

Departamento de Engenharia Informática

Instituto Superior de Engenharia Informática

Code offloading on Real-time
Multimedia Systems

A Framework for handling code mobility and code offloading in a QoS

Aware Environment

Guilherme Rios de Sousa e Silva

Dissertação para obtenção do grau de Mestre em

Engenharia Informática.

Área de Especialização em Sistemas Gráficos e Multimédia

Orientador

Professor Doutor Luís Lino Ferreira

Júri

Presidente: Professora Doutora Maria de Fátima Coutinho Rodrigues,Professora Coordenadora

no Departamento de Engenharia Informática do Instituto Superior de Engenharia do Porto

Vogais: Professor Doutor Filipe de Faria Pacheco Paulo, Professor Adjunto no Departamento de

Engenharia Informática do Instituto Superior de Engenharia do Porto

Professor Doutor Luis Miguel Moreira Lino Ferreira. Professor Adjunto no Departamento de

Engenharia Informática do Instituto Superior de Engenharia do Porto

Porto, Outubro de 2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47137737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Acknowledgments

It would not have been possible to write this thesis without the help and support of the people

around me, to only some of whom it is possible to give particular mention here.

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Luís Lino Ferreira

the continuous support of my MSc study and research, for his patience, motivation, enthusiasm,

and immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better supervisor and mentor for my MSc

dissertation.

I would also like to thank all the other people at CISTER Research Center that guided and

provided me with all the required resources during the course of this thesis. I want express my

deepest thanks to everybody whom I worked with in the writing of the published papers, with

special attention to Prof Luís Pinho, Prof. Luís Nogueira, Claudio Maia and Joel Gonçalves.

I am grateful to my professors and colleagues at ISEP for all their support, advises and

knowledge along the past six years from the begging of my licenciature to the end of my

masters degree.

Finally, I would like to thank all my family and friends for being there in the good and bad

times. I would like to specially thank my grandparents, my parents, my two brothers and sister

who have given me their unequivocal support throughout, as always, for which my mere

expression of thanks likewise does not suffice.

iv

v

Resumo Alargado

Actualmente, os smartphones e outros dispositivos móveis têm vindo a ser dotados com cada

vez maior poder computacional, sendo capazes de executar um vasto conjunto de aplicações

desde simples programas de para tirar notas até sofisticados programas de navegação. Porém,

mesmo com a evolução do seu hardware, os actuais dispositivos móveis ainda não possuem as

mesmas capacidades que os computadores de mesa ou portáteis.

Uma possível solução para este problema é distribuir a aplicação, executando partes dela no

dispositivo local e o resto em outros dispositivos ligados à rede. Adicionalmente, alguns tipos

de aplicações como aplicações multimédia, jogos electrónicos ou aplicações de ambiente

imersivos possuem requisitos em termos de Qualidade de Serviço, particularmente de tempo

real.

Ao longo desta tese é proposto um sistema de execução de código remota para sistemas

distribuídos com restrições de tempo-real. A arquitectura proposta adapta-se a sistemas que

necessitem de executar periodicamente e em paralelo mesmo conjunto de funções com garantias

de tempo real, mesmo desconhecendo os tempos de execução das referidas funções. A

plataforma proposta foi desenvolvida para sistemas móveis capazes de executar o Sistema

Operativo Android.

Palavras-chave: Mobilidade de Código, Execução remota de código, Jogos para telemóvel,

motores de Física. Sistemas Adaptativos, Sistema Operativo Android

vii

Abstract

Smartphones and other mobile devices are becoming more powerful and are capable of

executing several applications in a concurrent manner. Although the hardware capabilities of

mobile devices are increasing in an unprecedented way, they still do not possess the same

features and resources of a common desktop or laptop PC. A potential solution for this

limitation might be to distribute an application by running some of its parts locally while

running the remaining parts on other devices. Additionally, there are several types of

applications in domains such as multimedia, gaming or immersive environments that require

soft real-time constraints which have to be guaranteed.

In this work we are targeting highly dynamic distributed systems with Quality of Service (QoS)

constraints, where the traditional models of computation are not sufficient to handle the users’

or applications’ requests. Therefore, new models of computation are needed to overcome the

above limitations in order to satisfy the applications’ or users’ requirements.

Code offloading techniques allied with resource management seem very promising as each node

may use neighbour nodes to request for help in order to perform demanding computations that

cannot be done locally.

In this demanding context, a full-fledged framework was developed with the objective of

integrating code offloading techniques on top of a middleware framework that provides QoS

and real-time guarantees to the applications.

This paper describes the implementation of the above-mentioned framework in the Android

platform as well as a proof-of-concept application to demonstrate the most important concepts

of code offloading, QoS and real-time scheduling.

Keywords: Code Offloading, Code Mobility, Adaptative Systems, Mobile Games, Physics

Simulation, Android Operating System.

ix

Table of Contents

Acknowledgments .. iii

Resumo Alargado .. v

Abstract ... vii

Figure Index ... xiii

Table Index .. xv

Chapter 1. Overview ... 1

1.1 Introduction ... 1

1.1 The Smartphone market .. 2

1.2 Motivation ... 3

1.3 Real-time Code Offloading Solution Overview .. 4

1.4 Thesis Overview .. 5

Chapter 2. State of The Art ... 7

2.1 Introduction ... 7

2.2 Multimedia Applications ... 7

2.3 Mobile Gaming ... 8

2.3.1 Game Engines ... 9

2.3.2 Physics Engines ... 10

2.4 Real-time Systems ... 12

2.5 Mobile Code .. 12

2.6 Code Offloading .. 14

2.7 Mobile Operating Systems .. 16

2.7.1 iOs ... 16

2.7.2 Windows Phone ... 16

2.7.3 Android Platform ... 17

Chapter 3. Support Components ... 19

x

3.1 Introduction ... 19

3.2 MobFr (Mobile Framework) ... 20

3.3 CooperatES (Cooperative Embedded Systems) .. 22

3.4 Component interaction .. 23

3.5 Summary ... 24

Chapter 4. Code Offloading in Real-time Systems ... 25

4.1 Introduction ... 25

4.2 System Architecture .. 26

4.3 Real-time Offloading... 28

4.4 Code Offloading Algorithm .. 29

4.5 Timing Parameters .. 32

4.5.1 Predicting txMaxCap .. 32

4.5.2 Estimating tmob ... 33

4.5.3 Measuring tcore ... 34

4.6 Summary ... 34

Chapter 5. Framework Implementation .. 35

5.1 Introduction ... 35

5.2 Offloading Library Class Diagram .. 35

5.3 Application Implementation Overview ... 39

5.4 Summary ... 39

Chapter 6. Framework Demonstrator Implementation ... 41

6.1 Introduction ... 41

6.2 Application Overview ... 41

6.3 Game Engine ... 42

6.4 Physics Engine .. 43

6.5 Physics World Partition ... 44

6.6 Application Structure .. 46

6.7 Performance Optimization Techniques ... 47

6.7.1 Serialization ... 47

6.7.2 Linear Regression Optimization .. 49

6.7.3 General Code Optimization ... 49

6.8 Summary ... 49

Chapter 7. Tests and Results ... 51

7.1 Benchmark Tests Mobile Framework ... 51

7.1.1 APK Transfer and installation Test ... 51

7.1.2 Remote Intent Execution Test ... 52

xi

7.2 Benchmark Tests Offloading Library.. 53

7.2.1 Execution ... 54

7.2.2 Devices Execution ... 55

7.2.3 Data Transfer ... 56

7.2.4 Offloaing Framework Delay ... 56

Chapter 8. Conclusion and Future Work .. 59

8.1 Research Context and Objectives .. 59

8.2 Future Work .. 60

Papers and Technical Reports ... 61

Papers .. 61

TRs .. 61

Bibliography .. 63

xii

xiii

Figure Index

Figure 1. Performance Comparison .. 3

Figure 2. Physics Object Analysis... 4

Figure 3. Physics simulation with offloading .. 5

Figure 4. Game Engine Life Cycle .. 10

Figure 5. Android Software Stack ... 18

Figure 6 - MobFr Architecture .. 20

Figure 7. Mobile Library Class Diagram .. 21

Figure 8. CooperatES Architecture ... 22

Figure 9. Component Interaction .. 24

Figure 10. Offloading Structure .. 27

Figure 11. Offloading algorithm example ... 29

Figure 12. Real-time Offloading Sequence Diagram .. 32

Figure 13. Framework UML Model .. 38

Figure 14. Offloading Manager UML Diagram .. 38

Figure 15. Example application UML Diagram .. 39

Figure 16. Application Screen ... 42

Figure 17. Game Engine Class Diagram ... 42

Figure 18. Box2D Class Structure ... 44

Figure 19. Physics World Division ... 45

Figure 20. Application Class Diagram .. 46

Figure 21. Serialization Comparison ... 47

Figure 22. Deserialization Comparison ... 48

Figure 23. Device Comparison .. 48

Figure 24. Remote APK Transfer and Install Test Results ... 52

Figure 25. Execution results .. 53

Figure 26. Offloading Library Test Results .. 54

Figure 27. Execution Test Results ... 55

Figure 28. Total Execution Test Results ... 55

Figure 29. Data transfer Test Results .. 56

Figure 30. Pre Offload Test Results .. 57

xv

Table Index

Table 1. Physics Engines Comparison .. 43

Table 2 - Device Specification .. 51

xvi

1

Chapter 1. Overview

Smartphones and other Internet enabled devices are now common in our everyday

life, thus unsurprisingly a current trend is to adapt desktop PC applications to

execute on them. However, since most of these applications have Quality of

Service (QoS) requirements, their execution on resource-constrained mobile

devices presents several challenges. One solution to support more stringent

applications is to offload some of the applications’ services to neighbour devices

nearby. Therefore, in this thesis, we propose an adaptable offloading mechanism

which takes into account the QoS requirements of the application being executed

(particularly its real-time requirements), whilst allowing offloading services to

several neighbour nodes.

1.1 Introduction

Smartphones are nowadays an essential part of our lives, executing a multitude of applications,

connecting us to social networks, online games, or Internet calls. Some of these applications are

monolithic, only being able to execute locally on the device, while others are distributed, being

able to execute some parts locally and to execute (existing) services on other nodes in the

network. Such computing paradigm is nowadays supported by the availability of high

bandwidth networks. In the case of mobile devices the accessibility to high bandwidth wireless

networks is of particular importance.

Although the performance of mobile devices is increasing in an unprecedented way, they still do

not possess the same features and resources of a common desktop or laptop PC.

Nevertheless, a more dynamic and flexible solution to solve the performance gap, is to allow

mobile devices to dynamically offload some of the applications’ services to neighbour devices,

taking advantage of collaborative environments, such as at home or in the car, or of

infrastructures providing value-added services.

