retrieved, and (iii)

checking who provided the data (trust). Moreover, the Trust layer was proposed (i) for

verifying if the information come from trusted sources, and (i) for creating different trust

policies (policy management) for the Semantic Web. Further, Cryptography layer is intended

to add some security to the Semantic Web by ensuring and verifying that information is

produced from trusted sources. Finally, User Interface & Applications is the final layer that

enables users to interact with the semantic web applications.

2.2 Ontology Modularization

With the growing of the Semantic Web the usage of ontologies has become predominant.

However, despite ontologies are used to describe a specific domain of interest, their size and

complexity tends to increase too [Del Vescovo et al. 2011]. This is emphasized by the fact that

ontologies are typically developed as monolithic blocks of information, i.e. all the (domain)

knowledge is gathered into a single ontology (e.g. OWL document). Thus, ontology

understandability decreases as its complexity increases which consequently leads to an

increase in human effort in apprehend and reuse them [Stuckenschmidt and Schlicht 2009].

Hence, current tools do not effectively support the navigation through ontologies [Dzbor et al.

2006], especially those inexperienced and non-experts users. In this sense, ontology

modularization is a recent research field that deals with the problem of oversized and

complex ontologies in order to enable its usage.

Ontology Modularization is typically seen as an engineering process characterized by

addressing the problem of creating modules from existing ontologies [Stuckenschmidt and

Klein 2004]. In this sense, modularization refers to a situation where a thing (e.g. an ontology)

exists as a whole but can also be seen as a set of parts (the modules) [Parent and Spaccapietra

2009]. By splitting an ontology into smaller parts, one is allowing the selective use of

knowledge which (i) facilitates ontology reusability and share-ability [Stuckenschmidt and

Schlicht 2009], (ii) reduces the human effort in understanding such ontology [Parent and

Spaccapietra 2009], (iii) empowering the ontology manipulation, maintenance and evolution

tasks [Bezerra et al. 2009] and (iv) improves the usage of reasoners (e.g. by Distributed

2 Background Knowledge

12

Reasoning, by incremental reasoning) [Del Vescovo et al. 2011]. Yet, another advantage of

ontology modularization is the possibility of knowledge contextualization (different parts of

the ontology may correspond to different contexts) and knowledge personalization, i.e.

ownership and authorization [Parent and Spaccapietra 2009].

Although there are several modularization techniques, some have gained more relevance than

others. Moreover, each modularization technique usually varies in terms of requirements and

goals [Parent and Spaccapietra 2009]. In the context of the World Search project, it was

envisaged the adoption and combination of three main modularization techniques [Parent

and Spaccapietra 2009]: (i) ontology partitioning, (ii) module extraction and (iii) ontology

summarization. Considering that these techniques are further exploited in sections 4.2.6 and

5.6, they are described and formally defined next.

2.2.1 Ontology Partitioning

For the proper understanding of the rest of this document a formal definition about ontology

is provided. Accordingly, an ontology can be minimally defined as follows.

Definition 1 (Ontology) – An ontology (also known as knowledge base) is a tuple

 () where is the terminological axioms and is the assertional axioms. Both are

defined based on a structured vocabulary () comprised of concepts (or classes)

and roles (or properties) . Concepts (and roles) axioms are of the form () or

 () such that () respectively. For a set of individuals , concepts

and roles assertions are of form () or () such that , and .

Yet, it is worth mentioning that ontology entities are not necessarily named. In fact, ontology

entities can be constructed out of other entities. As an example, a concept may be created out

of a restriction of a role. Moreover, ontology languages are often extended by entity

languages adding operators (e.g. concatenation of strings) to manipulate the ontology entities.

The semantics related to an ontology is provided by an interpretation over a domain such

that it maps: (i) the elements of the domain to the ontology instances, (ii) the subsets of the

domain to the ontology concepts, and (iii) the binary relations on the domain to the ontology

roles.

Finally, information on ontology-based repositories is typically accessible through a query

language such as SPARQL.

An ontology partitioning technique identifies the key topics of an ontology and splits it into

several (probably disjoint) fragments [Stuckenschmidt and Schlicht 2009; d’ Aquin et al. 2009].

Typically, each key topic gives rise to a fragment which is usually called as module (cf.

Definition 2). Accordingly, ontology partitioning might (i) help understanding the ontology by

representing its modular structure [Del Vescovo et al. 2011], (ii) help ontology visualization by

splitting the ontology into visualizable modules and by identifying key topics on the ontology,

2.2 Ontology Modularization

13

and (iii) enhance the usage of reasoning tools [Stuckenschmidt and Schlicht 2009]. Finally, it is

easier to maintain large ontologies if they are decomposed into several (smaller) modules

[Stuckenschmidt and Schlicht 2009].

Definition 2 (Module) – A module of an ontology () is defined as ()

(), where and are the axioms dealing with (i) concepts , (ii) roles

and (iii) individuals such that: (a) , (b) and (c) respectively. Accordingly,

an ontology module is per se an ontology too.

A partition technique is formalized as follows.

Definition 3 (Ontology Partitioning) – The Partitioning task is seen as a function

where an ontology is splitted into a set of modules with elements (modules) such that

 .

2.2.2 Module Extraction

A module extraction technique aims to extract a focused fragment (or module) of the original

ontology given a specific topic of interest [Hussain and Abidi 2010]. The topic of interest is

captured by the notion of signature (cf. Definition 4). This way, a contextualized fragment

may be extracted in order to reduce the overall ontology’s complexity and therefore allowing

its selective usage (e.g. for reuse and/or sharing purposes) [d’ Aquin et al. 2009].

Definition 4 (Signature) – A signature to extract a module () from ()

is defined as () () where and are the axioms

(concepts , roles and individuals) specifying the context of the module to be

extracted such that: , and .

A module extraction technique is formalized as follows.

Definition 5 (Module Extraction) – The Module Extraction task is seen as a function

 () where an ontology module is extracted from an ontology according to a

given signature .

2.2.3 Ontology Summarization

An ontology summarization technique provides a succinct representation (or compressed

version) of the ontology (referred to as summary) emphasizing the topics contained in an

ontology according to visualization and navigation purposes [Zhang et al. 2009; Li, Motta, and

d’ Aquin 2010]. Accordingly, ontology summarization may help users perceiving the overall

schema/ontology by reducing its size and/or complexity to ones perceptible by the user [Li,

Motta, and d’ Aquin 2010]. Thus, it may be benefit the GUI by serving visualization and

navigation purposes.

2 Background Knowledge

14

Definition 6 (Summary) – A summary description of an ontology () is defined as

 () () where and are the axioms specifying the concepts , the

roles and the individuals that summarize the ontology such that: , and

 respectively.

Ontology summarization technique is then formalized.

Definition 7 (Ontology Summarization) – The Ontology Summarization task is seen as a

function where a description is generated to summarize the ontology .

It is worth notice that from the perspective of an ontology, the notions of (i) module (), (ii)

signature () and (iii) summary () have similar formal definitions. However, these notions

differ on their purpose and in extension (in terms of set inclusion), such that:




No relation can be defined between and .

2.3 Question Answering

The purpose of this section is two-fold:

 First, an overview over Question Answering and Information Retrieval is presented;

 Second, a survey is performed upon current state-of-the-art search tools.

2.3.1 Overview

Lots of attention has been given to the QA field in order to improve Information Retrieval (IR)

in computerized systems [Kolomiyets and Moens 2011]. Current QA systems are already

prepared to answer simple questions (e.g. Wolfram Alpha [Wolfram Alpha 2012]). However,

these systems do not perform so well while answering complex questions even more if they

try to answer open questions. Open-domain question answering tries to answer about

anything in the world and usually seeks information in large data spaces (e.g. DBPedia).

Therefore, making complex questions against current systems is often a complicated task and

occasionally some questions are even impossible to answer although the needed information

is available. In this sense, QA systems are being improved for answering not only simple

questions but also some more complex questions.

In this context, the evolution of the traditional Web to a Semantic Web also allowed the

evolution of the search paradigm as well. Accordingly, a new search paradigm emerged – the

Semantic Search. Semantic search tries to improve search precision by analyzing the semantic

knowledge representation of the documents and the query to retrieve the semantically

relevant documents to the query at hand. In other words, the semantic search exploits the

2.3 Question Answering

15

meaning of the words, instead of their syntactic representation [Giunchiglia, Kharkevich, and

Zaihrayeu 2009].

Now, due to the evolution of the WWW, open information repositories described by means of

ontologies are becoming very common both in the web (e.g. DBPedia [DBPedia 2007]) and

enterprises (e.g. World Search [World Search 2010]). These repositories are often referred as

Linked-Open Data repositories, or simply LOD. Due to its well-formed structure (and

sometimes semantics), the semantic search paradigm gains more relevance and a new set of

applications and demands arise. However, these new kind of repositories have some other

problems. For instance, (i) the schemas of these repositories are very dynamic, and (ii) the

structural and semantic requirements putted upon the schemas and upon the data are

heterogeneous, dynamic and potentially unlimited, hence rising operational issues. Moreover,

the user does not always know the vocabulary and/or the schema that (s)he is trying to query.

Accordingly, both information provider and consumer usually have different

conceptualizations and/or perspectives of the domain of interest, adding yet another

(semantic) gap between the provider and the consumer.

Therefore, supporting tools are needed in order to fully exploit this kind of repositories, such

that the questions are written in a user-demand basis, and not made available by the

developer. In particular, the complex query building task is intended to be opaque for the

users, as they often lack fundamental required skills to perform such task: (i) to know the

underlying schemes/ontologies and (ii) to specify the queries formally (e.g. by means of query

language). For instance, although SPARQL is typically used to query open data repositories,

most users are not able to write SPARQL queries. Moreover, the complexity of the data in the

repositories and their underlying ontologies may overwhelm the users which highlight the

needs for machine-supporting mechanisms for navigating through such data.

Accordingly, different proposals have been presented [Goker and Davies 2009] in order to

mitigate the users’ information navigation and search tasks that will ultimately lead them to

properly create their questions. In the context of this work, it is important to highlight two

different approaches: (i) Faceted Search [Hearst 2006; Tunkelang 2009] and (ii) Ontology-

supported navigation.

The former is becoming a predominant approach as it allows the consumer to drive the search

in a structured way. Faceted Search relies on the attributes of the elements in a collection (the

facets) [Hearst 2006] to create a classification system along multiple dimensions. For example,

a collection of cars might be classified using a brand facet, a fuel facet, etc. Moreover, while

accessing structured repositories described by ontologies, Faceted Search might exploit these

ontologies for creating the facets. Yet, the main advantage of Faceted Search is that it is also

able to exploit non-structured data to create the facets (e.g. using NLP techniques for entity

extraction). However, it has some drawbacks especially evident when dealing with fairly large

schemas [Teevan, Dumais, and Gutt 2008], mainly because the task is performed by the user

with minimal machine support. For instance, maintaining the focus of the search is not so

trivial for the user. Moreover, Faceted Search does not properly express more complex

2 Background Knowledge

16

relationships (i.e. real world relationships). Additionally, taxonomies have revealed to be

insufficient to navigate as they do not always capture the user’s perspective [Warren 2006].

Ontology-supported navigation is a recent research field seen as essential to make sense of

ontologies contents and organization [Franconi, Guagliardo, and Trevisan 2010; Motta et al.

2011]. It aims to assist the user in comprehending, searching and retrieving information from

repositories described through ontologies.

Summarizing, this new Web of Linked Data has opened new possibilities to the QA field.

Accordingly, QA systems might be improved on their tasks by adding semantics to the data

they exploit. However, in order to fully exploit these systems, users should also be a relevant

part in the search process. In this sense, machine-based mechanisms supporting/guiding the

user in her/his role are fundamental (e.g. Faceted Search).

As the main focus of this work is complex question answering through repositories described

by ontologies such as LOD repositories, it is desirable to concentrate on the systems that allow

the exploitation of such repositories. In this sense, next sub-sections briefly describe

applications that query the DBPedia repository in order to help users finding information in a

structured fashion.

2.3.2 Faceted Wikipedia Search

Faceted Wikipedia Search [Hahn et al. 2010] is an alternative search engine that allows users

to ask complex question against the Wikipedia knowledge base. Accordingly, it exploits the

data on the DBPedia ontology/repository in order to allow users to query Wikipedia like a

structured database. Moreover, in order to help inexperienced users, Faceted Wikipedia

Search relies on the faceted search paradigm. Accordingly, faceted search allows users to ask

questions to the repository in an exploratory fashion. Moreover, it allows users to easily

navigate through the information space by combining text search with filtering techniques. In

this sense, facets allow the narrowing of the information space along multiple dimensions (cf.

Figure 4).

Figure 4 – Sample facets in the Faceted Wikipedia Search engine

2.3 Question Answering

17

Further, by selecting multiple facets the user is constructing the desired query. For instance,

the user might ask the system a complex question like “Which are the Rivers that mouth in

Rhine and are longer than 50000 meters” as depicted in Figure 5.

Figure 5 – Complex question formulation using facets

Faceted Wikipedia Search relies on two components to achieve its purpose:

(i) DBPedia Information Extraction Framework, a tool for extracting structured knowledge

from the DBPedia (i.e. it queries the DBPedia repository). Accordingly, this is the

component used to answer the questions;

(ii) Neofine search, a commercial search engine that implements the faceted search

paradigm. Based on the query results, this component generates the facets to display.

In this sense, Faceted Wikipedia Search eases the users’ task of complex querying by allowing

users to ask complex queries against Wikipedia based on the schema/ontology and

information extracted from many different Wikipedia articles. Moreover, Faceted Wikipedia

Search uses some heuristics to determine which facets are more relevant for the user.

However, Faceted Wikipedia Search fails to help user finding relations between different

concepts/properties, thus undermining the users’ quest for information. Moreover, it does

not allow the user to restrict the returned values by adding different filters to different

entities (e.g. Which Portuguese soccer players played in an Italian team located in Milan?).

2.3.3 RelFinder

In [Heim, Lohmann, and Stegemann 2010] the authors present an approach for interactively

discover relationships via the Semantic Web thus emphasizing the human aspect on the

relationship discovery. Accordingly, authors try to efficiently exploit the relationships over

knowledge domains by taking advantage of the Semantic Web and by adding the user in the

search process. Such approach is concretized as stated by the ORVI process, which is a general

process for finding relationships. ORVI is defined as a four step process (cf. Figure 6):

(i) Object Mapping is when the user starts his quest. Accordingly, the system performs

the mapping between the user input and a unique object in the repository. This

mapping is usually automatic and therefore it does not require manual disambiguation.

However, if manual disambiguation is required, the system should support the user

(e.g. auto-completion);

2 Background Knowledge

18

(ii) Relationship Search occurs after all the selected entities are mapped to their unique

values. Accordingly, is when the system finds all the relationships between the

previously identified objects (i.e. entities);

(iii) Visualization is responsible for properly presenting the found relationships to the user.

Accordingly, some mechanisms for facilitate users’ understanding should be applied;

(iv) Interactive Exploration is the last step of the process and it is when the user explores

the found relationships. Once again, the system should support the users while they

try to find the relevant relationships (e.g. highlighting).

Figure 6 – The ORVI process [Heim, Lohmann, and Stegemann 2010]

The OVRI process has been implemented in RelFinder [RelFinder 2012], an online user-
centered tool for interactively discover relationships over knowledge bases. Accordingly,
RelFinder generates SPARQL queries on the client side that can be sent to any SPARQL
endpoint. The main drawback of this tool is that its’ only objective is to find relationships
between elements of the repositories. Therefore, this tool does not aim to answer complex
questions. However, the relationship discovery is an important feature in the users’
information quest. For instance, this feature could enhance applications like the Faceted
Wikipedia Search. Moreover, this tool/process lacks of the ability to find the related entities of
a given element (e.g. Which elements are linked to the “Person” element?).

2.3.4 gFaceted

In [Heim, Ziegler, and Lohmann 2008; Heim and Ziegler 2011] the authors propose a method

that allows/supports users to efficiently access and explore large amounts of data over the

Semantic Web. In this sense, it is proposed Facet Graphs, a new approach to help users

formulating search queries against semantic repositories. To achieve such goal, this method (i)

allows the narrowing down large sets of data based on the concept of faceted search, and (ii)

exploits the graph-based structure of the Semantic Web. Accordingly, facets are represented

as nodes of a graph that can be iteratively and interactively refined based on the users’

requirements. In this sense, the semantic data is seen as a graph that provides a coherent

representation of the (search) facets thus highlighting the relationships between such facets.

2.3 Question Answering

19

The proposal relies on a three-stage model consisting of:

(i) Goal formation – the initial stage where the user typically specifies one or more

concepts to determine the initial search space;

(ii) Construction of the exploration space – the stage where the user incrementally

constructs the search space by exploiting the relationships between the starting

concepts and others linked to them;

(iii) Multi-perspective exploration and sense-making stage – the final stage where the user

explores the space and “make sense of the information and relations contained in it”.

In this sense, the user may choose to finish the search if s/he is satisfied with the

results or to refine/rebuild the search space by persecuting to the second stage of this

model again thus highlighting the iterative fashion of the proposal.

The main advantages of such approach are (i) the prevention of over-cluttered graphs by

using facets to group instances, (ii) the explicit representation of relations between facets,

and (iii) the representation of a single coherent visualization. In this sense, it is argued that

users benefit from this approach as it prevents them from losing track of the relationships

over the different facets.

The three-stage model has been implemented in the gFacet [gFacet 2012] tool, an online

prototype that queries repositories through SPARQL and visually represents the facets in a

graph as depicted in Figure 7.

Figure 7 – Faceted graph navigation with the gFacet tool

However, similarly to Faceted Wikipedia Search, this tool does not allow the intersection of

multiple filters (e.g. Which Portuguese soccer players played in an Italian team located in

Milan?). Moreover, the user understandability decreases when dealing with vast number of

facets. Finally, faceted search has some limitations when dealing with vast number of entities.

2 Background Knowledge

20

2.3.5 Virtuoso SPARQL Query Editor

SPARQL Endpoint is a SPARQL protocol (web) service that enables humans/machines to query

a knowledge base through the SPARQL language. However, a SPARQL Endpoint is mostly

conceived to be machine-friendly rather than human-friendly. In this sense, the SPARQL

Endpoint front-ends usually do not provide any help while composing the SPARQL query (e.g.

syntax hints, information about the repository to query). Moreover, the returned results are

meant to be processed by machines and therefore are not easily handled by humans.

The Virtuoso SPARQL Query Editor [Virtuoso SPARQL Query Editor 2012] is a SPARQL Endpoint

used to query the DBPedia knowledge base. As most SPARQL Endpoints, this tool does not

support the user in the information quest and it requires the user to know (i) the DBPedia’

schema/ontology, and (ii) the SPARQL language syntax. Unfortunately, most users are not

aware of the repository’ ontology and are not able to construct SPARQL queries. Further, the

query results are presented in simple tables which, in some cases (e.g. very complex queries),

may be difficult for users to read.

21

3 State-of-the-Art Assessment

This chapter assesses the state-of-the-art search tools previously described. As that, a trial

was conducted to investigate the following:

(i) The ways users make use of these repositories when trying to respond to complex

questions;

(ii) How users expect to be supported on the question answering task.

The remainder of this chapter is organized as follows:

 First, the trial set-up is presented;

 Second, the results obtained are described;

 Third, a discussion about the obtained results is presented;

 Fourth, some conclusions on state-of-the-art tools are taken.

3.1 Set-Up

This section describes the carried out trial as follows:

 First, the questions of the experiment are defined;

 Second, the study participants and the used tools are described;

 Third, the process in which the experiment was conducted is shown.

3.1.1 Questions

The user study consisted in responding four different (complex) questions (cf. Table 1). The

difficulty level of the question increases according to the number of the question – the first

question is the easiest one and the fourth the harder. For instance, the first question may be

answered by accessing a single web page. Accordingly, the difficult consists in finding the web

page that contains the information needed and then get the wanted answer in its content. In

3 State-of-the-Art Assessment

22

contrast, to answer the remainder questions, several quests for information in the

Wikipedia/DBPedia repository are required. Accordingly, the necessary information to answer

such questions (from question two to four) are not explicitly stated in any document or fact.

Instead, it is necessary to combine several semantic entities, documents and facts to get the

appropriate answer. Accordingly, the complex questions’ answer typically consisted in a set of

resources. Finally, it was ensured that the given questions could be answered using the

proposed tools.

The overall time limit for answering all the questions was 30 minutes. Despite that, users were

suggested to answer the questions within 3, 7, 10 and 10 minutes, respectively (as depicted in

Table 1).

Table 1 – Questions description

No. Question Time

1 Which is the total population of Las Vegas (United States of America city)? 3

2 Name twenty (20) cities with a population over ten million (10 000 000)
inhabitants.

7

3 Name fifteen (15) persons whose birth place and death place was Chicago
(United States of America city).

10

4 Name ten (10) persons whose birth place and death place was Chicago (United
States of America city) and that were born after 1st January of 1900.

10

In the end, the users were asked to answer a questionnaire. This questionnaire served to

evaluate the users’ feedback on the usefulness, and usability of the proposal but also their

intention to use such approach [Ong et al. 2008]. In this sense, usefulness is intended to

measure “the degree to which a person believes that using a particular system would enhance

his or her job performance”. Moreover, usability measures the ease with which the user uses

the tool. Intention to use measures the users’ intent to use the application to perform their

tasks.

3.1.2 Participants and Tools

The study participants were asked to answers the questions using the Wikipedia [Wikipedia

2012] traditional search, RelFinder [RelFinder 2012], gFacet [gFacet 2012], Virtuoso SPARQL

Query Editor [Virtuoso SPARQL Query Editor 2012], and the DBPedia pages (cf. section 2.3). At

the trial time the Faceted Wikipedia Search [Faceted Wikipedia Search 2012] tool was not

available.

Moreover, the users were advised to disregard previous knowledge as much as possible.

Consequently, the users were only allowed to answer questions with the results obtained with

the available applications. Moreover, the users were asked to answer the questions

individually.

3.2 Results

23

Additionally, the gFacet tool was tweaked to access the DBPedia SPARQL Endpoint. The other

tools were already accessing the Wikipedia or the DBPedia databases.

Further, the experiments occurred in a lab so that the team could witness the efforts and the

adopted approaches. No further restrictions were made.

3.1.3 Procedure

Five users were selected and characterized according to their proficiency about the available

technologies (e.g. SPARQL). The users were all informatics students and therefore very

familiar with Information Technology (IT) technologies. Accordingly, the 5 users were very

familiar with the Wikipedia repository and its traditional search engine (or any general

purpose search engine) and faceted search. Moreover, 2 users were unaware about the

DBPedia technology and, consequently, unaware about its schema/ontology. Further, these

same users were also unaware about the Semantic Web technologies, such as ontologies or

SPARQL. The other three users were familiar with the DBPedia repository and its underlying

ontology/schema. Further, these users were also familiar with the SPARQL language. Finally,

users have never used the tool RelFinder or gFacet. Table 2 depicts the users’ characterization.

Notice that the proficiency is measured in a numeric value from one (1) to five (5) where 1

means not familiar and 5 means very familiar.

Table 2 – Description of the test subjects

 Proficiency level Gender Academic
Qualifications Wikipedia DBPedia

ontology/schema
SPARQL

User 1 5 4 4 Female Licentiate

User 2 5 3 4 Male Master’s degree

User 3 5 2 3 Male Licentiate

User 4 5 1 1 Male Licentiate

User 5 5 1 1 Male Licentiate

The study began with a short introduction and explanation of the trial and the corresponding

technologies. Then, a short presentation and demo of the applications was performed.

Afterwards, users were asked to answer the proposed questions and questionnaire.

3.2 Results

This section demonstrates the obtained results in the experiment as follows:

 First, the answers to the questions in the experiment are detailed;

 Second, the answers on the questionnaire are presented.

3 State-of-the-Art Assessment

24

3.2.1 Answers

The users’ success on the proposed exercise was evaluated in two different ways:

(i) A Boolean evaluation (true or false) on if the users were able or not to answer a

question;

(ii) The evaluation, in percentile, of the correctness of the given answers (i.e. measure the

quality of the answers).

The results of the evaluation are depicted in Table 3, which demonstrates the analysis on the

answered () and not answered () questions.

Table 3 – Analysis on the answered questions.

Question 1 Question 2 Question 3 Question 4

User 1    
User 2    
User 3    
User 4    
User 5    

Figure 8 depicts the percentile of users that answered the questions based on data from Table

3.

Figure 8 – Percentile of given answers grouped by question

Moreover, the second evaluation was achieved by measuring the correctness of the answers

as depicted in Table 4. According to this scrutiny, 3 users correctly answered the first question

while 2 users gave a wrong answer. Hence, all the users found the necessary resources to

answer this question. The second question was answered by three users. However, their

answers were incomplete – one user indicated 16 of the 20 asked resources while the other

indicated 17. Moreover, the other user only encountered 1 resource. The third question was

correctly answered by 2 users. Moreover, 1 user indicated 2 resources of 10. Finally, only 2

users gave an answer to the fourth question and that is 100% correct.