In comparison with more traditional distributed approaches, supported by “fat” network servers,

the offloading solution has the following advantages:

i) The code to execute is available in the client application;

2

ii) The nodes to which computations are offloaded are nearer, consequently

communications, usually, have less delays and better QoS levels;

iii) The changes required on the original code are usually less significant.

Several different types of solutions for code offloading have been provided, motivated by the

need to obtain access to additional resources, like memory, power or more computation

capabilities. Examples of code offloading frameworks are: Cuckoo (Kemp, Palmer, & Bal,

2010)and MAUI (Cuervo, et al., 2010).Other solutions adopt a more automatic approach, where

the offloading framework is able, by itself, to analyze the code and determine which

parts/classes can be offloaded, e.g. CloneCloud (Chun, et al, 2010). Furthermore, some of these

algorithms are adaptive, i.e. they are able to dynamically, in run-time, determine an adequate

application partitioning (Gu, Nahrstedt, et al., 2003)

Applications like multimedia, control applications, image processing and gaming, inherently

have real-time requirements associated with high computational demand. But none of the

frameworks discussed before is capable of handling the application’s real-time requirements;

they mostly provide a best effort solution. The adaptive solutions also present the additional

burden of calculating, in run-time, the application partitioning.

 It is in this context that in this paper we put forward a code offloading approach, allowing

applications to offload some of their services to neighbour nodes. The goal is to support

adaptable applications, which present variable QoS requirements.

1.1 The Smartphone market

Devices such as Apple iPhone, Google Android devices, Rim Blackberry phone and Windows

Phone 7 devices, as well Apple iPad are some examples of devices which have achieved high

commercial success. Studies show that in the third quarter of 2010, worldwide mobile phones

sales increased by 35% and smartphones’ sales increased by 96% in comparison with the

previous year (Egham, 2010). Meanwhile, mobile industry analysts estimate that tablets will

outsell netbooks by 2012 and “will constitute nearly a quarter of all PCs by 2015” (Cush, 2010).

This success and the interest from the general public allowed such embedded systems to start

appearing in other environments such as Vehicles and TVs (examples of this applications are

Ford Sync (Cunningham, 2009) and Google TV (Patel, 2010)).

The smartphone boom made that companies producing these devices started to release new

devices with better hardware in shorter periods of time, which caused the older smartphones,

even ones that entered the market less than 6 months became unfit to run newer applications.

This fact, accentuated the performance problem since the user does not want to buy a new

phone each time a more resource hungry application arrives to the market.

As the new smartphones entered the market, their mobile operating system also became more

the focus of the user’s attention. Operating systems such as Apple iOs, Android OS, Rim

BlackBerry OS, webOs, Windows Phone OS became an important factor decision of what

smartphone the user would buy. Of all the discussed operating systems, it’s important to

highlight the Android Operating System. Android is an open source operating system designed

for resource constrained devices, which has be chosen for this dissertation.

3

The Android OS development started in 2003 by a company named Danger which was later

purchased by Google and is now administrated by the Open Handset Alliance (Open Handset

Alliance).

1.2 Motivation

Although the performance of mobiles devices is increasing in an unprecedented way, they still

don’t possess the same features and resources as a common desktop or laptop system.

In order to illustrate how much faster a computer is when compared a smartphone, tests were

performed using a PC and two devices: one HTC Magic and one Samsung Galaxy S. The

computer is a Dell Pc with a 3GHz Intel Pentium 4 processor with 1 GB of RAM with Windows

XP Operating System while the HTC Magic has the default 258 MHz Snapdragon processor

with 512 MB of RAM, running Android 1.5 Operating System. The Samsung Galaxy S has the

default 1GHz ARM Cortex processor and 512 MB of RAM, and runs the Android 2.1 Operating

System.

The tests consisted in counting the number of milliseconds it would take for a device to

compute an iteration on an object movement simulation composed by 1000 box shaped objects

bouncing on screen. Figure 1 depicts the tests results. As it is possible to observe, the

smartphone’s performance is almost 0.3 % and 0.8 % of a PC, from early 2000s, in the case of

the HTC Magic and the Samsung Galaxy S, respectively.

In this test the PC is able to execute the physics simulation in an average of 96 ms while the

Samsung Galaxy S needs on average 11000 ms and the HTC Magic needs on average of 25000

ms.

Figure 1. Performance Comparison

The discrepancy between what the device is capable of and what the user expects from his/her

device led to the research and design of a framework capable of increasing its performance by

harvesting resources from neighbour devices.

Another test consisted in determining the time required to calculate an iteration on the same

physics’ simulation application as a function of the number of screen objects. These results are

an average of 100 runs, which have been performed on a HTC Magic Android device running a

258 MHz Snapdragon Processor with 512 MB RAM. Figure 2 clearly shows that the execution

time of each iteration increases with the number of objects.

4

Figure 2. Physics Object Analysis

As a consequence, any real-time visualization of the simulation results, using a frame rate of 30

frames per second (represented by the red line in Figure 2), would not be possible for more than

38 objects.

A solution to solve this performance gap is to offload some of the object computations to

neighbour nodes, as described in the following section.

1.3 Real-time Code Offloading Solution Overview

The solution proposed in this dissertation aims at creating an offloading architecture for highly

dynamic distributed systems with Quality of Service constraints, where traditional, single core,

models of computation are not sufficient to handle the users’ applications’ request. The target

applications range from flexible sensor and control applications to multimedia applications,

gaming applications and other applications which periodically run services with variable

execution time.

The offloading approach involves a constant monitoring of the time required to execute a

service, this service is hereafter called as core service, on the main device. Based on past

execution times of the core service, the offloading algorithm predicts the future ones. If the

algorithm determines that the required execution rate cannot be maintained, then the offloading

procedure is triggered in advance, in order to minimize the occurrence of timing errors.

Therefore, it is possible to timely offload some of the services to neighbour nodes and execute

them there without reducing the rate or the supported quality.

When it is not advantageous to continue executing the offloaded services in other nodes,

migration can once again take place, and these services can return to be totally executed on the

original device.

If these principles were applied to the real-time physics simulation described in Section 1.3,

then it would be possible to offload some of the computations of the core service, in this case

the piece of code which calculates the trajectories of objects, to other nodes available in the

network. Figure 3 illustrates the expected behaviour if a real-time offloading solution is applied.

5

Figure 3. Physics simulation with offloading

The proposed solution would be able to prevent crossing the maximum admissible core

execution time, therefore being able to maintain the frame rate of the real-time visualization of

the simulation results. Details on the algorithm are discussed in Chapter 4.

The solution proposed in this document requires the support from additional framework(s) that

are able to handle operations such as detecting neighbour devices, performing code migration,

and managing the available resources in all the devices. Therefore, this work is build upon

previous works at CISTER Research Centre the MobFr (Gonçalves, Ferreira, & Silva, 2010)

and CooperatES (Nogueira & Pinho, 2009) frameworks.

The MobFr framework is responsible for code mobility, which enables the dynamic offloading

of the core service to neighbour devices. Additionally, it also supports the seamless

communication between neighbour devices and the main device. The CooperatES framework

handles resource reservation and allocation on the overall system, including CPU and network

resources. Since both are components of structural importance to the framework, they are

described in detail in Section 3.

1.4 Thesis Overview

This thesis is divided in 9 Chapters. Chapter 2 introduces the state of the art in the context of

this dissertation. Then Chapter 3 gives an in-depth view of components required to support the

framework proposed in this thesis. Chapter 4 discusses the main theoretical details of the

proposed code offloading framework for real-time systems, whose implementation is described

in detail in Chapter 5. Chapter 6 discusses a proof-of-concept application which validates the

proposed framework, then Chapter 7 analyses the results of the proof-of-concept application.

Chapter 8 draws some conclusions about this thesis.

7

Chapter 2. State of The Art

This thesis presents a code offloading solution designed to increase the

performance of applications that run services periodically with variable execution

time in resource constrained devices. Examples of these applications range from

flexible sensor and control applications to multimedia applications, gaming

applications.

2.1 Introduction

This thesis has as the core the research and documentation of guidelines to increase the

performance of mobile applications, more precisely mobile multimedia applications, using

offloading techniques. This means that it covers two specific areas of computer science,

multimedia applications, more precisely, mobile games and mobile code execution.

Both areas seem to be the subject of a great number of scientific papers. Multimedia

applications are used in a large range of different areas such as education, network architectures,

3D graphics, performance optimized game engines and many other areas where the target user

is not positioned in a fixed location. Mobile code execution is used different areas of research

such as using mobile code to extend battery life, increase performance, in monitor mobile agents

through the network and other.

That said, although both topics seems different, it’s actually very common to find nowadays

multimedia when researching for code offloading papers. That is interesting because both

concepts are not new, if fact some argue that their first appearance date more than 30 years old,

and yet only recently they have being seen in together in scientific researches. The combination

of both concepts has generated very important papers which are analyzed in the next sections.

2.2 Multimedia Applications

The term multimedia application is used to identify a large group of different applications,

which may be very different from one to another. Some of these applications include movie

players, audio players, electronic games, virtual worlds, video streaming applications, and

others.

Multimedia applications are resource driven applications whose execution is continuous over

time. Multimedia applications, especially mobile multimedia applications, take advantage of the

heterogeneous environment where they are being executed. For example, a smartphone

application can use both the cellular network such as CDMA or Wireless LAN when wanting to

retrieve a video from a remote server in a wired network.

8

According to the authors of (Bolliger & Gross, 1998), network-aware applications have two

basic aspects:

 They must have the ability to monitor or get information from the network monitors

about the current status of the underlying network (network awareness).

 They must be able to adjust their behaviour based on the collected information (network

adaption)

The interconnectivity of different networks makes pervasive computing an exciting reality, but

it also poses many challenges for application developers. In any application transparent to

network changes, its data is generated and transmitted at a fixed rate and there can be only two

results:

 The quality of the data is reduced so that even a client with low bandwidth access can

receive data with little delay.

 The data is received in high quality so that the clients with high bandwidth access

experience satisfactory levels of performance.

The solution relies on the application being able to adapt to changes in the network. This

requirement is even more critical to mobile multimedia applications, because the multimedia

content, such as audio and videos higher peak bandwidth as illustrated by the framework of

(Krikellis, 2000). If an application does not change the data quality to be delivered according to

the network changes, a huge amount of multimedia data send from a wired network will

encounter unbearable delay or error when transmitting in a wireless network with limited

bandwidth (Kim & Jamalipour, 2001).