0

20

40

60

80

100

Question 1 Question 2 Question 3 Question 4

% of given answers by
question

3.2 Results

25

Table 4 – Percentile of correct resources retrieved in each question.

Question 1 Question 2 Question 3 Question 4

User 1 100% 75% 100% 100%

User 2 100% 80% 100% 100%

User 3 0% 0% 0% 0%

User 4 100% 0% 0% 0%

User 5 0% 5% 20% 0%

Figure 9 depicts the percentile of totally correct answers given for each question.

Figure 9 – Percentile of correct answers given (grouped by question)

Moreover, Figure 10 depicts the overall correctness of the answers grouped by question. This

is calculated through the average of the correctness of each answer to each question.

Figure 10 – Correctness of the overall answers (grouped by question)

Additionally, the efficiency of the tool(s) used to answer each question was measured. In this

sense, according to the given answers, it was evaluated (i) if the tool(s) used allowed the user

to given any answer, and (ii) the tools efficiency (when applicable) for answering the different

questions. Table 5 illustrates the tools used by the users for answering each question.

0

20

40

60

80

100

Question 1 Question 2 Question 3 Question 4

% of correct answers

0

20

40

60

80

100

Question 1 Question 2 Question 3 Question 4

% of correctness of the
given answers

3 State-of-the-Art Assessment

26

Table 5 – Tool(s) that the users used to answer each question.

 Question 1 Question 2 Question 3 Question 4

User 1 SPARQL SPARQL SPARQL SPARQL

User 2 Wikipedia search SPARQL SPARQL SPARQL

User 3 Wikipedia search RelFinder+gFacet RelFinder+gFacet RelFinder+gFacet

User 4 Wikipedia search RelFinder+gFacet RelFinder+gFacet RelFinder+gFacet

User 5 Wikipedia search Wikipedia search Wikipedia search Wikipedia search

Figure 11 also gives a perspective on which tools were used for answering each question. By

the analysis of Figure 11, it is visible that the users opted for using the Wikipedia traditional

search for answering simple questions. Yet, most proficient SPARQL users elected the Virtuoso

SPARQL Query Editor as the main tool for answering complex questions. Moreover, as

expected, non-proficient users in SPARQL and on the DBPedia schema tried to answer the

proposed questions by using Wikipedia search or a combination of both RelFinder and gFacet.

Figure 11 – Percentile of used tools for answering each question

Moreover, the tools efficiency is inferred by a correlation between the correctness of the

answers provided by the user with the tools they used to obtain such answers (cf. Figure 12).

Notice that in the first question the combination of the RelFinder and the gFacet tools was not

considered because none of the users answered the question using these tools. Accordingly, it

is clear that the combination of the RelFinder and the gFacet tools are not used for answering

simple questions. It also shows that this combination does not perform well for answering

complex questions. Further, the results shows that these tools not even allow to give any

answer. On the other hand, Wikipedia search revealed to produce good results when

answering simple questions. However, the answers given through the Wikipedia search may

contain errors. This is mainly because the user needs to find the answer by himself (as

occurred in Question 1 with users 3 and 5). Finally, the Virtuoso SPARQL Query Editor is the

tool that allowed the users to more successfully respond to the simple and/or complex

questions.

0%

20%

40%

60%

80%

100%

Question 1 Question 2 Question 3 Question 4

%
 o

f
an

sw
e

rs

SPARQL

RelFinder+gFacet

Wikipedia search

3.2 Results

27

Figure 12 – Correctness of the given answers according to the used tools

Finally, Table 17 depicts the time that users needed to answer all the questions. According to

it, only two users finished answering all the questions at approximately the end of the time

(i.e. 30 min). However, those users did not fully answer the second question of the exercise.

Table 6 – Time used to answer all the questions.

User Time (min)

User 1 30

User 2 30

User 3 N/A

User 4 N/A

User 5 N/A

3.2.2 Questionnaire

The results obtained from the questionnaire are described next.

The first question of the questionnaire asked the users if they were happy with the proposed

tools and if they improved their performance while answering complex questions in

comparison with any other systems. While answering this question, proficient SPARQL users

stated that the Virtuoso SPARQL Query Editor was indeed a good tool for answering complex

questions. However, non-proficient SPARQL users said that these tools were inefficient and

did not helped them answering the proposed questions.

Further, the users were asked to say if they found the tools easy to use. Most users said that

not all the tools were straightforward. For example, it was said that the gFacet tool

functioning was not transparent and it was not clear its usage. Moreover, SPARQL proficient

users that already knew the DBPedia ontology/schema stated that Virtuoso SPARQL Query

Editor was easy to use. Moreover, it was stated that the RelFinder tool, although it is easy to

use, it did not accomplished its goals properly. This is mainly because it did not show

relationships that actually existed in the repository’ underlying schema.

0%

20%

40%

60%

80%

100%

Question 1 Question 2 Question 3 Question 4

%
 o

f
co

rr
e

ct
n

e
ss

Wikipedia search

RelFinder+gFacet

SPARQL

3 State-of-the-Art Assessment

28

Furthermore, the questionnaire questioned the users about the encountered problems while

answering the questions. While some users pointed that it was required (or at least

preferential) to know the SPARQL language and the DBPedia ontology/schema to fully answer

the questions, others stated that the search methodology of the tools was not clear.

Moreover, some users were concerned about the different DBPedia namespaces that could

lead to some problems while creating SPARQL queries.

Further on, most of the users stated that they were not fully satisfied with the returned

results. Accordingly, RelFinder and gFacet did not produce any (good) results. However, users

indicated that they were satisfied with the Wikipedia Search while answering simple questions.

In this sense, some users stated that they would use Wikipedia Search for answering such

questions. Moreover, proficient users stated that they would only use Virtuoso SPARQL Query

Editor for answering complex questions. However, they all agreed that RelFinder and gFacet

should not be used to perform such tasks.

Moreover, when asked about any other tool they know for question answering only one user

pointed out a different tool, namely the Yago2 spotlx tool [Yago2 spotlx 2012].

Finally, the users stated that it may be useful a function that shows all the relationships

starting from a given entity and which of those occur more often (e.g. ranking). Further, users

suggested that the tools functioning should be more transparent and should provide more

control to the user. Accordingly, the search methodologies should be more intuitive.

Moreover, the tools performance should be enhanced (e.g. the RelFinder and the gFacet tools

take long time to return results). Finally, users stated that the user interface could be enriched

with some semantic information.

3.3 Analysis and Discussion

According to the experiment results (cf. section 3.2) it is possible to conclude that all kinds of

users were able to answer the simplest question. This is mainly because the information is

accessible in only one resource (i.e. one page) and therefore it is quite straightforward to find

the answer. For instance, most users answered this question using the traditional Wikipedia

search. However, in order to correctly answer the most complex questions, SPARQL

proficiency revealed to be necessary. This is because only these users were able to formally

query the repository in order to obtain the necessary resources. However, even these users

had some difficulties in understanding the underlying ontology to properly formulate the

SPARQL query. For answering complex questions, a non-proficient SPARQL user that answered

the complex questions 2 and 3 used the Wikipedia Search to randomly access resources in

order to find if it fulfills the questions’ constraints. This type of search is time consuming and

uncomfortable. Moreover, users that tried to use gFacet and RelFinder did not find any

answer at all.

3.3 Analysis and Discussion

29

Further, the evaluation of the proposed tools based on the correctness of the given answers

shows that complex questions were not successfully answered by all kinds of users.

Accordingly, only SPARQL proficient users answered all the questions. Hence, even the

simplest question was wrongly answered by 2 users that used the Wikipedia Search to access

the resource page and find the wanted result. This highlights that human error is likely to

happen and that machine-supported systems may produce better results.

Finally, the results show that users can only answer complex questions in reasonable time if

using the SPARQL tool. However, not all users are comfortable with the SPARQL language.

Furthermore, even if familiar with the SPARQL language, users must have to know the

underlying ontology of the repository. However, this is not usually the case.

In that sense, we may conclude that the repositories’ front-ends do not provide enough

support for the question answering task. On the one hand, the more accessible tools for non-

experienced users (e.g. Wikipedia Search) do not provide the necessary means to answer

complex questions. On the other hand, the most specialized tools (e.g. Virtuoso SPARQL

Query Editor) are not accessible for all types of users. Hence, it is obvious that questions like

the ones used in the experiment are not answerable through “search, browsing & navigation”

operations without further data processing. Accordingly, it is possible to conclude that:

 Non-proficient users are not capable of responding such kind of questions. For
instance, these users do not know how to formulate SPARQL queries;

 Proficient users eventually may respond such kind of questions but they have to use
more than one tool to achieve the desired results. Moreover, they take some time and
a lot of effort to understand the repository’s underlying schema/ontology.

Based on these findings, it is possible to conclude that current search tools revealed to be

insufficient to answer such questions because none of them contains all the necessary “basic”

functionalities. Basic functionalities are the ones that are considered needed to help (non-

proficient and proficient) users to answer complex questions.

Additionally, the answers given in the questionnaire reinforce the idea that state-of-the-art

tools do not provide the best support while answering complex questions. Accordingly, users

stated that only the Virtuoso SPARQL Query Editor provide the means to answer complex

questions while all the other tools proved to be inadequate.

Moreover, the surveyors asked the users to express the limitations encountered with the used

tools and how they would like to be assisted in their task. Accordingly, users stated that the

user should have a more important role in the search task. Besides, the tools user interface

should be enriched (e.g. adding semantic information) and its performance should be

enhanced. Hence, the users’ feedback resulted in the following which-list of features:

 Help find the attributes names whose values include a specific value;

 Provide abstractions for class expressions (e.g.
 ());

3 State-of-the-Art Assessment

30

 Abstract the subsumption relation (e.g. the), such
that it is possible to filter the individual of the super class to those of the subclass;

 Reduce the size of the proposed ontology entities, based on the current query context
(defined by the ontology entities already selected);

 Suggest/Identify ontological objects based on a text search;

 Find all the/a set of relationships between two given ontological objects;

 Sort the retrieved list of relationships according to the number of occurrences;

 Retrieve the most common values of a certain objects’ property;

 Translate the users’ built question to a formal query supported by the repository;

 Query the repository with the built question and see the results;

 Combine all these requirements into a single tool.

3.4 Concluding Remarks

Preliminary experiments on state-of-the-art applications revealed that it is desirable to

develop new applications that properly support the users in the information navigation and

search tasks thereby improving their complex querying task. According to the experiment

results and observations, it is envisaged a set of functionalities that should be included in a

complex-query supporting front-end. Consequently, an application that provides such

functionalities must be developed.

31

4 The Proposal

This chapter describes the thesis proposal and is organized as follows:

 First, a solution to solve the problems identified in the preliminary experiments is
briefly described;

 Second, the encountered solution is deepened and formally described.

4.1 Informal Overview

Based on the preliminary experiments described in Chapter 3, different components were

defined to answer the users’ most basic needs in information navigation and search tasks that

ultimately leads to answering complex questions. Figure 13 depicts the proposed solution.

Figure 13 – System architecture

R
el

at
io

n
sh

ip
s

Se
ar

ch
er

En
ti

ty
 In

fo
rm

at
io

n

C
o

n
st

ra
in

ts

Sp
ec

if
ic

at
io

n

Contextualization

Q
u

er
y

B
u

ild
in

g

O
b

je
ct

 M
ap

p
in

g

GUI

(Ontology-based) Repository

4 The Proposal

32

The proposal relies on a set of eight high-level components that are suitably combined into a

user application. These components are summarized as follows.

 GUI is responsible for the interaction with the user: (i) it enables the user to formulate
queries, and (ii) presents the respective responses (i.e. the retrieved resources).

 The Object Mapping serves to make the mappings between the (free) text inserted by
the user and the corresponding ontology entities in the repository;

 Relationship Search is responsible for finding relationships between elements in the
repository;

 Entity Information is the module responsible for retrieving some information related to
an element in the repository;

 Constraints Specification is used to create constraints and, therefore, filter the query
results;

 Query Building is responsible for automatically creating an appropriate formal query
supported by the repository;

 Contextualization is the module responsible for narrowing the search area to the user
current question’ context;

 (Ontology-based) Repository is where the data/information is maintained. Notice that
these repositories should be explicitly or implicitly described by ontologies.

Through this application the user interacts and exploits the functionalities of such

components iteratively and arbitrarily in order to obtain a set of results to the complex

question s/he is trying to answer (i.e. to build the query). Accordingly, the user should guide

the search in several interactions with the system based on her/his necessities. Therefore, it is

implied that the proposal consists in an assisting tool for iteratively, incrementally, and

interactively navigate and retrieve information from repositories described by ontologies. It is

iterative because the query building process phases are repeated several times (iterations).