2.3 Mobile Gaming

Mobile gaming refers to the area in computer science that studies electronic games running on

mobile devices. Mobile games development began in the first stages of the mobile devices with

the appearance of the first cell phone (Schilling, 2011). During their first generation these games

used to be very basic without any composed graphics or any other feature users now take for

granted. As the time passed, these games started to became each time more similar to the ones

on desktop computers or gaming consoles.

Since their appearance many scientists have used them, not only as a proof of concept for their

research but also as well the base of their works (Cuervo, Balasubramanian, & Cho, 2010).

The most researched topics in mobile gaming include education, 3D graphics, its use in peer to

peer networks, game engine implementation and others.

Yang and Zhang (Yang & Zhang, 2010) analyze the challenges that mobile games running on

lower power devices have to face, the design of different optimization techniques capable of

increasing their performance and the implementation of a mobile game, more specifically a

billiard game that takes advantages of those techniques. The techniques presented in the paper

are divided in two categories: Collision Detection Optimization and System Optimization.

The Collision Detection Optimization techniques promote speed over accuracy and uses

octree-based multi-level collision detection and dynamic multi-resolution grid subdivision to

reduce the number of objects to be calculated. By using this technique, the authors conclude that

9

the overall performance of the physics calculation is decreased and the complexity of the

collision algorithm is reduced to .

The System Optimization techniques consist in three methods: Rendering Optimization; by

buffering the data in a local buffer and writing directly to the video buffer rather than using the

SDK rendering callbacks; Computation Optimization; by promoting the use of fixed-point

function over software implemented floating point ones; and Language Optimization

techniques; by programming directly in assembly language rather than using compiled

languages.

Xin (Xin, 2009) analyzes the different mobiles games and creates taxonomy in order to group

them in different types, proposing the following types:

 Embedded Games: Games that are programmed to run natively on the phone chipset

usually installed by the phone’s manufacture.

 Messaging Games: Games that are played by exchanging messages with the server.

The player can send the messages in SMS format, which are processed by the server.

 Browser Games: Games are played by submitting the data to the server and the results

are viewed in web browser.

 Interpreted Language Games: Games that are executed in a virtual machine. These

types of games tend to be the most abundant ones and are generally distributed through

a digital store.

 Compiled Language Games: Games that are executed in native machine code.

Games can be classified in two categories: Real-time games and turn based games.

The term Real Time Games refers to electronic games whose action is continuous throughout

the game. Some examples include car racing and sport simulation games.

The opposite of real time games is turn based games, where the game action moves forward by

the player’s input. Some examples include Chess and Card based games.

2.3.1 Game Engines

A game is an electronic application that runs a set of instruction repeatedly, in a pre-defined

interval of time. The life cycle of the game is managed by the game engine.

Game engines manage the game life cycle using a state machine algorithm based on four states:

Initialize, Update, Draw and Finalize. Figure 4 shows the four states of a game engine and how

they interact.

10

Figure 4. Game Engine Life Cycle

The Initialize method is called at the beginning of the game and allows the game to prepare.

This includes instantiate variables, load content from the hard drive to memory, set the desired

frame rate and connect to the any required services.

The Update and Draw methods are called repeatedly, not necessarily in sequence, but multiple

times per second, according to the frame rate defined in the initialization phase.

The Update method is responsible for all the game’s logic. That involves retrieving the user’s

input, calculating the game’s physics, playing audio, managing the game screens, updating the

artificial intelligence among other tasks.

The Draw method is responsible for all the rendering calls to the graphics API. These calls

include drawing primitives, textures and applying rendering effects. The rendering API is

responsible for the interface between the software and the graphics device. In the most visual

appealing games and most 3D games, the rendering is not executed completely in the Central

Processing Unit but rather executed cooperatively with the Graphics Processing Unit and

Central Processing Unit.

The Finalize Method is called after the game is over and is used to dispose the instantiated

variables and unload the content from memory.

In most professional video games, game engines are assisted by other engines such as physics

engines, which calculate object movement and collision.

2.3.2 Physics Engines

Fiedler (Fiedler, 2006) describes physics engines as computer software capable of simulating

the interaction of geometric objects in a confined space, denominated, physics world. Physics

engines are used in a vast array of different areas, and they can be classified in many different

ways, such as by type of physics system, geometry or precision.

The physics system is the way the shape of a body is affected when it collides with another

body. This can be rigid body dynamics if the shape of the body does not chance when it

collides, soft body dynamics if the shape of the body is deformed by the collision or it can be

fluid dynamics if the shape of the object depends on the bodies colliding with it.

The geometry is the dimensional system supported by the physics engine, more precisely, 2D or

3D, depending on the geometry model of the objects the physics world contains.

11

Finally, the precision refers to the accuracy of the physics. There are two types of precision:

high precision and real-time. High precision physics engines (or dynamic simulations) require

more processing power to calculate very precise physics whereas real-time physics engines use

simplified algorithms that increase the performance but lower the accuracy of the results.

For example, movies use high precision physics engines which focus on creating realistic scenes

while video games and scientific simulations use real-time physics engines that focus on

performance.

Independent on the type of physics engine, all physics engines possess two core mechanisms:

collision Detection and Collision Response.

The Collision Detection mechanism calculates if an object overlays another. This method

varies depending on the object shape, that is, calculating the collision between two circles is

different from calculating the collision between a square and a triangle.

The Collision Response mechanism calculates what happens when two bodies collide. In the

most accurate physics engines, Newton laws are used to calculate result.

The physics calculations are divided in steps.

The first step is to calculate the new position for each body in the world. The new position is

calculated using the object’s current position, velocity and direction.

The second step is to apply collision detection methods to detect if any object is colliding with

another.

The third step is to apply collision result methods to calculate the new direction and velocity of

all bodies colliding.

The final step is to calculate the new positions of all the colliding objects based on the values

from step 3.

Physics engines are developed and analyzed in different fields ranging from physicians trying to

validate their theories to semiconductor companies trying to execute hardware-accelerated

physics engines. One example of a research company is Havok; an Irish software company

specialized in the development of the Havok physics engine. Recently Intel purchased the

company and its intellectual proprieties in order to compete with Nvidia’s PhysX.

Chabukswar and Lake (Chabukswar & Lake, 2005) document the use of a multi-threaded

environment to increase the performance of a physics simulation game. The work specifies the

implementation of a game engine where the rendering code and the physics simulation code are

executed in two separated threads.

The main objective of the work is to demonstrate that it is possible to increase the performance

of the physics calculations by executing them in different threads in parallel while the

application is performing all the rendering instructions. The author promotes the use of different

threads to perform different tasks based on the fact that future processor architectures are

moving to multiple cores.

12

The results state that executing the scenario in a single thread, the processor requires 99-100%

of its resources while executing in different threads results in the processor requiring 15% of its

resources for the rendering and 85% of the resources.

The Authors state that separating different tasks in threads has the advantage of distributing the

load by all the cores of the processor and proposing that way as a standard for future multi core

application design.

2.4 Real-time Systems

A real-time system is a system which its correctness depends not only on the results it provides,

but also on the time instance at which the results are produces (Stankovic, 1996).

In real-time systems, the notion of time is relative, as the response time requirements may vary

from application to application, but a late action might cause an expected behaviour that could

lead to a system failure. For instance, in an air control system, if a task does not actuate at the

time in which it is expected, it may cause the air plane to lose control and in the worst case

scenario even crash. Other examples where real-time systems are fundamental include nuclear

power plants systems, medical applications and intelligent vehicle highway systems.

The time instant at which is expected to provide its results is denominated deadline. Therefore,

the task’s deadline is the maximum time allows for a task to complete its execution. The term

task refers to a unit of work that is schedulable and then executed. Schedulable means that it can

be assigned to the processor unit in a particular order to be executed, i.e. when the selected time

slot becomes available.

Not all real-time tasks may cause critical failure. For instance, in a multimedia system, if the

system fails to present to display a certain amount of frames belonging to a movie at requested

frame rate, due to a task missing a deadline, the user might notice it. Although the scenrario

does not induce catastrophic consequences, the dead line miss may clearly cause performance

degradation which may affect the user’s perception of the movie.

In order to distinguish the above system, the consequences of a deadline miss are used for

classification proposes, thus is a real-time task missing causes performance degradation, without

jeopardizing system behaviour, that task is considered a soft real-time task. In the other hand if

a task missing a deadline may cause catastrophic consequences, the task is considered hard real-

time task.

Incidentally, the solution present in this thesis is not appropriate for Hard Real-Time System, as

it cannot guarantee the deadline for all operations.

2.5 Mobile Code

Code mobility is a paradigm of computer science in which a computer program running on a

certain device executes part of its code remotely in another device connected through a network.

Code mobility is a fertile research field that through the last 20 years has generated and

continues to generate a growing body of scientific literature and industrial development. Many

authors have different definition of code mobility, such as:

13

“Paradigm in which computing resources such as processing, memory, and storage are not

physically present at the user´s location.”

(Kumar & Lu, 2010)

“The capability to reconfigure dynamically, at runtime, the binding between the software

components of the application and their physical location within a computer network.”

(Carzaniga, Picco, & Vigna, 1997)

Mobile devices have limited battery and wireless bandwidth. Remote code execution can

provide energy savings. Several studies have identified longer battery lifetime as most desired

feature in smartphones. In 2005, a study from users around the world found longer battery life

to be more important feature in smartphones that camera or storage (Various, 2005), while

Change wave research revealed short battery life to be the most disliked characteristic in IPhone

3GS (Radwanick, 2011).

Code mobility is one of many ways to increase battery life in mobile devices. Many researchers

have described these techniques. The authors of (Kumar & Lu, 2010) have described four

different approaches to save energy and extend battery lifetime in mobile devices:

i) Adopt a new generation of semiconductor technology;

ii) Avoid wasting energy through implementing standby or sleep mode in the whole

system and in individual components;

iii) Execute program slower;

iv) Perform the computation in the cloud.

Fuggetta, Pietro and Vigna (Fuggetta, Pietro, & Vigna, 1998) divide Mobile code techniques in

four different paradigms. The author uses the term host to refer the network node where the

application is running, server to refer to a neighbour node, know-how to refer the instructions of

the service and resources as the data used by the service.

In the client-server paradigm, the server offers a set of services. That node has all the resources

and know-how need for the service execution. When the application running on host device

needs to execute a service, it interacts with the server which prompts it to execute the service

and return the results.

In the Remote Evaluation paradigm, the host node has the know-how necessary to perform the

service, but lack resources required which are located in a server. In this paradigm the node that

wants to execute the service sends the know-how, which is executed in the remote node and

then return to original one.

In Code on Demand paradigm, the node that wants to execute the service has the resources it

requires, but not the know-how. In this paradigm that node has to request the know-how from a

server, which is then be used to execute the service.

In the Mobile Agent paradigm, the host node has the know-how, but lacks resources, which are

located in a server. This triggers the migration of the application from its original node to the

server. This paradigm differs from the Client-Server because instead of sending the data and

receive the results, the hole application migrates to the server and is executed there.

14

Sommer (Sommer, 2010) proposes an offloading system for sensor networks. The system is

based on mechanisms which are capable of handling service migration and service updates.

Code migration can be triggered by the user or by a monitoring agent. The system uses two

components, a Migration Facility and a Migration Coordinator. The Migration Coordinator

is responsible for coordinating the migration according to network and the application needs. It

has an in-depth knowledge of the application service’s requirements, and the data paths of the

network. The Migration Coordinator only allows the migration if all the requirements are

fulfilled. The Migration Facility is present on the device where the application is being

executed and the network devices. In the device where the application is being executed, the

network facility is responsible for checking if the required service is available and if it

implements all the requirements. The network facility in the network node is responsible for the

state and service migration.

2.6 Code Offloading

It’s important not to confuse code mobility with code offloading. In Code Offloading, the code

that is going to be executed in the remote server can already be installed prior to the application

start.

Several different solutions for code offloading have been provided, motivated by the need to

obtain access to additional resources, like memory, power or more computation capabilities.

Some of these solutions rely on the user to determine which parts of the code to offload; for

instance, Cuckoo (Kemp, Palmer, & Bal, 2010), which provides an offloading environment for

Android-based systems using the available inter-process communication mechanisms, or MAUI

(Cuervo, Balasubramanian, & Cho, 2010), where the user is responsible for the annotation of

the methods which can be executed remotely, being power savings the main objective.

Other solutions adopt a more automatic approach, where the offloading framework is able, by

itself, to analyze the code and determine which parts/classes can be offloaded. That is the case

of CloneCloud (Chun & Maniatis, 2010) which permits the execution, in the cloud, of the

application in an almost exact virtual machine. Furthermore, some of these algorithms are

adaptive, i.e. they are able to dynamically, in run-time, determine an adequate application

partitioning ((Gu, Nahrstedt, Messer, Greenberg, & Milojicic, 2003) and (Xian, Lu, & Li,

2007)). Code offloading also usually relies on libraries or frameworks that support the mobility

of code or services. For instance, the work presented in (Sommer, 2010) describes several

service migration scenarios for embedded networks.

The authors of (Xian, Lu, & Li, 2007) propose a solution for adaptive offloading systems in

Java. The system focus on two components: a Distributed Offloading Platform and an

Offloading Interference Engine. The Distributed Offloading Platform is responsible for

monitoring the application, managing the resources, deciding the application partition and

supporting Remote-Procedure-Call (RPC) between virtual machines. The Offloading

Interference Engine has two decision making modules to address the problems of triggering

offloading and selecting the partition The triggering offload module decides based on resource

consumption, resource availability in the pervasive computing environment and by using Fuzzy

Control Model (Li & Nahrstedt, 1999). Based on the output, the system decides if the

application continues as is, needs to start offloading or needs to stop offloading. The module

responsible for selecting the application partitioning selects it from a group of candidates

partition plans generated by the offloading platform. Additionally the user can specify multiple

15

offloading requirements such as minimizing the wireless bandwidth overhead or minimizing

average response time stretch or minimizing total execution time.

Spectra, a remote execution system of resource constrained systems, described in (Flinn, Park,

& Satyanarayann, 2002), dynamically decides how and where to offload computation,

depending on the application resource usage and availability in the environment. Spectra

regularly monitors the CPU, the network and the battery and bases its decision on three goals:

Performance, Energy Consumption and Quality. In cases where there is a conflict between the

goals, spectra increases priority of the one that best fits the current execution.

Scavenger (Kristensen & Bouvin, 2010), a computation offloading system designed to allow

easy development of mobile code offloading applications, delivers efficient use of remote

computing resources through the use of a custom built mobile code execution environment and

an adaptive dual-profiling scheduler. The scheduler uses history-based profiling and selects the

tasks based on several factors: network capabilities, data locality device strength, task

complexity. Tests made to the system report that it can greatly increase the performance of the

application (even on small tasks) and the system can provide energy savings in the applications.

The solution proposed in (Cuervo, Balasubramanian, & Cho, 2010) presents MAUI, a system

that enables fine-grained energy aware offloading of mobile code to the cloud through virtual

machine virtualization. MAUI was developed as an alternative code offloading solution, that

rather than heavily relying on the programmer, perform a full virtualization of the process or

perform the virtualization of the virtual machine, uses the advantages of the .NET framework to

perform the code offloading without the least possible burden from the developer.

MAUI is required to address some challenges in order to be partitioned across multiple

machines, such as:

 MAUI must distinguish which methods are going to be executed remotely and which

are going to be execute locally;

 MAUI must automatically identify and migrate the necessary program state from the

running program on one machine to another;

 MAUI must, based on the current environment, dynamically select whether to run a

method locally or remotely;

 MAUI must detect and tolerate possible failures in the system without having any

critical consequence to the original program.

Like the framework presented in this thesis, MAUI decides dynamically during the runtime of

the application which parts of the code should be executed locally and which parts of the code

should be offloaded to the infrastructure. One of the main differences between the proposed

Real-time Offloading Framework and MAUI is that MAUI objective is to achieve the maximum

energy savings possible unlike the Real-time Offloading Framework whose objective is to

offload the parts of the code the framework considers that it doesn’t possess enough resources to

execute locally. Another difference is that MAUI is integrated with the .NET where the

proposed solution is implemented as middleware. This was chosen because as middleware, can

be easily extended and ported to different application with causing much effort to the developer.

During compilation time, the framework generates two proxies: one that runs on the smartphone

and other that runs on the dedicated server. These proxies automatically execute the code

remotely or locally depending on the decision made by a component named MAUI Solver. This

16

component decides if the code should be performed locally or remotely based on the input it

receives from a resource management component. Whenever the MAUI Solver decides to

offload code, the proxies handle all the control and data transfer operations.

Nimmagadda (Nimmagadda Y. K., 2010) describes a system capable of increasing the

performance of real time systems for computation-intensive tasks in resource constrained

robots. The system is designed as an alternative to the existing systems were the computation is

executed exclusively on the robot or in specialized servers. The system based on different

independent modules each responsible for a different task. Some of the modules can only be

executed on the robot and other can be executed in either the robot or externally. The offloading

decision is based on two factors: the resources available and the communication involved

between the modules and the offloading.

Although the majority of studies promote the idea of using code offloading in a WAN

environment, it’s also relevant to discuss the possibilities of using code offloading in a LAN

environment. While WAN covers a significantly larger area, LANs have proved to be

significantly faster, more secure, less expensive and more flexible than WANs.

2.7 Mobile Operating Systems

In recent years, mobile Operating Systems have become a target of public and media attention

(Adams, 2011). Unlike desktop OSs, mobile OSs run in resource constrained devices, where

resource management is a priority.

Of the present Mobile operating systems, the ones that stand out are Apple iOs, Google

Android, Rim Blackberry, HP WebOs, Nokia Symbian and the recent Microsoft Windows

Phone.

2.7.1 iOs

The iOs is Apple’s mobile operating system. iOs is used in Apple’s iPhone, iPod touch and iPad

and Apple TV. Apple reported iOs being based on Mac OS X which uses the Darwin

foundation, a Unix-like OS.

iOs application development uses the Xcode integrated development environment using the iOs

SDK. The programming language promoted by apple is the Objective-C although recently many

third party companies have developed alternative solutions such as Adobe Flash/ActionScript,

Unity using C# or JavaScript, and Unreal Engine using C++.

The iOs possesses some limitations when it comes to application development that limits the

development of research work, such as: I) the operating system does not allow multiple

applications to run in the same device as in normal desktops, II) the iOs is not an open source

OS , and III) Apple does not allow alterations to OS source code.

2.7.2 Windows Phone

Windows phone is the operating system used in Windows Phone 7 devices. This operating

system was developed by Microsoft as the successor of the Windows mobile platform.

17

Windows Phone 7 was announces in February 2010 in the World Mobile Conference 2010 and

launched in October of the same year.

Windows Phone stands out from other mobiles due to its simplified user interface codenamed

Metro previously used by Microsoft on the Zune media player devices.

Windows phone application development uses the Visual Studio IDE and can be done using

either Silverlight or XNA frameworks. Silverlight is a rich interface based application

framework which uses Microsoft XAML language for the interface and the control specification

uses C# or Visual Basic as the programming language. XNA is a framework designed to

facilitate video game development using C#. The XNA framework is built on top of the DirectX

API and allows easy multiplatform development between Windows, XBOX 360 and Windows

phone.

The use of Windows Phone OS has the same limitations as the iOs when it comes to the ability

to be used for research.

2.7.3 Android Platform

The Android is an operating system designed for smartphones and other low-power mobile

devices whose development is administrated by the Open Handset Alliance (Open Handset

Alliance), a group of 80 Organizations whose objective is to create open standards for mobile

devices.

The architecture of the real time offloading framework present in this document is developed for

mobile devices with the android operating system. The Android Operating System was chosen

based on other factors such as:

 Android allows complete application multitasking.

 Android is easily extendible/extensible.

 Android application development uses a familiar programming language (Java and

C++).

 Android is well documented and there are large amount resources available online.

 Android has a large user base.

 Cister was already using Android for other projects.

The Android Software stack (What is Android?, 2009) is structured in 4 layers and several

modules, as shown in Figure 4. These layers can be organized in two groups. The static

unchangeable part that all mobile devices are required to have and a changeable part whose

device manufactures can remove, change and alter features. The unchangeable part, the system

image, is composed by the Linux Kernel layer, the Libraries and Android Runtime Layer

and the Application Framework Layer. The changeable part is composed by the Applications

layer.

18

Figure 5. Android Software Stack

The bottom layer is the Linux Kernel. The kernel is responsible for memory and process

management. One of the main advantages of using the Linux Kernel is that it has a wide

community support and allows easily adding device drivers for specific hardware components.

The second layer is composed by two parts, the Libraries and Android Runtime. The

Libraries are a collection of resources that can be used by any application to access the

hardware or other services. These include the OpenGL API, SQLite libraries, among others. The

Android Runtime is composed by the core components of the system such as the Core

Libraries and Dalvik Virtual Machine. Unlike the Java Virtual Machine, the Dalvik Virtual

Machine is register-based process virtual machine designed for mobile devices and other

resource constrained devices.

The third layer is the Application Framework layer. This layer is composed by a collection of

libraries that facilitate application development. These libraries provide the interface between

the application and the underlying system resources and classes that improve the compatibility

of the application in different Android devices.