Further, it is incremental because the query is being progressively built and refined along the

iterations. Finally, it is interactive because the user is requested to participate in the process

of building/refining the query.

Although it is seen as a critical component in the system, this work does not focus on matters

related with the GUI component. Moreover, it was assumed that the ontology-based

repository already exists and it is available for the intended purposes. Therefore, the next

section only specifies the remaining components.

4.2 Formal Specification

This section formally describes the middle ware components of the envisaged solution (i.e.

Object Mapping, Relationship Search, Entity Information, Constraints Specification, Query

Building, and Contextualization) in the form of an Application Programming Interface (API)

thus being easily integrated in any system. In that sense, the envisaged API is deeply explained

and formally defined.

Following sub-sections formally describe each one of these five API components.

4.2 Formal Specification

33

4.2.1 Object Mapping

The Object Mapping component is responsible for mapping a natural language text introduced

by the user to ontological entities. This is the most primary component as it is the only one

that allows the user to inquiry the system in natural language for finding. Accordingly, this is

where the user usually starts her/his quest for information.

For that, it is envisaged a three steps approach as follows.

The first step is completely automatic. It consists on applying a set of NLP techniques (e.g.

tokenization, stops words, lemmatization, stemming) to identify the relevant terms in a

natural language text thus improving the terms automatic detection (cf. Example 1).

Moreover, the usage of a thesaurus might also improve this task by retrieving the inserted

text related vocabulary (e.g. synonyms). This step is formalized as follows.

Definition 8 (Terms Identification) – The terms identification task is seen as a function

 such that refers to a set of words/phrases according to a natural language

and is the set of relevant terms resulting from a linguistic interpretation of .

Example 1 – Imagine the situation where the user is asked to answer the Sample Question 1

(i.e. All soccer players, who played as goalkeeper for a club that has a stadium with more than

40.000 seats). As the user does not know the repository schema, s/he might want to start by

asking the system which entities are related to the text “soccer player” as it is mentioned in

the question. Thus, the Object Mapping component is required to map such text to some

ontology entities such that () .

The second step is also completely automatic. It aims to identify for each term the set of

plausible ontology entities the user is interested in (cf. Example 2). In order to constrain the

mappings to the relevant ontological entities the search context should be provided. This

context is obtained through the application’s state that is based on the users’ interactions

with the system. As consequence of the first step, the list of relevant terms is expanded thus

providing a more complete vocabulary to map. This step is formalized as follows.

Definition 9 (Mapping Terms) – The task of mapping a set of terms () to the corresponding

ontological objects is a function () such that:

 is a set of terminological terms;

 is the ontology describing the repository;

 is a sub-set of the ontology describing the repository. It define the ontological
context in which the terms introduced by the user must be first considered;

 is the set of mappings found. Each element is a triple ()
expressing that the term is mapped to the ontological entity (or if
is provided) with a confidence value] [. The ontological entity might be a class,
a property, an individual or an axiom (e.g. a constraint).

4 The Proposal

34

Example 2 – In the second step, the two identified terms (soccer and player) must be mapped

to ontological entities. Since there is no previous context for these terms, it is assumed that

the context is all the ontology (). Accordingly, the system executes the

 () function. Table 7 depicts the results of the

results where the confidence value of each pair term-entity is omitted by clarity reasons.

Table 7 – The ontological entities for the “soccer” and “player” terms

 List of Entities

soccer {SoccerManager, SoccerClub, SoccerPlayer, SoccerLeague}

player {GolfPlayer, SoccerPlayer, playerInTeam, TennisPlayer, BasketballPlayer}

The last step is the disambiguation. This consists of mapping each term to the unique

ontological entity the user is interested in based on the outcome of the previous step ()

(cf. Example 3). Despite the provided contextualization support, for each term might

exist in more than one possible ontological entity to map. In such cases, and in order to

reduce the user effort in selecting the ontological entities, a (semi-) automatic approach must

be adopted.

Example 3 – In the disambiguation step, the system may strongly suggest the concept

“SoccerPlayer” because it is the one common to both terms. However, the user may be able

to select one of the other possible entities (entities). Regarding the question in hands,

consider that the user confirms the system suggestion’ “SoccerPlayer”. Accordingly, this entity

is now the focus of the search.

Figure 14 depicts a mockup of a possible GUI for the Object Mapping component. In (1) is

illustrated the text to search. Moreover, the results of the function are shown in (2).

Finally, the “SoccerPlayer” entity is selected thus demonstrating the (manual) disambiguation

step.

Figure 14 – Object Mapping GUI mockup

Object Mapping

Results

TennisPlayer

BasketballPlayer

SoccerPlayer

soccer player Search1

2

Select

4.2 Formal Specification

35

4.2.2 Relationship Searcher

The Relationship Searcher component is responsible for finding the ontological relations

existing between two ontological entities in a given context. Once again, the context is

automatically generated based on the application status. In this way, one can reduce the

number of relationships retrieved to those that are relevant to the task at hands (cf. Example

4).

The process of finding relationships is defined as follows.

Definition 10 (Finding Relationships) – The task of finding relationships between two

ontological entities is a function () such that:

 and are the ontological entities among which is necessary to find out the
existing relationships;

 and are the ontology describing the repository and the ontological context
defining the searching space respectively;

 defines the maximum admissible number of entities between and . If
 , it means that only direct relationships between and must be
considered;

 specifies directionality constraints to the relationships. As an example,
considering , one might constraint relationships to
those that goes from to only () or vice-versa ();

 determines the amount of most common relationships to retrieve;

 is the set of relationships existing between and . Each element is a
tuple () such that is a relationship path either in the form of
 or where and] [is a value
expressing the relevance of the relationships path.

Example 4 – After finding the “SoccerPlayer” and “SoccerClub” entities through the Object

Mapping component (cf. section 4.2.1), the question in hands (i.e. Sample Question 1)

suggests that there is a relationship between these entities. However, the user typically does

not know such relationship. Therefore, users might benefit from mechanisms that

automatically find relationships in the repository schema based on two given entities that

s/he knows. Notice that the context is obtained from the current application status that is

obtained according to the user’ selected entities (“SoccerPlayer” and “SoccerClub”).

Accordingly, the user could request the system to find the top five direct and straightforward

relationships between “SoccerPlayer” and “SoccerClub” using the

 ()

function. The result of the function is depicted in Table 8.

Notice that these relationships are usually described by ontological properties and therefore

the user is usually interested in the properties that relate the entities. Accordingly, the system

should be able to retrieve the (2) that relate “SoccerPlayer” and “SoccerClub” (1) as

depicted in Figure 15.

4 The Proposal

36

Table 8 – The five most relevant relationships between “SoccerPlayer” and “SoccerClub”

{SoccerPlayer, clubs, SoccerClub} 0.95

{SoccerPlayer, club, SoccerClub} 0.90

{SoccerPlayer, team, SoccerClub} 0.85

{SoccerPlayer, currentclub, SoccerClub} 0.60

{SoccerPlayer, youthclubs, SoccerClub} 0.50

Figure 15 – Relationship Search GUI mockup

In order to continue the walkthrough example, let us admit that the user selects the property

“clubs” as suggested by the system.

4.2.3 Entity Information

The Entity Information component is responsible of showing some information related with a

specific entity to the user. Accordingly, the user is able of finding the properties and its values

of an ontological entity s/he is interested in. For that, two processes were identified.

The first process consists on finding the most common properties of a given ontological entity

in a given context thus helping the user understanding which are the attributes of a given

entity (cf. Example 5).

This process is formalized as follows.

Definition 11 (Entity Common Properties) – The task of determining the most common

properties of an entity is a function () such that:

 is the ontological entity to retrieve the most common properties;

 and are respectively the ontology describing the repository and the
ontological context for determining the common values of ;

 determines the amount of most common properties to retrieve;

Relationship Search

Relationships

{SoccerPlayer, team, SoccerClub}

{SoccerPlayer, club, SoccerClub}

{SoccerPlayer, clubs, SoccerClub}

SoccerPlayer

SoccerClub

Find Relationships

1

2

Source:

Target:

Select

4.2 Formal Specification

37

 is the set with the most common properties of . Each element is a tuple
 () such that is an ontological property and] [is a value expressing
how common is regarding to .

Example 5 – For answering Sample Question 1, the user now needs to find the “SoccerPlayer”

property that allows restricting to only those that plays as goalkeepers. Accordingly, as the

user does not know the DBPedia ontology, one way to do this is by asking the system which

are the most common properties of the “SoccerPlayer” entity. According to the application

status, the user is now focused on the “SoccerPlayer”, “SoccerClub” and “clubs” entities.

Therefore, the user may request the system to retrieve the “SoccerPlayer”’ top five common

properties through the () function.

The obtained results are depicted in Table 9:

Table 9 – The five most relevant attributes for “SoccerPlayer”

clubs 0.90

teams 0.85

position 0.80

club 0.60

currentclub 0.50

These results may be represented as depicted in Figure 16. Moreover, the user may now

select the property which is probably the one that s/he is interested in.

Figure 16 – Common Properties GUI mockup. (1) is the entity to retrieve the related

properties (2)

The second process consists on retrieving the values of the properties (i.e. attributes) of an

ontology entity (cf. Example 6). This process allows the user to effectively access the entity

attribute values thus helping the user answering some (simple) questions related with a given

entity.

Common Entity Properties

Properties

position

teams

clubs

SoccerPlayer 1

2

Common
Properties

Select

4 The Proposal

38

Definition 12 (Entity Property Values) – The task of retrieving the value(s) of a property in the

perspective of an entity is a function () such that:

 is the ontological entity to retrieve the property values;

 is the ontological property to retrieve the values;

 and are respectively the ontology describing the repository and the
ontological context for determining the common values of ;

 determines the maximum amount of property values to retrieve;

 is the set with the values of property related to . Each element is
a property value (either an ontological entity or a literal).

Notice that it is possible to retrieve all the attributes of a given entity by the combination of

the two described processes. Accordingly, the product returns all the property values

of an ontological entity.

Example 6 – Now, if the question asked the user to retrieve the position of the Cristiano

Ronaldo player (e.g. In which position does Cristiano Ronaldo plays?) the user could ask the

system to retrieve the value of the “position” property (2) for the “Cristiano Ronaldo” entity

(1). Accordingly, the user should first search for the “Cristiano Ronaldo” entity using the

Object Mapping functionality (cf. section 4.2.1). After finding the “Cristiano Ronaldo” entity,

the user is able to question the system. For that, the user could use the

 () function such

that the result should be the entity “Forward” as depicted in Figure 17.

Figure 17 – Cristiano Ronaldo position example

4.2.4 Constraints Specification

The Constraints Specification component is responsible for supporting the user to specify

constraints over the ontological entities (properties) s/he is interested in. By this means, the

user is able to properly filter the retrieved results such that they meet the user’s needs and

abstract (identify) such class of individuals.

Entity Information

Entity
Information

Forward

Cristiano Ronaldo

position

Show Information

1

2

Entity:

Property:

4.2 Formal Specification

39

For that, three processes were identified.

The first process consists on determining which logical operators (e.g. equal, greater than,

contains) are applicable to a given ontological property considering both the existing

ontological definitions (e.g. the range) and the context on which that property is being used

(cf. Example 7). The context, which is automatically generated according to the status of the

application, allows restricting the values that the property might take to only those in the

current context. Consequently, it does not return operators that are not applicable to both

the property and the context at hand. This process is formalized as follows.

Definition 13 (Applicable Operators) – The task of determining the applicable logical

operators on a property is a function () such that:

 is the ontological property to determine the applicable operators;

 and are the ontology describing the repository and the ontological context on
which is used respectively;

 is the set of available logical operators in the system;

 is the sub-set of available logical operators that are applicable to in the
context .

Example 7 – At this point, the user identified the “SoccerPlayer” and “SoccerClub” entities and

a relationship between them (i.e. the property “clubs”). Moreover, the user also noticed that

the “position” property may relate the player with his field position. This specification is

depicted in Figure 18.

Figure 18 – Conceptual specification made by the user

Now, in order to answer Sample Question 1, the user needs to find all the “SoccerPlayer” that

plays as goalkeeper. However, the user does not know how to express such relationship. In

that sense, the user might ask the system which are the applicable operators for the “position”

property. Moreover, as the context did not changed since the previous example (the

application status is the same) it is assumed that . Therefore, the user might inquire

the system by the () function such that

represents the applicable operators to the “position” property which are depicted in Table 10.