The last layer is the Applications Layer and holds all the applications installed in the device.

This application can be home application, contacts manager application, Internet browser,

games, and email application among others.

19

Chapter 3. Support Components

Code offloading techniques rely on the mechanisms to determine which nodes are

available on the network to perform code mobility operations and to communicate

with those nodes. The first mechanism can be supported by the CooperatES

framework which is described in section 3.2. Both the second and the third

mechanisms are supported by the MobFr framework, which enables code migration

and controls communication between distributed nodes (section 3.3). To

contextualize the chapters we start by discussing the general architecture of the

offloading framework.

3.1 Introduction

In order to an application to offload its computation, the application must implement

mechanisms that: I) Monitor the available neighbour nodes and their resources, II) Remote code

migration and execution and III) Communication between network nodes.

Those mechanisms are provided by two supporting frameworks, a code mobility framework –

MobFr - and a real-time cooperative framework - CooperatES.

MobFr is responsible for the code mobility operations such as transferring and installing

services from a device to another, executing them, and the communication between devices.

MobFr is composed by two parts: a set of modules which are responsible for the code mobility

operations that run on the device background, and a library which is used by applications to

communicate with those services.

CooperatES handles the resource and network management operations such as detecting new

devices on the network, grouping the network nodes and monitoring their available resources.

CooperatES is composed by three modules, two of which are implemented in the operating

system kernel and are responsible for managing the available network devices and the system

resources; and another module which groups network nodes and determines the best candidate

to offload code based on the resources required by the service implemented in the Android

Runtime.

MobFr is also the interface between application and the CooperatES framework, thus

simplifying the development of the solution proposed.

20

3.2 MobFr (Mobile Framework)

MobFr (Gonçalves et al., 2010), or Mobile Framework, is a software platform designed to

increase the performance of applications in resource constrained devices by allowing them to

scavenge resources thought service migration to available neighbour nodes and by supporting

interconnection between nodes.

MobFr is composed by two parts: a set of modules which run in the device background,

responsible for code mobility and a library that serves as the interface between the modules and

the application.

Figure 6 depicts the components of MobFr: the Application which runs on the users’ device, the

service which runs on the neighbour nodes and the mobile services and the modules which run

in the background of all devices.

Figure 6 - MobFr Architecture

The Discovery Manager module discovers neighbour devices on a local network, advertise the

host’s resource availability and gathers information about the resource availability in the other

network nodes. These functionalities can be used by interacting with other Discovery Manager

components on the network or using any service provided by the system.

The Package Manager module transfers, installs and uninstalls services. This module also

specifies the resources a node requires to compute the service which can be used to identify the

best neighbour candidate.

The Execution Manager module allows executing services in neighbour nodes through the

exchange of Android Intents, thus allowing the development of transparent applications (regard

it to its distribution).

MobFr provides a library, referred as Mobile Library that allows any application to

communicate with the Mobile Services. Each Service has an interface class. The classes

StandardDiscoveryManager, StandardackageManager and

StandardExecutionManager classes handle the Discovery Manager, Package Manager,

and Execution Manager modules, respectably.

The Mobile Library also is designed to automate the process of code offloading. It achieves that

by providing the MobileActivity and MobileService abstract classes which are an

21

extension of the Android Activity and Android Service classes, respectively, and are designed to

abstract the developer from the inherent distribution of the services, thus reducing the effort

involved in porting standard applications to the new paradigm.

android.context

org.cister.mobilelibrary

org.cister.mobilelibrary.implementations

Context

Activity MobileContext Service

IMobileService

DiscoveryManagerConnection

PackageManagerConnection

DiscoveryServiceAbstraction

MobileServiceAbstraction

ConnectionServiceAbstraction

ISynchEvent

StandardDiscoveryManager ReliableConnection StandardPackageManager StandardExecutionManager

ExecutionManagerConnection

PackageManagerAbstraction

ExecutionManagerAbstraction

Figure 7. Mobile Library Class Diagram

The IMobileService class extends is the Android Context, which provides a well defined

interface with the other classes. All these classes are abstract, therefore, developers can use the

standard implementations provided in the Mobile Library.

This library also helps programmers to organize and develop service-based applications by

provident already implementations of the required service interfaces. The implementations are

contained in the org.cister.MobileLibrary.Implementations package, which

can be used by the programmer. Otherwise the developer can extend the base classes to

construct new implementations.

The MobFr is design to handle QoS requirements of the application, but its enforcement is a

task of other components residing on the operating System.

22

3.3 CooperatES (Cooperative Embedded Systems)

The CooperatES (Nogueira & Pinho, 2009) is a framework that enables services to be executed

in a distributed cooperative environment. This framework allows resource constrained devices

to collectively execute services with their more powerful neighbours, meeting non-function

requirements that otherwise would not be met by an individual execution. This framework is

capable of managing nodes and grouping them into coalitions, allocate resources to each new

service and establish an initial Service Level Agreement (SLA).

The CooperatES framework is based on the concept of resource management. When a device

estimates that it does not possess enough resources to compute a set of instructions in a certain

period of time, it reserves the required amount of resources on other neighbour devices. This has

some challenges such as timing requirements which are unknown until runtime, making

accurate optimization more difficult. Those challenges are overcame by making these new real-

time systems adaptable to the environment, thus capable of reacting to changes in the operating

conditions by acting on the applications’ and system’s parameters.

CooperatES is composed by three main modules: QoS Provider, System Manager and

Resource Manager as shown in Figure 6.

Figure 8. CooperatES Architecture

The System Manager is a module implemented in the Linux Kernel and is responsible for the

connection interface that is able to detect which nodes are available and which are willing to

participate in a new coalition.

The Resource Manager module is implemented in the kernel layer and is responsible for

monitoring the available resources such as memory, CPU, network, disk, etc.

The QoS provider is a module implemented in the Android Runtime and is responsible for

deciding whether to form a coalition of cooperative devices, or not. The decision is based on the

data from the Resource Manager and the System Manager. In order for a device to be eligible

to form coagulation, it has to be willing to do so and has to prove that it has enough resources.

The CooperatES Framework specifies the QoS requirements as group of parameters that are

used by the system for adaptation proposes. These parameters, also called QoS Dimensions, are

23

related to a single aspect of the service quality or attribute which are associated to a value. This

specification is structured as:

 (1)

Where Dim is the set of QoS dimensions, Attr is the set of attributes of one or more dimensions,

Val is the set of attribute’s values, DAr is the set of relationships between dimensions and

attributes, AVr is the set of relations between attributes and values and Deps is the set of

dependencies between attributes.

Video Streaming applications are a good example of applications that can take advantage of

CooperatES. In such applications, the domain could be specified shown in Listing 1.

Listing 1 - Example Application Domain

1. Dim = {Video Quality, Audio Quality}

2. Attr = {compression index, color depth, frame size, frame

rate, sampling rate, sample bits}

3. Val = {1, integer, discrete}, {3, integer, discrete}, …, {

[1,30], integer, continuous, …}

4. DA Video Quality = {image quality, color depth, frame size,

frame rate}

5. DA Audio Quality = {sampling rate, sample bits}

6. AV compression index = {[0, 100]}

7. AV frame rate (per second) = {[1, 30]}

8. AV sampling rate (kHz) = {8, 11, 32, 44, 88}

9. AV sample bits (bits) = {4, 8, 16, 24}

This domain when specified in an application, enables users and service providers to reach an

agreement on service provisioning; and the system to map dimensions to resources and perform

quality trade-offs.

In each service the range of QoS preferences is provided by the user and can range from the

desired QoS level to the maximum tolerable service degradation, independently of the service

internals. It is important to note that the system tries to map specified levels in resource

allocation in a decoupled manner (the QoS is not specified in terms of resource usage)

according to the input QoS dimensions.

It is important to highlight that the CooperatES framework is not used in the development of the

proof of concept application. Instead, the MobFr will use its resources to best monitor the

network devices and their resources. For that reason, the final application is not capable of

having absolute guarantees on its real-time behaviour.

3.4 Component interaction

MobFr also serves as the interface with between the Real-time Offloading Framework and

CooperatES, thus it encapsulates CooperatES functions in order to be easily accessed by the

framework. Figure 8 shows the interactions between the MobFr and the CooperatES.

24

Figure 9. Component Interaction

The Package Manager sends data to the QoS Provider when it needs to consult the Services’

Application Domain.

The Discovery Manager communicates with the System Manager in order to monitor the

available neighbour devices. This includes managing when a new device enters or leaves the

network or the list of the available devices.

The Discovery Manager provides a method GetDevice() which returns the best offloading

candidate chosen by the QoS Provider. This method is used by any application or library that

wants to get the best offloading candidate to start offloading.

3.5 Summary

This chapter introduces the components that support the Real-Time Offloading framework, the

code mobile framework, MobFr and the real-time cooperative framework CooperatES.

MobFr supports the Real-time Offloading Framework by providing support for code mobility

operations and communication between devices.

CooperatES supports the Real-time Offloading Framework by providing resource and network

management operations such as determining the best candidate device to offload the code, the

amount of resources available in the device, and monitoring the available devices in the

network.

These components are completely transparent during the development of any application that

uses the Real-time Offload Framework, the only requisite for the developer is to specify the

resources required in the application domain.

The next chapter details the focus of this thesis, the design of the real-time code offloading

system.

25

Chapter 4. Code Offloading in Real-

time Systems

In this document we propose an adaptive code offloading framework for soft real-

time systems. The system uses the components detailed in Chapter 3 as support for

the code mobility and resource management. The framework is implemented as

software application middleware depicted in Section 4.2. The framework is capable

of deciding when to start offloading dynamically during the run time using a

mechanism detailed in Section 4.3.

4.1 Introduction

The code offloading techniques proposed by other authors support adaptable applications that

have variable QoS requirement, ranging from flexible sensor and control applications to

multimedia applications, gaming applications and other applications. Our proposal is adequate

for applications which periodically run services with variable execution time. In some aspects

the solution addresses a similar problem to that of load balancing in real-time distributed

systems (Lonnie, et al., 2000).

Although this dissertation uses a physics model for a game engine as a proof of concept, the

designed framework supports most of the generic requirements of real-time applications. These

engines usually run periodically, with a period that depends on an application specific rate, with

a set of Core Services related with 3D/2D object movement, collisions, rendering, etc. When the

size of data (number of simulated objects) is low, the mobile device handles all computations,

but when the number of data items, or the computation requirements increases, only local

execution may not be possible. In this case, instead of reducing the quality provided to the

application (e.g., by reducing the quality of some of its computation, for instance the accuracy

or simply by reducing the rate), the nearby nodes are sought to execute parts of the computation.