Table 10 – The applicable operators to the property “position”

 Range
position string { , , contains, starts, ends}

SoccerPlayer SoccerClubclubs4

{position = ?}

4 The Proposal

40

The second process consists on retrieving the most common values taken for a property in a

given context. This process aims to help the user on:

 Perceiving which kind of values are admissible (e.g. numerical, string, date, ontological
resource);

 Typing the admissible values. This is especially helpful for (object) properties whose
admissible values are ontological entities (resources) only. In this case, it eases the
required object mapping task since the most common values are themselves
ontological entities.

This process is formalized as follows.

Definition 14 (Property Common Values) – The task of determining the most common values

of a property is a function () such that:

 is the ontological property to retrieve the most common values;

 and are respectively the ontology describing the repository and the
ontological context for determining the common values of ;

 determines the amount of most common values to retrieve;

 is the set with the most common values of property . Each element
is a tuple () such that is a property value (either an ontological entity
or a literal) and] [is a value expressing how common is regarding to .

Example 8 – However, the returned values in Example 7 do not provide any hint on the

existing property values. In this sense, the user may not envision that exists a “Goalkeeper”

string representation to denote the goalkeeper field position. Therefore, one way to

overcome this problem is to ask the system which are the most common values for the

“position” property. Once again, the application status did not changed and therefore .

In this sense, the user calls the () function.

Table 11 depicts the results.

Table 11 – The five most common values of the property “position”

position

Midfielder 0.85

Defender 0.80

Striker 0.75

Goalkeeper 0.70

Forward 0.60

Further, for simplifying purposes it is assumed that the user has found the property “capacity”

that allows to restrict the clubs to those that have a stadium with more than 40 0000 seats.

At this point, the user has refined his specification as depicted in Figure 19. According to this

specification, the user is now able to properly construct the query to answer the question in

Sample Question 1.

4.2 Formal Specification

41

Figure 19 – The final specification made by the user

The third process concerns the ability to construct the appropriate constraint given (i) an class

or an individual (ii) a property, (iii) an operator () and (iv) a property value ().

Accordingly, this is the process that actually allows the user to construct the constraint after

having found all the necessary parameters. This process is formalized as follows.

Definition 15 (Constraint) – The task of constructing a constraint on a property is a function

 () such that:

 is the ontological class or individual to apply the constraint;

 is the ontological property on which the constraint applies on;

 is the logical operator applied in the constraint;

 is a property value;

 is the resulting constraint on such that is true for .

Example 9 – Finally, the user has all the information needed to create the desired constraints.

In this sense, the user may request the system to create a constraint such that

 () as depicted in

Figure 20.

Figure 20 – Constraint GUI mockup

Furthermore, the user may create a constraint to filter the clubs by their stadium capacity

such that ().

At this point, the user has created all the necessary constraints to answer the question.

SoccerPlayer SoccerClubclubs4

{position = "Goalkeeper"} {capacity > 40 000}

Constraint

position =SoccerPlayer “Goalkeeper”

Create

4 The Proposal

42

4.2.5 Query Building

The Query component is responsible for dynamically generating the appropriate query () in a

query language () supported by the repository (e.g. SPARQL) in order to execute it against

the repository and, therefore, to retrieve the results (i.e. the answer) for the complex

question formulated by the user (cf. Example 10).

This process is formalized as follows.

Definition 16 (Query) – The task of constructing a query is a function ()

such that:

 is a connected graph composed by the ontology entities selected by the user;

 is the set of constraints specified by the user;

 is a set of ordering clauses. Each element is a tuple () such that
 is an ontological entity and stating an ascending () or
an descending () order;

 is the resulting query formulated in the query language and is ready to be

executed against the repository.

Example 10 – The final step in the query formulation process – the process that allows to

query a system in order to obtain answers – is the query construction. Accordingly, in order to

effectively answer Sample Question 1 the system should allow the user to automatically build

the formal query based on the previously identified requirements (depicted in Table 12)

Table 12 – The question’ requirements (i.e. the selected entities and constraints)

Selected
Entities {SoccerPlayer, SoccerClub, clubs, position}

Constraints
{<SoccerPlayer,clubs,SoccerClub>, <SoccerPlayer, position,=,”Goalkeeper”>,

<SoccerClub,capacity,>,40 000>}

Accordingly, the user asks the system to create a query based on the question requirements

without any ordering clauses using the ()

function such that:


 ;

 〈 〉
〈 〉
〈 〉 .

Figure 21 depicts such scenario. In order to build the formal query (3), the system must take

into account the users’ selected entities (1) and constraints (2) and with these parameters it

should be able to construct the formal query in order to query the repository and therefore

show the results.

4.2 Formal Specification

43

Figure 21 – Query Building exemplification

4.2.6 Contextualization

The Contextualization component is responsible for providing one or more relevant fragments

of the ontology describing the repository according to a desired level of abstraction. Usually,

this component is used by other components in the API in order to (i) restrict the search space

thus decreasing the results to retrieve, and to (ii) suggest related elements in the repository

that might be of interest. In this way, one might decrease the information overload helping

the user to process the information and provide some contextualized information in order to

focus on the desired context of the search.

By definition, ontology modularization (cf. section 2.2) is the ontology engineering process

that provides such services. Accordingly, the contextualization component makes use of

ontology modularization techniques (described in section 2.2) to achieve its main goal (i.e.

reduce the size and/or complexity of the knowledge schema).

In order to properly capture the (search) context, it is necessary to take into account the users’

interaction with the system. Accordingly, the context needs to be extracted according to the

application status. This status is used to keep tracking of the ontology entities that the user is

interested in (i.e. the focus of the search). One way of capturing the application status is

through the inputs to the query function () since it represents the users’ focus.

Accordingly, contains the users’ selected entities and the set of constraints applied to

those selected entities. Then, using some modularization techniques the system is able to

properly capture the search context. For instance, using the module extraction function (cf.

Query Building

Entities Constraints

position

SoccerClub

SoccerPlayer

Select *
{
?SoccerPlayer a <http://dbpedia.org/ontology/SoccerPlayer> .
?SoccerClub a <http://dbpedia.org/ontology/SoccerClub> .
?SoccerPlayer <http://dbpedia.org/property/clubs> ?SoccerClub .
?SoccerPlayer <http://dbpedia.org/property/position> ?position .
?SoccerClub <http://dbpedia.org/property/capacity> ?capacity .
FILTER (?position = "Goalkeeper"@en) .
FILTER (?capacity > 40000) .
}

SoccerPlayer,position,=,”Goalkeeper”

SoccerPlayer,clubs,SoccerClub

clubs SoccerClub,capacity,>,40 000

capacity

Build Query

1 2

3

4 The Proposal

44

Definition 5), the system can extract a module that represents the search context. Moreover,

using the ontology summarization function (cf. Definition 7), the system may retrieve an even

smaller module (i.e. context) with some related elements to add to its search. An exemplifying

scenario is depicted in Example 11.

Example 11 – Continuing Example 10, imagine that the user was not fully satisfied with the

final results. Therefore, the user should continue her/his search using the system

functionalities. However, the system could help the user in this task by suggesting some

entities of the ontology that were related to the users’ search. Accordingly, the system could

extract a module from () , being

(i.e. the application status). However, as the module is very large to present to the user

(e.g. contains more elements than a pre-defined number), the system automatically extracts a

description of using the ontology summarization algorithm such that

 . In this sense, a smaller representation of the context was extracted and can

now be showed to the user as depicted in Figure 22.

Figure 22 – Contextualization example

Suggestions

Entities

currentclub

youthclubs

Athlete

captain

coach

45

5 Development

This chapter describes the implementation efforts of the proposed ideas in the context of the

World Search project. Accordingly, the implementation details of each component are

succinctly described and a prototype is presented.

The components of our proposal integrate into the World Search architecture as illustrated in

Figure 23. The proposal components have been implemented in a prototype denominated

Complex Query Building (CQB). It is worth mentioning that the components integrated into

the Ontological Services module are all stateless. Therefore, it is responsibility of the Semantic

Query module to provide an application status. In this sense, the CQB prototype is a stateless

API that provides a set of functionalities for information retrieval and query building over an

ontology-based repository.

Figure 23 – The proposed components integrated in the World Search architecture

R
el

at
io

n
sh

ip
s

Se
ar

ch
er

En
ti

ty
 In

fo
rm

at
io

n

C
o

n
st

ra
in

ts

Sp
ec

if
ic

at
io

n

Contextualization

Q
u

er
y

B
u

ild
in

g

O
b

je
ct

 M
ap

p
in

g

Repository (FAST + LOD)

GUI

Query Dispatcher

Syntatic
Query

Semantic
Query

Ontological
Services

5 Development

46

The CQB prototype was developed as a standalone Java application where each one of the

identified functionalities is available.

Next, each one of the developed components is described.

5.1 Object Mapping

As in traditional search engines, object mapping makes use of indexing mechanisms to

retrieve the entities/resources based on the inserted keywords. Accordingly, the suggestions

provided by the Object Mapping component are retrieved by the Lucene [Lucene 2012]

indexing mechanism. Lucene was adopted because it is free to use and also perform good

results in comparison with FAST (that is a proprietary application). This mechanism indexes

the content of a configurable set of selected properties determined by the entity type.

Current configuration is represented in Table 13. Each selected property is associated to a

weight-value, which is used for ranking purposes. Notice that, for testing purposes only small

fragments of the DBPedia datasets were indexed.

Table 13 – Current indexed selected properties.

Entity
Type

Dimensions

 -box -box

Property Weight Property Weight

Class
rdf1:label 3

n/a
rdf:comment 1

Object
Property

rdf:label 3 - -

rdf:comment 1 - -

Data
Property

rdf:label 3
“value” 2

rdf:comment 1

Individuals - - rdf:label 3

Moreover, the indexing mechanism makes use of a text analyzer which is responsible for a set

of NLP tasks on the text content to be indexed. The same analyzer is also applied on the text

introduced by the user in order to improve the suggestions made (i.e. the same analyzer is

used on both tasks for producing similar results).

As described in Example 1, for answering the Sample Question 1 the user would likely search

for the text “soccer player” in order to find the corresponding entity in the repository. By

doing this the user would likely find that the entity that s/he is interested in is

http://dbpedia.org/ontology/SoccerPlayer as depicted in Figure 24.

1 “rdf” stands for the RDF Schema vocabulary whose namespace is http://www.w3.org/1999/02/22-rdf-
syntax-ns#

5.2 Relationship Searcher

47

Figure 24 – “SoccerPlayer” entity recognition by text search input

Figure 24 depicts the user interface of the Object Mapping function in the CQB prototype.

Notice that the Object Mapping GUI allows the user to specify/filter the type of entity s/he is

interested in (e.g. Classes) thus discarding irrelevant information. In this case, the user only

selected the classes of the ontology since “Soccer Player” it is likely being a concept. Moreover,

the results table is divided in three columns: documentURI, Score, and Type. The

documentURI column is where the URI of the result (e.g. resource, property, class) is shown.

Moreover, the Score column provides a numeric value that shows the systems’ confidence on

how the results may match the inserted text (higher values reveal higher confidence). The

type column shows the ontological entity’ type (e.g. class, property, individual) thus allowing

the user to perceive which kind of information s/he is dealing with. For instance, this might be

helpful for selecting a resource when the resources have similar names.

5.2 Relationship Searcher

The Relationship Searcher component implementation relies on a set of pre-defined SPARQL

queries to query the repository. The query to use is chosen according to the type of source

and target entities. Accordingly, each pair of entity type requires a specific query. Therefore,

as there are three different possible queries for each entity type (i.e. class, property or

individual) the overall number of pre-defined queries is nine. However, the implemented

algorithm only deals with direct relationships (i.e. one hop from the source entity to the target

entity) and therefore only eight different queries were required. Moreover, the value

expressing the relevance of each relationship path found is given by counting the number of

times that relationship is instantiated on the context of the two input ontology entities.

Further, the set of relationships found is pruned based on the input context.

5 Development

48

According to Example 4, the user might need to know the 20 most significant relationships

between the “SoccerPlayer” and “SoccerClub” entities. In this case, as both entities are of type

Class, the generated query is as the one depicted in Figure 25.

select distinct ?rel (count(?rel) as ?value)

where

{

?a a <http://dbpedia.org/ontology/SoccerPlayer> .

?b a <http://dbpedia.org/ontology/SoccerClub> .

?a ?rel ?b .

}

GROUP BY ?rel

ORDER BY DESC (?value)

LIMIT 20

Figure 25 – Relationship Search sample query

The result of such task using the CQB tool is depicted in Figure 26.

Figure 26 – Relationships between “SoccerPlayer” and “SoccerClub”

5.3 Entity Information

The Entity Information component relies on two pre-defined SPARQL queries against the

repository. One query is for retrieving the most common properties of a given entity (cf.

Definition 11) and the other query is for retrieve the property value(s) of an entity property

(cf. Definition 12).

5.3 Entity Information

49

According to Example 5, when the user asks the system which are the properties related with

the “SoccerPlayer” entity a query as the one depicted in Figure 27 is generated.

select distinct ?rel (count(?rel) as ?value)

where

{

?a a <http://dbpedia.org/ontology/SoccerPlayer> .

?a ?rel ?value .

}

GROUP BY ?rel

ORDER BY DESC (?value)

LIMIT 20

Figure 27 – Common Entity Properties sample query

The result of such task using the CQB tool is depicted in Figure 28.

Figure 28 – Common “SoccerPlayer” properties using the CQB tool

Moreover, according to Example 6 the user asks the system the specific attribute (i.e.

property) value of a certain entity. In this case, the user asks the system which is the “position”

property value of the “Cristiano Ronaldo” entity. In this sense, the system creates a query as

depicted in Figure 29.

5 Development

50

select *

where

{

<http://dbpedia.org/resource/Cristiano_Ronaldo> <http://dbpedia.org/property/position> ?value .

}

LIMIT 1

Figure 29 – Sample query for retrieving the Cristiano Ronaldo position

The results obtained using the CQB tool are depicted in Figure 30.

Figure 30 – “position” property value of the “Cristiano Ronaldo” entity

However, if the user wants to know all the attributes and the corresponding values of a

certain entity, it should only provide the entity that s/he is interest in. This way, the system

will perform the product that returns all the property values of an ontological entity

thus creating a query as the one depicted in Figure 31.

select *

where

{

<http://dbpedia.org/resource/Cristiano_Ronaldo> ?property ?value .

}

LIMIT 100

Figure 31 – Sample query to retrieve all property values of a given entity

As depicted in Figure 32 the obtained results show 100 (because it is limited by the user) of

the Cristiano Ronaldo properties and its values (e.g. his full name is Cristiano Ronaldo dos

Santos Aveiro).

5.4 Constraints Specification

51

Figure 32 – “Cristiano Ronaldo” information

5.4 Constraints Specification

The Constraints Specification component makes use of an interpretation function mapping

the range of a given property to a set of logical operators supported by the SPARQL endpoint

of the repository. However, this functionality is not fully implemented yet as it only supports a

set of pre-defined operators and only verifies if the user input is valid to the chosen operator.

The most common values of a given property are determined through a set of parameterized

SPARQL queries against the repository. These queries might take into consideration the

intended context on which the property is being used. Accordingly, two different pre-

configured queries had been created. One does not take into account the context while the

other does.

In the sequence of Example 8, using the CQB tool the user should be able to ask for the

common values of the property “position” that is an attribute of the “SoccerPlayer” entity.

Figure 33 shows the generated query.

5 Development

52

select distinct ?value(count(?value) as ?rank)

where

{

?a <http://dbpedia.org/property/position> ?value .

?a a <http://dbpedia.org/ontology/SoccerPlayer> .

}

GROUP BY ?value

ORDER BY DESC (?rank)

LIMIT 20

Figure 33 – Sample context-aware query for retrieve common property values

Moreover, Figure 34 displays the obtained results using the CQB tool GUI.

Figure 34 – “Soccer Player”’s “position” common property values

However, if no domain class was provided, the generated query (cf. Figure 35) and the results

(cf. Figure 36) would be different.

select distinct ?value(count(?value) as ?rank)

where

{

?a <http://dbpedia.org/property/position> ?value .

}

GROUP BY ?value

ORDER BY DESC (?rank)

LIMIT 20

Figure 35 – Sample query for retrieve common property values

5.5 Query Building

53

Figure 36 – “position” common property values

Thus, this is a scenario where the context exploitation clearly benefits/improves the quality of

the output. It also reveals that the property "position" is used in more than one

context/domain classes.

Finally, the user may create the constraint as depicted in Figure 37 (cf. Example 9).

Figure 37 – Constraint creation example

5.5 Query Building

The Query Building component is implemented following a straightforward translation

approach of a connected graph to a text representing a query in SPARQL.

Following the Example 10, the user is now able to properly formulate the desired question in

order to query the repository and therefore properly answer Sample Question 1. Figure 38,

shows the GUI panel that allows the creation of the questions using the CQB tool GUI.

5 Development

54

Figure 38 – Query Building Panel

The panel is divided in three main components. Selected Entities allows the user to insert new

entities that s/he is interested in. Moreover, the constraints creation is divided in two

components: (i) Entity Relations allow the restriction of the results based on relations

between ontological entities (e.g. SoccerPlayer:clubs SoccerClub) while (ii) Entity Constraints

allows the creation of constraints based on the values of the (data) properties (e.g.

SoccerClub:capacity > 40000).

When the user presses the “Execute” button, the system dynamically creates a SPARQL query

that is used to query the DBPedia repository and shows the query results as depicted in Figure

39.

Figure 39 – Query results (i.e. the answer)

5.6 Contextualization

55

The full generated SPARQL query is shown in Figure 40.

Select *

{

?SoccerPlayer a <http://dbpedia.org/ontology/SoccerPlayer> .

?SoccerClub a <http://dbpedia.org/ontology/SoccerClub> .

?SoccerPlayer <http://dbpedia.org/property/clubs> ?SoccerClub .

?SoccerPlayer <http://dbpedia.org/property/position> ?position .

?SoccerClub <http://dbpedia.org/property/capacity> ?capacity .

FILTER (?position = "Goalkeeper"@en) .

FILTER(?capacity > 40000) .

}

LIMIT 1000

Figure 40 – Final SPARQL query

5.6 Contextualization

In order to implement the contextualization component, the adoption of some modularization

algorithms was envisaged. In this context, experiments with state-of-the-art modularization

algorithms in [Brandão, Maio, and Silva 2012b] highlighted the need of some improvements

to such algorithms. Accordingly, the contextualization component of the CQB prototype was

deployed making use of a newly developed module extraction algorithm.

Algorithm 1 describes the developed module extraction algorithm, which for a given ontology

 and a set of user’s selected entities called seed signature , it extracts a

contextualized module such that . For that, the input signature () is first

expanded through the Algorithm 2. The result is a new and expanded signature . Next, it is

extracted from the ontology all the local axioms () related with the entities mentioned in

the expanded signature. For that, it is used the syntactic local axiom extraction algorithm

available in the OWL-API [OWL API 2009]. Moreover, for each ontological entity in the

algorithm extracts all the corresponding referencing axioms () using the

ReferencingAxioms function from the OWL API and adds them to the final set of axioms .

Finally, the resulting module is returned.

Algorithm 1. Module Extraction

Require: An ontology and a signature

Ensure: A (contextualized) module is provided.

1: = ()

2: = ()

3: for all do

4: = ()

5:

6: end for

7:

8: return

5 Development

56

Algorithm 2 expands the input signature () by adding other entities that are related to

the entities in the input signature. The result is an expanded signature . To

determine the entities that are related with an entity of the input signature it is adopted four

distinct behaviors which depend on the entity type. The function receives an entity as

input and returns the type of that entity. The different behaviors of the algorithm depend on

the entity type and are described as follows:

 if the entity () in the signature is a class, the algorithm starts by adding all it’s the sub-
classes () to the expanded signature () and then it adds all the direct
(only one level above) super-classes ();

 if the entity is an object property, all its domains () and ranges
() are added to the signature ;

 if the entity is a data property, the algorithm adds all its domains to ;

 if the entity is an individual, the algorithm adds all its types () to the
signature and then the types of the related individuals (e.g. individuals that are
related by object property assertions) – by the – function are
also added to .

Algorithm 2. Signature Expansion

Require: An ontology and a seed signature

Optional: An reasoner

Ensure: An expanded signature is provided.

1: for all do
2:
3: if Class

4: ()

5: ()
6: end if

7: if Object Property

8: ()

9: ()

10: end if

11: if Data Property

12: ()

13:

14: end if

15: if Individual

16: ()
17: ()

18: for all do

19: ()

20: end for

21: end if

22: end for

23: return

57

6 Evaluation

This chapter briefly describes the experimental efforts made to evaluate the envisaged

solution. For that, a user study was conducted with the developed CQP prototype aiming:

(i) To evaluate the proposal in terms of usage in real case scenarios;

(ii) To compare with the results obtained in the preliminary experiments with the state-of-

the-art approaches (cf. Chapter 3).

The remainder of this chapter is organized as follows:

 First, the design of the experiments is explained;

 Second, the experimentation results are described;

 Third, observations taken from the experiments are reported;

 Fourth, a comparison with the results obtained in the preliminary experiments is
presented;

 Fifth, some conclusions are taken based on the experimentation results and a
comparison with the preliminary experiments is performed.

6.1 Set-up

This section describes the experiment with the CQB tool as follows:

 First, the questions of the experiment are defined;

 Second, the study participants and the CQB tool are described;

 Third, the evaluation procedure is presented;.

6.1.1 Questions

The experimentation design is similar to the one described in the preliminary experiments (cf.

section 3.1) thus allowing the comparison of the achieved results by different tools.

6 Evaluation

58

Accordingly, the user study consisted in answering four different (complex) questions using

the CQB prototype. These questions were similar to the questions in the preliminary

experiments, however the questions parameters where modified (cf. Table 14). For instance,

in the first question of the preliminary experiments it was asked the population number of the

Las Vegas city while in this experiment it is asked the population number of the city of Los

Angeles. Accordingly, while the question is the same, the parameters, in this case the city,

changes thus maintaining the same difficulty of the questions. Therefore, as in the preliminary

experiments, the difficulty level of the question increases according to the number of the

question. It was also ensured that the given questions could be answered using the CQB tool.

Table 14 – Questions description

No. Question Time
limit

1 Which is the population of Los Angeles (United States of America city)? 3

2 Name twenty (20) cities with a population less than one hundred (100)
inhabitants.

7

3 Name fifteen (15) persons whose birth place and death place was Houston
(United States of America city).

10

4 Name ten (10) persons whose birth place and death place was Houston
(United States of America city) and that were born after 1st January of 1920.

10

6.1.2 Participant and Tools

The same five users selected in the preliminary experiments (cf. section 3.1.2) were selected

for testing the CQB tool.

The study participants were advised to disregard previous knowledge as much as possible.

Finally, the users were asked to answer the questions individually.

As in the preliminary experiments where the tools were tweaked to access the DBPedia

repository also the CQB tool was parameterized in order to access the DBPedia SPARQL

Endpoint. Moreover, due to the characteristics of the DBPedia ontology (e.g. domain and

ranges of most properties are not explicitly defined) it was decided not to use the

Contextualization component in this evaluation.

6.1.3 Procedure

Accordingly, a similar procedure as the one described in the preliminary experiments was

conducted.

Once again, the time limit for answering all the questions was 30 minutes. However, if a study

participant was not able to answer a question within a certain time (as depicted in Table 14)

6.2 Results

59

the user was advised to advance to the next question. Still, the user could answer the previous

questions at any time.

Further, the experiments occurred in a lab so that the team could witness the efforts and the

adopted approaches. No further restrictions were made.

In the end, the users were asked to answer a questionnaire. This questionnaire was similar to

the one given in the preliminary experiments. On the one hand, the questionnaire served to

compare the proposal with the state-of-the-art. On the other hand, the questionnaire served

to evaluate the users’ feedback on the usefulness, and usability of the proposal but also their

intention to use such approach.

6.2 Results

This section demonstrates the obtained results in the CQB trial as follows:

 First, the answers to the questions in the experiment are detailed;

 Second, the answers on the questionnaire are analyzed.

6.2.1 Answers

As in the preliminary experiments (cf. section 3.2) the answers were evaluated according to

two different dimensions:

(i) A Boolean evaluation (true or false) on if the users were able or not to answer a

question;

(ii) The evaluation, in percentile, of the correctness of the given answers (i.e. measure the

quality of the answers).

Table 15 demonstrates the analysis on the answered () and not answered () questions.

Table 15 – Answered and not answered questions.

 Question 1 Question 2 Question 3 Question 4

User 1    

User 2    

User 3    

User 4    

User 5    

As can be observed, all questions have been answered by all users. However, users not always

correctly answered the questions. In fact, one of the users did not give a completely correct

6 Evaluation

60

answer to the fourth question. The other users correctly answered every question. Table 16

depicts the correctness of the answers provided by the users for each question.

Table 16 – Percentile of correct resources retrieved in each question.