The offloading approach works by constantly monitoring the time required to execute the core

services (tcore). Based on a set of past tcore times, the algorithm predicts its evolution; if it

determines that the required rate cannot be achieved in the future, the offloading procedure is

triggered in advance, minimizing the occurrence of timing errors. Therefore, it is possible to

timely offload some of the core services to other nodes and executed there without reducing the

rate or the supported quality.

26

Complementary, when it is not advantageous to continue executing the offloaded services in

other nodes, migration can once again take place, and these services can return to be executed

on the device.

To our best knowledge, this proposal is the first framework which is able to integrate dynamic

real-time requirements into service offloading. The timing behaviour of the solutions proposed

in (Nimmagadda, 2010) and (Sommer, 2010) has not, yet, been studied, and additionally, the

application architecture proposed in (Sommer, 2010) is not generic thus not easy to adapt to

other types of applications.

4.2 System Architecture

The architecture of the proposed system relies on the MobFr and the CooperatES frameworks

(described in chapter 3), which are responsible for:

i) Detecting the neighbour devices;

ii) Determining the best candidate where to run the offloaded code, according to the QoS

requirements of the application and the available resources on the neighbour nodes;

iii) Migrating the code and initial state;

iv) Controlling remotely the code execution;

v) Handling the transfer of data between nodes.

Figure 11 presents the structure of the code offloading framework, showing in the lower part the

modules of the CooperatES framework, which manages the neighbour devices resources and

coalitions and the MobFr which is responsible for supporting code mobility. The core modules

provided by the MobFr framework are the Discovery Manager, Package Manager, and

Execution Manager. Additionally, the MobFr framework also relies on the CooperatES

framework for assuring that the QoS requirements of each module can be met.

The Real-time Offloading Framework is designed to simply the code offloading process,

allowing application that require code offloading to be easily developed.

27

Figure 10. Offloading Structure

The Offloadable Application is the user application and a regular android application that is

responsible for executing the Offloadable Service.

The Offloadable Service is the service whose code is distributed. This class inherits from an

abstract class from the Real-time Offloading Framework which provides all the abstract

methods the programmer needs to override. Since that class also inherits from the Android

Service class, no additional code is required when executed in the Surrogate Device.

The Offloadable Object is the data used by the Offloadable Service. When the offloading

library detects that the service needs to be executed remotely, these objects are distributed

among all the available devices.

It is the responsibility of the Offloading Manager to take care of the initial configuration,

monitoring the core execution times of the neighbour devices.

The Communication Manager takes care of communications between the main and neighbour

device which include sending, receiving and aggregating the configuration data and the objects.

This class also handles all the communication between the Real-Time Offloading Library and

the MobFr framework. The communication manager uses the components provided by the

mobile library to access the Services from the MobFr, the Discovery Manager, the Package

Manager and the Execution Manager.

The code mobility process is the responsibility of the MobFr modules: the Discover Manager

Service, The Package Manage Service and the Execution Manager Service.

The Discovery Manager Service is discovers neighbour devices on a local network, advertising

the host’s resource availability and gathering information about the resource availability on

28

neighbour devices. The Discovery Manager can use its functionalities or access the ones

provided by the underlying QoS framework, more specifically the System Manager

The Package Manager Service installs, uninstalls and transfers services. This module is also

responsible for the interaction with the underlying operating system QoS Manager, the QoS

Provider, in order to request specific QoS levels for the service being transferred.

The Execution Manager Service executes services on a neighbour node through the exchange

of Android intents.

The QoS Provider is responsible for managing the network device coalition. This component is

capable is also capable to determine the best candidate neigbour device to offload based on the

service’s application domain and data from the Resource Manager and System Manager.

The Resource Manager administers the system resources, either locally or in a distributed

environment. Consequently, this module can interact with Resource Manager in order to choose

the most appropriate nodes where to run the offloaded services.

The System Manager monitors the available devices in the network, thins includes detecting

when a new device enter or an old one leaves.

4.3 Real-time Offloading

The decision to offload code is performed dynamically in runtime and adapts to the current state

of the system. Therefore, the main device must determine when to start offloading the code,

when it needs additional resources and when to stop offloading. The framework decides when to

offload code depending on the data gathered from past executions, the information it has of its

neighbours, and the information of its surround environment, using a real-time offloading

algorithm.

The main objective of the real-time offloading algorithm is to dynamically adapt to the varying

execution times by offloading computation to neighbour nodes in a timely way. The term timely

refers to the notion that the user should not notice any disruption on the application behaviour.

To that purpose, the offloading algorithm tries to predict the forthcoming core execution times,

based on past execution times. Figure 10 illustrates the algorithm operation. The core services’

execution time on the main and neighbour device are represented by square and triangle marks,

respectively. The continuous line, without marks, shows the linear regression that best

approaches the evolution of tcore on the local device. The line is obtained by considering the 6

points, from 0 to 165 ms. The example assumes an application which is executing periodically

with a period of 1000/30 ms.

29

Figure 11. Offloading algorithm example

Based on the linear regression parameters, at 165 ms, it is possible to estimate the instant,

txMaxCap, at which the core execution time will exceed the maximum capacity of the original

device – tMaxCap, which for the case of Figure 2 occurs in the interval between 264 ms and 297

ms. Obviously, to fulfill the operating objective of the framework, no QoS disruption should

occur, consequently the code mobility operation, which precludes the offloading procedure,

should be completed prior to 264 ms.

The device must offload the code before the execution time reaches that threshold. If the time

required for code mobility is equal to then the offloading decision can be expresses as:

(2)

If this expression is true then the system should start the offloading procedure of its selected

services in parallel with its current operations at 165 ms. The floor and ceiling functions, used in

Eq. (2), normalize all results to multiples of Tp. Such as other approaches, such as (Kemp et al.,

2010) and (Cuervo et al., 2010) it is up to the programmer to determine, while developing, the

application services to be offloaded.

Figure 2 shows that prior to 299 ms the necessary code is transferred to a neighbour device,

consequently at 297 ms there is a noticeable reduction on the core execution time on the main

device, since the neighbour device enters into operation. In this example, there is only one

neighbour device, but, if required, the middleware can handle offloading to a group of devices.

Note that it is up to the programmer to determine how to parallelize the application code, while

the framework handles all run-time operations, guaranteeing that:

i) Each of the neighbour devices receives new data from the main device;

ii) Executes the calculation over that data and returns the results;

iii) After receiving all responses the coordinating device aggregates the responses from the

neighbour devices with its local calculations.

4.4 Code Offloading Algorithm

The offloading algorithm pseudo-code is shown in Listing 2. This algorithm assumes that the

application has a set of interface methods available which can be used by the underlying

offloading framework. Nevertheless, some methods are periodically called by the application

30

itself, such as the update method, which must be periodically executed by the application with

a periodicity of Tp. The update method starts by determining if the services had already been

offloaded to other neighbour devices (line 2). If the condition is true then it tests to determine if

an additional neighbour node is needed (lines 23– 31). That is done by testing if the execution

time on each device reaches the maximum execution capacity in that node using Eq. (2). The

requiresNewSurrogate invokes the method tryRebalance, an application dependent

method determines if it is possible to avoid adding a new device by rebalancing the load

between nodes. It is important to note that this capability has not been implemented nor studied

in detail.

Listing 2. Offloading Library Methods

1. Method update() {

2. If isOffloading()

3. If requiresNewSurrogate()

4. new Thread(addAdicionalDevices())

5. runOffloaded()

6. else {

7. if needsToStopOffloading() {

8. runLocally()

9. } else

10. runOffloaded()

11. }

12. }

13. else //if is not offloaded

14. If requiresNewSurrogate() {

15. new Thread(addAdicionalDevices())

16. runLocally()

17. } else

18. runLocally()

19. }

20. }

21. }

22. Method requiresNewSurrogate() {

23. Output result:bool – determines if a new neighbour node is

required.

24.

25. ForEach(dev in devices) {

26. If eq (1) is true

27. If !tryRebalance() Return true

28. Return False

29. }

30. }

31.

32. Thread addAdicionalDevice() {

33. newDev = DiscoveryManager.getDevice()

34. If (newDevice != null)

35. Devices.add(newDev)

36. OffloadCode(newDev)

31

37. Else

38. signalError()

39. }

If an additional neighbour device is needed then the addAdditionalDevice thread is

started (lines 33–40). This thread might require a few cycles to complete due to the time

consuming sequence of operations that it must execute when using the underlying code mobility

framework (Gonçalves et al., 2010). It starts by determining if there is a node, with available

resources in the neighbourhood (line 34), after it offloads the required code to it (line 37),

otherwise an error is signaled to the application. It is important to note that, once started, the

offloading process is not stopped, although the main node may choose not to execute offloaded

services.

The algorithm then runs the core services in offloaded mode (Listing 2). Basically, it starts by

partitioning the data to be computed by neighbour devices. This operation is done by an

application specific method and it can be adjusted on every cycle, e.g. for load balancing

proposes. Afterwards, the data is sent to neighbour devices, computed and the results are

returned, using the method sendData&Execute. The last step (line 8) is related to the

aggregation of results on the main node in order to compute the final results.

Listing 3. Method runOffloaded

1. Method runOffLoadded(offloadService)

2. Input offloadService: the code that can be executed in

offloading.

3. {

4. parts = offloadService.dataPartitioner()

5. sendData&Execute(devices, parts)

6. Result[0] = offloadService.runLocally(parts[0])

7. receiveData(devices, results)

8. offloadService.aggregateResults(results).

9. }

Listing 1 also accommodates the case when the main node is not offloading any computations

(lines 15 – 20). In this case, it determines if another neighbor device is needed, and, if needed, it

releases a thread that runs the method addAdditionalDevice to prepare the offloading of

code. Meanwhile, the code is executed locally. Another situation occurs when the load no

longer justifies the offloading procedure (tested in line 7 of Listing 1), but handling this run-

time adaptation is outside the scope of this dissertation.

For a better understanding of the offloading algorithm, Figure 9 depicts the sequence diagram of

its execution which more clearly shows the relation between the different actors:

OffloadableApplication, DeviceManager and the OffloadableService.

32

Figure 12. Real-time Offloading Sequence Diagram

4.5 Timing Parameters

The real-time offloading algorithm operations depend on several timing parameters. In this

section, we illustrate how to determine txMaxCap, tmob and how to measure the core execution time.

4.5.1 Predicting txMaxCap

To determine when to start the offloading procedure, Eq. (2) requires the knowledge of txMaxCap

time, the time at which an estimated value for the core execution time (tcore) reaches the

maximum capacity (tmaxCap).