 Question 1 Question 2 Question 3 Question 4

User 1 100% 100% 100% 60%

User 2 100% 100% 100% 100%

User 3 100% 100% 100% 100%

User 4 100% 100% 100% 100%

User 5 100% 100% 100% 100%

Figure 41 depicts the percentile of the overall correctness of the given answers grouped by

question.

Figure 41 – Percentile of correct answers (grouped by question)

Moreover, Table 17 depicts the time spent by users to answer all the questions. According to

it, most proficient users had finished the trial approximately 20 minutes earlier. Additionally,

even the other users ended some time before the end of the time.

Table 17 – Time spent to answer all the questions.

User Time (min)

User 1 10

User 2 10

User 3 15

User 4 20

User 5 22

0

20

40

60

80

100

Question 1 Question 2 Question 3 Question 4

% of correct answers

6.3 Observations

61

6.2.2 Questionnaire

Results obtained from the questionnaire are described next.

The first question of the questionnaire asked the users if the CQB tool helped them to

improve their performance while answering complex questions in comparison with any other

systems. All users answered that the CQB tool effectively improved their performance while

answering the proposed questions. Moreover, although it was needed some time to get

confortable with the tool, it was easier to understand than the Virtuoso SPARQL Query Editor

thus being better for non-SPARQL proficient users.

Further, the users said that the tool was easier to use. However, all stated that the supplied

GUI could be improved in order to be more “user-friendly” and improve usability.

Furthermore, the questionnaire questioned the users about the encountered problems while

answering the questions. Users that were not familiar with the concept of ontology had some

difficulty while perceiving the differences between the ontological entities types (e.g. classes,

object properties) and their role in the search/query.

Further on, most of the users stated that they were fully satisfied with the returned results.

Also, all the users stated that they would use this tool for question answering. Accordingly,

users stated that the more increased the question’ complexity the more the CQB tool seemed

appropriate.

Moreover, when asked about any other tool they know that was better than the CQB tool for

question answering none of the users proposed a different tool.

Finally, all users provided suggestions for improve the CQB’ GUI. Accordingly, some users

expressed that may be beneficial to join some of the existing tabs in order to simplify the GUI.

Moreover, the edition of created constraints should be provided.

6.3 Observations

During the trial, the team observed how the users dealt with the CQB tool and how they

managed to answer the questions. In this way, it was possible:

(i) To see what were the most significant problems that users encountered while using

the tool;

(ii) To identify which functionalities the users used more often;

(iii) To verify how the users answered the questions (e.g. which information did they

found).

6 Evaluation

62

While observing, the team perceived that users needed some time to understand how the

tool work and how they should use the functionalities. Accordingly, they took some time to

answer the first questions. However, after being familiar with the tool, users quickly answered

the remainder questions. For instance, if one question was a refinement of a previously

answered question (e.g. question 4 refines question 3), the users answered this new question

very quickly. Moreover, when accustomed with the tool, non-proficient users’ performance

was close to the one of proficient users.

Moreover, surveyors noticed that users reached their answers by different paths. Accordingly,

users correctly answered the questions although giving different answers. This is mainly due

to the dynamic nature of the repository schema and the lack of maintenance over the

repository knowledge thus allowing different representations of the same information. For

instance, several relationships exist between “SoccerPlayer” and “SoccerClub” entities for

representing the same information (e.g. “teams”, “clubs”, “club”). Additionally, when users

did not find the wanted answers in a certain way, rapidly changed their search to try different

ways thus highlighting the preponderant role of the user in the search task. Further, it

emphasizes the iterative, incremental, and interactive properties of the proposal.

6.4 Analysis and Discussion

Comparing the results obtained from the CQB trial with the results obtained in the preliminary

experiments it is possible to state that the proposal produced better results as shown in

Figure 42. This figure depicts the number of given answers for each question in the

preliminary experiments and in the proposal evaluation. On the one hand, it is visible that all

users answered all questions using the CQB tool. On the other hand, it is shown that users did

not give all the answers while using the State-of-the-Art tools.

Figure 42 – Comparison on the number of given questions

Moreover, the results show that users answer the questions more correctly while using the

CQB tool. Figure 43 depicts the overall correctness of the given answers (in percentile) for

each question in the two trials. On the one hand, it is clear that the users were able to

0

1

2

3

4

5

Question 1 Question 2 Question 3 Question 4

N
o

. o
f

u
se

rs

State-of-the-Art

CQB

6.4 Analysis and Discussion

63

correctly answer the proposed questions using the CQB tool. On the other hand, the

correctness of the answers using the State-of-the-Art tools is much lower.

Figure 43 – Overall correctness of the given answers for each question

Therefore, it is possible to conclude that the CQB tool improves the information and search

tasks by allowing users to find the necessary information to query the repository. Moreover,

the CQB tool allows the creation of formal queries in a transparent way that correctly answers

the proposed questions more effectively than the other tools.

Furthermore, for answering simple questions, both the CQB tool and Wikipedia Search

achieve good results (e.g. the first question). However, the CQB tool lowers the probability of

users making errors (cf. Figure 43). Nevertheless, when answering complex questions, users

achieve better results with the CQB tool.

Additionally, it was visible that the CQB tool also boosts the users’ performance while

answering complex questions in two dimensions:

(i) The users give more complete and correct answers;

(ii) The users answer the questions in less time.

Yet, it was noticed that users needed some time to adapt to the CQB tool. Accordingly, it was

evident that the other tools were easier to understand then the CQB tool. Still, after being

comfortable with the tool, the users did not have any troubles when handling it. However, the

users expressed concerns about the supplied GUI. For instance, users complained about the

high number of tabs (seven). Accordingly, users suggested the aggregation of some similar

functionalities provided in different tabs in only one tab. Moreover, it was suggested to hide

the complexity over the ontology-related terms (e.g. classes, properties, individuals). In this

respect, it is worth to recall that the GUI component was not the aim of this work (as

previously stated). Accordingly, the GUI was barely developed to foster the evaluation of the

proposed API. In this sense, it was expected that users would submit complaints about the

supplied GUI.

0%

20%

40%

60%

80%

100%

Question 1 Question 2 Question 3 Question 4

C
o

rr
e

ct
n

e
ss

 o
f

th
e

 g
iv

e
n

an

sw
e

rs

State-of-the-Art

CQB

6 Evaluation

64

6.5 Concluding Remarks

The results obtained in the performed trial shows that the CQB tool performs well while

answering complex questions enabling the users to fully and correctly answer the proposed

questions. Accordingly, the most surprisingly result of the experiment is that all users were

able to answer the proposed questions only using the CQB tool. In this sense, it is evident that

although the Contextualization component was not used the results were satisfying. However,

it is intended to improve the Contextualization component in order to adapt to the different

repositories ontologies' characteristics thus enhancing the developed prototype.

Finally, based on the experimentation results, it is possible to conclude that that:

 The more the users are proficient with a search approach (traditional text-based
search vs. ontology-based search), the fast they answer the questions and less
intellectual effort they put on the task;

 The time spent to answer a question with the CQB system decreased in the later
questions. This is even more relevant considering that these questions were not
simpler than the earlier questions.

65

7 Conclusion

The aims of this chapter are three-fold:

 First, the work achieved is succinctly described. Further, conclusions obtained from the
experiments performed with the proposed application and a comparison with state-of-
the-art is presented;

 Second, the thesis statement is validated;

 Third, it presents some ongoing and future work.

7.1 Summary

The work presented in this thesis aims to exceed the existing difficulties experienced by users

while answering complex questions. In that sense, a system for answering complex questions

based on knowledge stored in ontology-based repositories is proposed.

Preliminary experiments (cf. Chapter 3) on state-of-the-art applications (cf. section 2.3)

revealed that such applications do not perform well while answering complex questions. For

instance, users usually need to exploit several different applications in order to fully answer a

complex question. Moreover, such applications usually lack some fundamental features that

allows the user to perceive the repository’s underlying ontology/schema (e.g. retrieve the

common values of a given property). Accordingly, applications fail to bridge the gap between

the user interpretation over some question and how the information to answer such question

is captured in the repository. This experiment also revealed that only SPARQL proficient users

were able to fully and correctly answer complex questions. However, even those might

benefit from some mechanisms that allow them to search and navigate through the

repository’s ontology in order to acknowledge it and therefore be able to formulate the

desired SPARQL queries. Accordingly, it was concluded that non-proficient users were not

capable of answering complex questions. Moreover, although being capable of answering

complex questions, proficient users had some difficulties in understanding the underlying

ontologies.

7 Conclusion

66

Consequently, and according to the preliminary experiments, it was visible that users may

benefit from some basic features that help them answer complex questions. For that reason,

a proposal that relies on an API with six high-level components was proposed to provide a set

of functionalities that allows one to navigate iteratively, incrementally and interactively

through the repository knowledge base thus enabling the user to understand its data and the

underlying schema (cf. Chapter 4). Finally, it provides the suitable mechanisms to properly

formulate a formal query in order to query the repository and retrieve the results. This

proposal was further prototyped (cf. Chapter 5).

The experiments with the CQB prototype (cf. Chapter 6) showed that the proposal effectively

helps users answering complex questions. Accordingly, the experimentation results show that

the CQB system boosts the users’ performance while answering complex questions such that:

(i) The users answered all the proposed questions;

(ii) The users give more complete and correct answers;

(iii) The users answer the questions in less time.

Moreover, it was evident that users were able to easily, efficiently and effectively navigate

through the repository using the CQB tool thereby building a vision on the repository’s

underlying schema. In this sense, it was also noticeable that the CQB tool allows users to find

the necessary information to query the repository and create formal queries in a transparent

way that correctly answers the proposed questions more successfully than the other tools. In

this context, similar to the related work approaches, the proposal also emphasizes the user

role in the search, browsing and navigation process. However, users were more satisfied with

the control that they had using the CQB tool. In this respect, it is necessary to emphasize that

users with the same expertise may achieve different solutions for the same complex question.

Even though, some solutions might be better than others.

Further, the more the users are proficient with a search approach (text-based search vs.

ontology-based search), the fast they answer the questions and less intellectual effort they

put on the task. Observations showed that the time spent to answer a question with the CQB

system decreased in the latter questions despite these questions were not simpler than the

earlier ones. Moreover, users expressed their sympathy for the CQB approach, while

answering the questions faster with this system. However, now and then the system returned

an overwhelming number of results thus adding complexity to the search task which

emphasizes the need of the contextualization component. Therefore, this issue is requiring

our current and future attention.

Another identified major issue concerns the GUI module. In fact the users expressed concerns

about the supplied GUI, suggesting the need to better track the results/iteration. In this

respect, the GUI must automatically adapt/change based on several factors such as (i) the

user proficiency, and (ii) the content’ complexity of the provided semantic context (e.g. shown

by means of a tree or a graph).

7.2 Thesis Validation

67

Additionally, the same experiments also revealed that users may benefit from the

contextualization process because it permits the system to make more accurate suggestions

and reduces the text-based search space.

7.2 Thesis Validation

Aligning the thesis statement with the proposed contributions, allows argument supporting

the validity of the thesis statement. This thesis advocates:

 “answering complex questions on semi-structured repositories is a task that ultimately
depends on the users”:

The proposed approach consists on a user centric process to help user answering complex

questions.

 “to foster the task accomplishment users’ supporting mechanisms are needed for
helping them searching, navigating and querying iteratively, incrementally and
interactively such semi-structured repositories”:

The proposed process allows users to iteratively, incrementally and interactively exploit a set

of functionalities that support them to find answers for complex questions.

 “in order to bridge the gap between the users’ conceptualization underlying the
question and the domain conceptualization expressed in the repository that is used to
answer such question”:

Opposed to the users’ conceptualization of the question, the proposed process enables users

envisioning how information is actually structured and stored in repositories. Thus, it bridges

the gap between different conceptualizations over the same domain. Yet, the proposed

system supports the translation of the set of requirements posed by the user during her/his

quest for information to a query language supported by the repository in order to properly

query it and then retrieve the expected answers. Finally, as the experiments demonstrated,

the proposed contributions allow users to improve their performance as well the obtained

results when comparing to similar state of-the-art tools.

Accordingly, even if future work is necessary in this subject (e.g. having a better GUI), the

proposed thesis is deemed valid.

7.3 Future Work

During the development of the prototype, some other ideas on how to help users in the

complex querying task emerged. Accordingly, it was envisaged the integration of orthogonal

ontological dimensions (e.g. time and space) during the information quest. In this sense, users

could properly question the system over such dimensions. However, to add this component,

some maintenance over the repository data should be performed. For instance, the

7 Conclusion

68

ontologies expressing the repository knowledge should be enriched with time and space

information. Moreover, the adoption of thesaurus in the Object Mapping component is being

studied in order to enhance the NLP techniques.

Furthermore, the most notable difference of this work to related work is the emphasis on

focusing on the relevant search space (the context) and, therefore, discarding irrelevant

information. According to this understanding, it was proposed the adoption and integration of

modularization techniques into tasks/functions such as object mapping, entity information,

relationship searcher and constraints specification. As a result, these functions become not

completely deterministic because they rely on the concept of “context” to scale down their

outcome. However, because of the characteristics of the DBPedia ontology, the obtained

results were not satisfactory and therefore this will continue to deserve our attention.

Accordingly, the developed module extraction algorithm should be improved and adapted to

different ontologies characteristics.

Finally, users’ feedback on the implemented prototype suggests the adoption of some new

functionality. Accordingly, a component responsible for providing some statistical information

that might help the users on their decisions and recommendations based on the users’ past

experiences are being studied. Moreover, in the near future, the GUI component should be

enhanced with some semantic information according to the context of the query. For instance,

the Contextualization component should provide an overview over the related entities to a

certain context (e.g. exploiting ontology summarization algorithms). In this sense, the

adoption of an iterative, incremental and interactive process as described in [Brandão, Maio,

and Silva 2012b] is being studied. Additionally, some other GUI features should be developed.

69

References

d’ Aquin, M., A. Schlicht, H. Stuckenschmidt, and M. Sabou. 2009. “Criteria and Evaluation for
Ontology Modularization Techniques.” In Modular Ontologies, ed. H. Stuckenschmidt,
C. Parent, and S. Spaccapietra, 5445:67–89. Springer Berlin Heidelberg.

Baader, F., D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider. 2007. The
description logic handbook. Cambridge university press.

Berners-Lee, T. 1989. Information management: A proposal.
Berners-Lee, T. 2008. Transcript: Sir Tim Berners-Lee Talks with Talis about the Semantic Web.

February. http://talis-podcasts.s3.amazonaws.com/twt20080207_TimBL.html.
Berners-Lee, T. 2009. Linked Data - Design Issues.

http://www.w3.org/DesignIssues/LinkedData.html.
Berners-Lee, T., and J. Hendler. 2001. Nature Debates: Scientific publishing on the “semantic

web.”.
Berners-Lee, T., J. Hendler, and O. Lassila. 2001. “The Semantic Web.” In Scientific American

(May): 29–37.
Bezerra, C., F. Freitas, J. Euzenat, A. Zimmermann, and G.I.D.A. Ireland. 2009. “An Approach

for Ontology Modularization.” In Modular Ontologies, ed. H. Stuckenschmidt, C.
Parent, and S. Spaccapietra, 5445:67–89. Springer Berlin Heidelberg.

Bishop, B., A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R. Velkov. 2011. “OWLIM: A
family of scalable semantic repositories.” In Semantic Web 2 (1): 33–42.

Bizer, C., T. Heath, and T. Berners-Lee. 2009. “Linked data-the story so far.” In International
Journal on Semantic Web and Information Systems (IJSWIS) 5 (3): 1–22.

Boag, S., D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. 2010. XQuery
1.0: An XML Query Language (Second Edition). XQuery 1.0: An XML Query Language
(Second Edition). W3C Recommendation. http://www.w3.org/TR/xquery/.

Borst, W.N. 1997. Construction of engineering ontologies for knowledge sharing and reuse.
Universiteit Twente.

Brandão, R., P. Maio, and N. Silva. 2012a. “Enhancing LOD Complex Query Building with
Context.” In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology (WI-IAT’12). Macau, China.

Brandão, R., P. Maio, and N. Silva. 2012b. “I3OM – An Iterative, Incremental and Interactive
Approach for Ontology Navigation based on Ontology Modularization”. In 4th
International Conference on Knowledge Engineering and Ontology Development.
Barcelona, Spain.

Brickley, D., and R. V. Guha. 2000. Resource Description Framework (RDF) Schema
Specification 1.0. Resource Description Framework (RDF) Schema Specification 1.0.
W3C Candidate Recommendation. March. http://www.w3.org/TR/2000/CR-rdf-
schema-20000327/.

Broekstra, J., A. Kampman, and F. Van Harmelen. 2002. “Sesame: A generic architecture for
storing and querying rdf and rdf schema”. In The Semantic Web—ISWC 2002
2342/2002. Lecture Notes in Computer Science: 54–68.

Chali, Y., S.R. Joty, and S.A. Hasan. 2009. “Complex question answering: unsupervised learning
approaches and experiments.” In Journal of Artificial Intelligence Research 35 (1): 1.

DBPedia. 2007. DBPedia. http://wiki.dbpedia.org.
Dzbor, M., E. Motta, C. Buil, J. Gomez, O. Görlitz, and H. Lewen. 2006. “Developing ontologies

in OWL: An observational study.” In OWL: Experiences and Directions.

70

Faceted Wikipedia Search. 2012. Faceted Wikipedia Search.
http://dbpedia.neofonie.de/browse/.

Fensel, D., J. Hendler, H. Lieberman, and W. Wahlster. 2003. Spinning the Semantic Web. MIT
Press.

Franconi, E., P. Guagliardo, and M. Trevisan. 2010. “An intelligent query interface based on
ontology navigation.” In Workshop on Visual Interfaces to the Social and Semantic
Web (VISSW2010). Vol. 10.

gFacet. 2012. gFacet - Visual Data Web. gFacet - Visual Data Web.
http://www.visualdataweb.org/gfacet.php.

Giunchiglia, F., U. Kharkevich, and I. Zaihrayeu. 2009. “Concept search.” In The Semantic Web:
Research and Applications 5554/2009. Lecture Notes in Computer Science: 429–444.

Goker, A., and J. Davies. 2009. Information retrieval: searching in the 21st century. Wiley.
Gruber, T.R. 1993. “A translation approach to portable ontology specifications.” In Knowledge

acquisition 5 (2): 199–220.
Gruber, T.R. 1995. “Toward principles for the design of ontologies used for knowledge sharing.”

In International journal of human computer studies 43 (5): 907–928.
Hahn, R., C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle, H. Düwiger, and U. Scheel.

2010. “Faceted Wikipedia Search.” In 13th International Conference on Business
Information Systems (BIS 2010), 47:1–11. Springer.

Hearst, M. 2006. “Design recommendations for hierarchical faceted search interfaces.” In
ACM SIGIR Workshop on Faceted Search, 1–5.

Heim, P., S. Lohmann, and T. Stegemann. 2010. “Interactive Relationship Discovery via the
Semantic Web.” In The Semantic Web: Research and Applications: 6088/2010. 303–
317.

Heim, P., J. Ziegler, and S. Lohmann. 2008. “gFacet: A Browser for the Web of Data.” In
Proceedings of the 7th Extended Semantic Web Conference (ESWC 2010), 417:49–58.

Heim, P., and J. Ziegler. 2011. “Faceted Visual Exploration of Semantic Data.” In Human
Aspects of Visualization, ed. Achim Ebert, Alan Dix, Nahum Gershon, and Margit Pohl,
6431/2011:58–75. Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Hepp, M., P. De Leenheer, and A. de Moor. 2007. Ontology management: Semantic Web,
Semantic Web Services, and Business Applications. Springer New York.

Hussain, S., and S.S.R. Abidi. 2010. “Extracting and merging contextualized ontology modules.”
In Modular Ontologies - Proceedings of the Fifth International Workshop (WoMO
2011), 25–40. IOS Press.

Kolomiyets, O., and M.F. Moens. 2011. “A survey on question answering technology from an
information retrieval perspective.” In Information Sciences 181 (24): 5412–5434.

Lassila, O., and R. R. Swick. 1999. Resource Description Framework (RDF): Model and Syntax
Specification. Resource Description Framework (RDF): Model and Syntax Specification.
W3C Recommendation. February. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

Li, N., E. Motta, and M. d’ Aquin. 2010. “Ontology summarization: an analysis and an
evaluation.” In International Workshop on Evaluation of Semantic Technologies
(IWEST’2008). Shangai, China, November 8.

Linked Data. 2012. Linked Data | Linked Data - Connect Distributed Data across the Web.
http://linkeddata.org/.

Lucene. 2012. Apache Lucene - Apache Lucene Core. http://lucene.apache.org/core/.
Microsoft-Corporation. 2008. Enterprise Search: For FAST Customers.

http://www.microsoft.com/enterprisesearch/en/us/fast-customer.aspx.
Morville, P., and J. Callender. 2010. Search patterns. O’Reilly Media, Inc.

71

Motta, E., P. Mulholland, S. Peroni, M. d’ Aquin, J. Gomez-Perez, V. Mendez, and F. Zablith.
2011. “A novel approach to visualizing and navigating ontologies.” In The Semantic
Web–ISWC 2011: 470–486.

Ong, C.S., M.Y. Day, K.T. Chen, and W.L. Hsu. 2008. “User-centered evaluation of question
answering systems.” In Proceedings of the IEEE International Conference on
Intelligence and Security Informatics (ISI’2008), 286–287. IEEE.

van Ossenbruggen, J., L. Hardman, and L. Rutledge. 2006. “Hypermedia and the semantic web:
a research agenda.” In Journal of Digital information 3 (1).

OWL API. 2009. OWL API. OWL API. http://owlapi.sourceforge.net/.
Parent, C., and S. Spaccapietra. 2009. “An Overview of Modularity.” In Modular Ontologies, ed.

H. Stuckenschmidt, C. Parent, and S. Spaccapietra, 5445:5–23. Springer Berlin
Heidelberg.

Prud’hommeaux, E., and A. Seaborne. 2008. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

RelFinder. 2012. RelFinder. http://www.visualdataweb.org/relfinder/relfinder.php.
Smith, M., C. Welty, and D. McGuinness (eds.). 2004. OWL Web Ontology Language Guide.

Recommendation. February 10. http://www.w3.org/TR/owl-guide/.
Stuckenschmidt, H., and M. Klein. 2004. “Structure-based partitioning of large concept

hierarchies.” In The Semantic Web–ISWC 2004 3298/2004: 289–303.
Stuckenschmidt, H., and A. Schlicht. 2009. “Structure-Based Partitioning of Large Ontologies.”

In Modular Ontologies, ed. H. Stuckenschmidt, C. Parent, and S. Spaccapietra,
5445:187–210. Springer Berlin Heidelberg.

Studer, R., V.R. Benjamins, and D. Fensel. 1998. “Knowledge engineering: principles and
methods.” In Data & knowledge engineering 25 (1): 161–197.

Teevan, J., S. Dumais, and Z. Gutt. 2008. “Challenges for supporting faceted search in large,
heterogeneous corpora like the Web.” In Proceedings of HCIR 2008: 6–8.

Tunkelang, D. 2009. “Faceted Search.” In Synthesis Lectures on Information Concepts, Retrieval,
and Services 1 (1) (January): 1–80.

Del Vescovo, C., B. Parsia, U. Sattler, and T. Schneider. 2011. “The modular structure of an
ontology: atomic decomposition.” In Modular Ontologies - Proceedings of the Fifth
International Workshop (WoMO 2011). IOS Press.

Virtuoso SPARQL Query Editor. 2012. Virtuoso SPARQL Query Editor.
http://dbpedia.org/sparql.

Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer. 2006. “Semantic Wikipedia”. In
European Semantic Web Conference 2006, 585–594. ACM.

W3C. 2007. Semantic Web, and Other Technologies to Watch: January 2007 (24).
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24).

W3C. 2012a. World Wide Web Consortium (W3C). http://www.w3.org/.
W3C. 2012b. Rule Interchange Format (RIF) Current Status - W3C.

http://www.w3.org/standards/techs/rif#w3c_all.
Warren, P. 2006. “Knowledge management and the semantic web: From scenario to

technology.” In Intelligent Systems, IEEE 21 (1): 53–59.
Watson. 2012. Watson Semantic Web Search. http://kmi-web05.open.ac.uk/WatsonWUI/.
Wikipedia. 2012. Wikipedia. http://www.wikipedia.org/.
Wolfram Alpha. 2012. Wolfram|Alpha: Computational Knowledge Engine.

http://www.wolframalpha.com/.
World Search. 2010. World Search.

http://www.microsoft.com/portugal/mldc/worldsearch/en/.

72

Yago2 spotlx. 2012. Yago 2 spotlx: A Core of Semantic Knowledge. https://d5gate.ag5.mpi-
sb.mpg.de/webyagospotlx/WebInterface.

Zhang, X., G. Cheng, W.Y. Ge, and Y.Z. Qu. 2009. “Summarizing vocabularies in the global
semantic web.” In Journal of Computer Science and Technology 24 (1): 165–174.