33

txMaxCap can be calculated using any statistic regression approach such as linear regression,

exponential regression, polynomial regression. The choice of the best approach should have in

consideration that:

 The more precise it is, the more resources the calculations consume.

 Most mobile devices can only calculate float-point equations by software.

The solution we propose is to use linear regression to determine the line which best approaches

the evolution of the core execution times and determine when that line crosses the maximum

capacity line. Each point i of the estimation line is expressed by the formula t
’
core,i = m.t + b.

Where m, the line slop, is calculated by solving the following equation:

(3)

In this equation n is the number of past core execution times being considered. Parameter ti is

the time at which the core execution time (tcore,i) had been measured.

The setting of n has a big impact on the behaviour of the algorithm. If n is set to a small value

then the algorithm becomes more sensitive to rapid changes on the tcore value, otherwise the

algorithm is slower to react. Parameter b is calculated by solving the following equation:

(4)

After having calculated m and b it is possible to determine txMaxCap as follows:

(5)

Obviously, other regression algorithms could be used, like a polynomial regression, but the

computation power required would be much higher, although the results could potentially also

be more precise, particularly, when the variation of the core execution time does not follow a

linear rule. The main advantage is that the proposed algorithms can be executed with minimum

overhead in devices with limited computation capabilities.

4.5.2 Estimating tmob

Another value required to determine when to start offloading is the period of time that elapses

from the time when the offloading decision is taken until the new device is ready to start

executing the offloaded code – the code mobility time (tmob).

We support this calculation on the formulations proposed in (Ferreira L. , 2011), which can be

adapted to this specific case. Therefore, tmob can be calculated by:

 (6)

Where tconf is the time required to find a feasible system configuration, i.e. a neighbour node

where to offload the code. To obtain a system configuration the framework uses the

functionalities offered by the CooperatES framework. tcode is the time required to transmit the

offloaded code. Some configuration data can also be sent along with the code, which requires a

time of tist to be transmitted. Finally, the code must be installed on the neighbour node and

started, prior to be ready to start processing items sent from the source node, thus requiring a

time of tstart.

34

It is important to note that these timings are not worst-case timings, but they represent just

average values or any other kind of stochastic value.

4.5.3 Measuring tcore

An essential part of the estimation of the tmob is to measure the core execution time of all

neighbour nodes () and on the local node (). On the local node

this time is simply the execution time of method runLocally(). The measurement of the

core execution time on the neighbour nodes is performed at the source node, since it must also

take into account the communication delays, consequently:

(7)

Where represents the time required for the data to be sent from the source to the

destination node. Time is the execution at neighbour node s and is the time

required to transmit the response from the neighbour node back to the source node.

4.6 Summary

This chapter introduces the reader to the offloading mechanism used in the Real-time

Offloading Framework. The mechanism takes in account the QoS requirements of the

application being executed, whilst allowing offloading services to several neighbour nodes.

The offloading framework relies on an algorithm to predict the instance of time when the device

will not have enough resources uses a statistic regression approach based on the results from

past executions is used.

When the algorithm predicts that the device does not have enough resources in the near future,

the underlying components of the architecture, the MobFr and CooperatES framework, are

signaled in order to choose and prepare a neighbour device to start offloading.

The next chapter presents how the proposed computing model can be implemented in an

Android environment.

35

Chapter 5. Framework

Implementation

The Real-time Offloading Framework is implemented as middleware. The solution

simplifies the development of code offloading application by providing the all the

classes and methods the programmer has to override.

5.1 Introduction

Developing distributed applications is not a simple task (Vigna, 2004). The Real-time

Offloading Framework simplifies the process by providing a more dynamic and flexible

solution to solve the performance gap, and allows the mobile applications to dynamically

offload some of the applications’ services to neighbour nodes.

The Offloading library automates all the offloading process, leaving the programmer to specify

two components: the service that is executed using code offloading and the data used by the

service.

5.2 Offloading Library Class Diagram

The Real-time Code Offloading Framework is designed to allow easy development of

applications that uses code offloading. The programmer only specifies the core service and the

data used by it. The framework provides the OffloadableServiceAbstraction

abstract class for the service to extend (Figure 13). This class already implements some methods

which are the same for each application using Real-time Offloading Framework while leaving

others for the programmer to override. An application using the framework executes the service

through the method update() which decides based on the history of past executions and the

resource availability if the application requires additional resources, and if it is going to be

executed locally or offloaded. The runLocally() method executes the required instructions

and is defined by the programmer. The runOffloaded method is invoked when the core

service is execute using code offloading, as detailed in Figure 11 of Chapter 4. The core service

must also override the abstract methods required for data partitioning (dataPartitioner),

data aggregation (agregateData). The Method tryRebalance() is a method that the

programmer can override and is used by the framework as an attempt to avoid adding additional

resources.

Listing 4 details the runOffloaded method.

36

Listing 4 - runOffloaded Method

1. public void runOffloaded(float elapsedTime,

OffloadableObject[] offloadableObjects)

2. {

3. try {

4.

5. int numDevices =

_deviceManager.getNumAvaiableDevices.Lenght();

6.

7. ArrayList<OffloadableObjectsDevices> parts =

dataPartitioner(data, numDevices);

8.

9. _communicationManager.SendAndExecute(parts);

10.

11. OffloadableObjectAbstraction[] localData =

parts[0].offloadableObjects;

12. runLocally(elapsedTime, localData);

13.

14. ArrayList<OffloadableObjectsDevices> resultsTemp =

_communicationManager.buffer.getAll();

15.

16. ArrayList<OffloadableObjectsDevices> results = new

ArrayList<OffloadableObjectsDevices>();

17.

18. results.add(localData);

19. for(int i =0; i < resultsTemp.length; i++)

20. collections.add(collectionsTemp[i]);

21.

22. data = agregateData(results);

23.

24.

25. } catch (InterruptedException e) {

26. Constants.LogError("Error Getting the

offloadableObjectCollections from buffer");

27. }

28. _isOffloading=true;

29. }

The data is distributed using the method dataPartitioner() shown in line 7. This

method returns an array of OffloadableObjectsDevices objects which contain an array

of OffloadableObjectAbstraction objects and the identifier of the device which is

responsible for their execution. The first element of the OffloadableObjectsDevices

array is executed in the local device and the others are executed in the neighbour devices. The

method send&Execute() from the CommunicationManager sends these objects to the

neighbour devices (line 9). All devices then execute the runLocally() method. The last part

of the code, the framework receives all the results by calling the method getAll() from the

37

buffer in the communication Manager. This method is synchronous and waits until all the

devices have returned the data or after the time out.

The timeout is used in case a device disappears from the network, which means that the data is

lost. The programmer decides what to do with the lost data. He can either use the data from the

previous update methods or discard it.

The last step of the runOffloaded method is the aggregation of the data (lines 13-22). This

method is the reverse of the data partition in terms of the data flow. The data first grouped in a

single list of OffloadableObjectsDevices, which is used by the method

agregateData (Line 22) to produce the final result.

The data distributed in the Real-time Offloading Framework extends the

OffloadableObjectAbstraction class and the programmer does not need to override

any method.

The DeviceManager class assists in the device monitoring. This class manages the devices

being used by the Real-time Offloading Framework and is used during the update() method

to add new devices for the code to be offloaded using the algorithm . That device is chosen

using the method getDevice() from the StandardDiscoveryManager class.

The CommunicationManager class handles all interactions between the Framework and

MobFr. This class has access to a list of devices in the network provided by the Discovery

Manager Service. The CommunicationManager manages the communication between the

main and neighbour devices which includes sending data, receiving data and buffering it. The

method send&ExecuteData() sends the offloadable objects to the neighbour devices

through the sendData() method.

The CommunicationManager also serves as the interface between offloading library and

the StandardPackageManager and the StandardExecutionManager classes which

are responsible for installing and executing services remotely. The method transferAPK()

has as the parameter the name of the APK where the service is located and the name of the

device and invokes the Package Manager service in order to install the required APK In the

remote device. The method executeActivity() receives the service Intend and the device

name and triggers the Execution Manager service to communicate with the remote device

Execution Manager in order to start the service. All the communications between network

devices afterwards uses the method sendData(). The data is received using a separated

thread whose function is to wait for new data and storing it in a thread-safe bounded buffer.

38

Figure 13. Framework UML Model

It is the responsibility of the OffloadingManager to take care of the initial configuration,

monitoring the core execution times and control the creation of new neighbours by applying the

algorithms proposed in (Ferreira, et al., 2011) as detailed in Chapter 3.

The OffloadingManager stores the previous core execution time data and uses it to predict

when the service will reach the maximum capacity using the algorithm detailed in Chapter 4.

The data is structured as in figure 14.

Figure 14. Offloading Manager UML Diagram

The ExecutionData class holds the core execution data of one instance of the application.

Both values are expressed in nanoseconds.

The ExecutionDataDevice represents the device and a list with its ExecutionData.

39

Additional classes are present in the final application, but their only purpose is to support the

ones present the specified architecture.

5.3 Application Implementation Overview

The Real-time Offloading Framework allows the easy development of code offloading

applications. To do so, the application has to implement two classes: the

OffloadableService and the OffloadableObject.

Figure 14 shows the minimum that an application required when using the Real-time Offloading

Framework

Figure 15. Example application UML Diagram

The Activity class invokes the service. The only requirement it has is to invoke the

update() method from the OffloadableService in a pre defined interval of time.

OffloadableService is the class that implements the service whose code is distributed

This class has to override four methods: runOffloaded(), dataPartitioner(),

agregateData() and tryRebalance() whose functions are detailed in Section 5.2

OffloadableObject represents the objects used by the service. The objects are distributed

by all the available devices during the code offloading procedure.

5.4 Summary

This chapter documents the implementation of the offloading library using the offloading design

pattern detailed in the previous chapter.

The Real-time Offloading Framework automates all the code offloading process, leaving the

programmer to specify the service and its data.

40

The next chapter details the development of an application capable of using the offloading

library

41

Chapter 6. Framework

Demonstrator Implementation

This chapter describes the implementation of the application created as a proof the

concept for the Real-time Offloading Framework, the external libraries that

supports it and performance optimization techniques used.

6.1 Introduction

The application described is this chapter serves as proof of concept of the Real-time Offloading

Framework. The application is an interactive physics simulation for the Android OS and is

designed to test the main functions of the framework and to evaluate its performance.

The application uses two additional libraries: a game engine and a physics engine. The game

engine is responsible for drawing objects on the screen and managing the application life cycle

and the physics engine is responsible for calculating the movement of the objects and their

collisions.

In the context of the Real-time Offloading Framework, the physics engine is the service, the

physics objects are the objects of the service and the game engine is responsible for executing

the service.

6.2 Application Overview

The application starts with blank area. Each time the user presses the screen, the application

generates a random object (Box, Triangle, circle or hexagon). The object moves using the

physics calculations. Whenever the application predicts that will not have enough resources to

continue executing locally, it then distributes the physics computations by the neighbour

devices.

All the objects are affected by gravity and can collide with themselves or with the boundaries of

the physics world. When a collision occurs, their direction and velocity change.

Figure 16 shows the application UI during the execution of the application.

42

Figure 16. Application Screen

When the device needs to offload, the physics engine distributes the physic objects by all

available devices using an algorithm that divides the physics world in small areas and

distributes all the areas by all the available devices.

A typical physics engine in a gaming application is executed in each frame of the game but

because of the network latency makes that impossible, the engine rather than running every

frame, it run only 8 frames per second, therefore we specify the tMaxCap as 128 ms The

application uses interpolation to smooth the object translation in order avoid to the user to notice

any disruption on the screen.

The application shares some similarities with work in (Chabukswar & Lake, 2005). In this paper

the author specifies how to implement a game where the physics are calculated in a thread while

the rest of the game is calculated in another. In this application, the physics is being offloaded in

the cloud while the rest of the game is being executed in the device. Executing an application in

concurrent threads and in concurrent devices is different as communication between threads is

simpler than communication between devices.

The game engine used by the application is specified in the next section.

6.3 Game Engine

The game engine manages the application life cycle. In the application context, the game engine

is responsible for invoking the update() method from the service. The game engine used in

this application is based implementation of the AndEngine (Gramlich, 2009), an open source

game engine and the engine used in Replica Island (Pruett, 2010). The main focus of the game

engine is Game class as represented in figure 17.

Figure 17. Game Engine Class Diagram

43

The method setFrameRate() is used by the application to specify the frame rate. This will

indicate the frequency of which the engine will invoke the methods draw() and update().

The game uses a physics engine that is responsible for moving the objects and manages their

collisions. Next section introduces which are used in the application.

6.4 Physics Engine

The application being developed uses a real-time 2D physics engine based on rigid Body

dynamics. The decision on which was the best physics engine required a careful consideration

and analysis on the advantages and disadvantages of each available engine.

Some of the prerequisites of the physics engines were:

 Implementation in Java or C++;

 Ease of integration with the game engine;

 Performance;

After analyzing various engines, the ones that best fit the application were:

 Custom Engine: Simple physics engine developed for testing proposes and used to

achieve the results visible in the introduction chapter.

 Box2D. A very famous open source physics engine used in many commercial projects.

(Catto, 2007)

 Phys2D. A fork of an early version of box2d. (Phys 2D, 2008)

Table 1 shows the advantages and disadvantages of each physics engine.

Physics Engine Advantages Disadvantages

Custom Engine
Already implemented.

Easy to change.

Only capable of simulating

the interaction between

rectangular shapes.

Box2D

Capable of simulating the

interaction between any non

convex polygon and circles.

Better documentation and

support.

Difficult to change.

Phys2D

Capable of simulating object

as well as Box2D
Easier to implement than

Box2D.

Worst performance than

Box2D

Table 1. Physics Engines Comparison

The physics engines described in Table 1 are not prepared for distributed systems.

Consequently, the adaption of the software has to take into account the following aspects:

 How to distribute the physics computation by all devices

 How to monitor the execution times.

After much consideration, and based on performance and ease of integration, the chosen engine

was the Box2D Physics Engine.

The Box2D engine is structured as in figure 18.

44

Figure 18. Box2D Class Structure

The PhysicsWorld is composed by a collection of Body elements. Each Body element

represents a physics object that can have a circular or polygon shape. Each time the update()

method is invoked, the physics engine calculates the new position, velocity, direction and

rotation of all the objects. This is achieved by using the collision detection and collision

response detailed in Chapter2.

It is important to highlight that Box2D is composed by large number of classes, but for

simplification purposes, only these ones are presented.

6.5 Physics World Partition

The development of the physics world division takes in consideration researches of distributed

physics in multithreading environments (Chabukswar & Lake, 2005) and distributed server-

client (Fiedler, 2006)

The physics world division implemented in this application is divided in two phases and

assumes that there is a physics simulation running with many different objects distributed in the

physics world.

The first phase is choosing the number of areas in which the world is divided. The number of

areas must be higher than the number of available devices so that each can have at least one

area. The number of part impacts the how realistic and how balanced the distribution is.

 The bigger the number of areas, the most balanced the calculations area is.

 The smaller the number of areas, the most realistic the results are.

The second phase is assigning each object to a part. Any object that is on the border of two or

more areas, it assigning those areas. The duplication of the object is solved during the

aggregation of the physics world. Since each object has a unique id, when the main device

receives all the objects, if any object is duplicated, then both objects are re-joined.

Figure 19 illustrates an example of the results before and after the physics world partition.

45

Figure 19. Physics World Division

The example in Figure 19 shows a world being divided into four parts where there is one object

in the border of two parts. Listing 5 further details the pseudo-code of the division algorithm.

Listing 5 - Physics World Partition

1. Method WorldDivision(world, nDevices)

2. Input world: physics world to divide; nDevices – number of

devices

3. Output areas: areas of the physics world.

4. Begin

5. nParts = FindCorrectNumberOfParts(world, nDevices)

6.

7. partWidth = world.width/ nParts.x

8. partHeight = world.height/ nParts.y

9. Area[] areas = new part[parts.x * parts.y];

10. Foreach(object b in physicsObjects)

11. x = b.x / partWidth

12. y = b.y/partHeight

13. areas [x + y * nParts.y].add(b)

14. If(CollisionUpperBorder(b, PartHeight) AND X >=

0)

15. areas [x+1 + y * nParts.y].add(b)

16. ElseIf(CollisionBottomBorder(b, partHeight) AND X

< nParts)

17. areas [x-1 + y * nParts.y].add(b)

18. EndIf

19. If(CollisionLeftBorder(b, PartWidth) AND Y >= 0)

20. areas [x + (y-1) * nParts.y].add(b)

21. ElseIf(CollisioRightBorder(b, partWidth) AND Y <

nParts)

22. areas [x + (y+1) * nParts.y].add(b)

23. EndIf

24. EndForEach

25. End

The function FindCorrectNumberOfParts in line 5 calculates the number of areas in

which the physics world is divided and returns a variable that represents the number of columns

and the number of lines. For example, if there are 3 available devices, this number should be

46

bigger than 3, or else some devices would not perform any calculation. The Area class is

composed by a list that stores physics objects which are added using the add(object)

function (Line 13) . The Foreach block assigns each object to its respect parts. If an object is

in the border of two parts, the both parts receive the object (Lines 14-22). The function finishes

by returning the bi-dimensional array containing the parts containing the objects.

Another important aspect of the data partition is the aggregation. In the aggregation phase all

object are placed in the original physics world. Any object that resided on the border that was

split is joined together in this phase. This is possible because the

OffloadableObjectAbstraction class has an id member which is a unique number and

that identifies every object. The result object takes in consideration the transformations occurred

to both objects that created it.

6.6 Application Structure

The application is structured as detailed in Figure 20.

Figure 20. Application Class Diagram

The MobileGame class extends the game engine’s Game class. This class provides a method

named setFrameRate() that sets the number of times the update method is invoked per

second it also support methods to draw objects in the canvas, which in this project are the ones

from the PhysicsBody class.

The PhysicsWorldManager class is responsible for all the physics calculation and his code

can be executed using code offloading. This class extends the

OffloadableServiceAbstraction. The only methods that are required in order to

allow code offloading are: runLocally(), PartitionateData(),

AgregateData() and tryRebalance(). The runLocally() method executes the

code in the PhysicsWorld provided by Box2D using the device’s share of physics object, in

case of being offloading or all the objects is running locally. The PartitionateData()

method distributes the physics objects by all the available devices, as detailed in Listing 5. The

47

AgregateData() joins the all the transformed objects and the tryRebalance() method

redistributes the physics objects by the devices. Since the offloading library has a transparent

design philosophy; this class runs on the neighbour devices without any required change.

In the runLocally method inserts the PhysicsBody objects in the PhysicsWorld and

invokes the method Step.

6.7 Performance Optimization Techniques

The optimization techniques were one of the main focuses during the implementation and

generated some technical reports (Silva & Ferreira, 2010). The next section present some

optimization made to the serialization algorithm, network latency and other general ones.

6.7.1 Serialization

Object serialization and deserialization is the process of converting a data structure into a

sequence of bytes, in order to be stored in a memory buffer, or to be transmitted across a

network connection, and the reverse.

Object serialization and deserialization can be achieved using different methods. In this

subsection we analyze the serialization/deserialization process using java built-in methods,

described as “Standard” methods, and using custom methods created, described as “Manual”

methods.

Standard methods use the ByteArrayObjectOutpuStream, which is able to serialize any

variable, as long as its class inherits from object and implements Java.io.Serializable.

The manual method involves parsing each Fundamental data types in is respective byte format.

For example, image an object composed by 3 floats and a string. Each float is parsed in a four

byte array and the string is parsed in a byte array, whose size is the same as the number of

characters and those array are aggregated to form the serialized object.

Figure 21 shows the results of serializing a collection of 10 simple objects each composed by 3

objects each composed by 2 floats using java standard method and using the manual method.

Each test was performed 1000 times.

Figure 21. Serialization Comparison

48

The results show that in average the standard serialization required an average of 43.44 ms with

a confidence interval of 2.2 ms for 95% of the samples while the manual serialization required

an average of 2.28 ms with a confidence interval of 0.55 ms for 95% of the samples. Aside from

the quicker process it is also possible to observe that that serialized object length is 761 bytes

for the standard serialization while in the custom serialization, the size of the object is 240

bytes.

Figure 22 shows the results of deserializing the serialized objects using the standard method and

using the manual one.

Figure 22. Deserialization Comparison

The results show that the manual deserialization process is faster than the standard one requiring

in average 5.41 ms with a confidence interval of 1.04 ms for 95% of the samples while the

standard method required in average 93.83 ms with a confidence interval of 3.93 ms for 95% of

the samples.

After evaluating both methods is possible to conclude that the manual serialization has the

advantage of begin faster and creating small object while having the disadvantage of not being

as flexible.

It’s also important to know that the performance of the serialization is affected by the device in

which is performed.

Figure 23. Device Comparison

49

Figure 16 shows the results of serializing a collection of 10 objects in a HTC Magic and a

Samsung Galaxy S, both with their default configurations.

6.7.2 Linear Regression Optimization

It is possible to increase the performance of the linear regression parameters calculation by:

i) If m is negative then calculating b is not necessary since the line will not cross the

maximum capacity line in the future;

ii) The summations which are required to be calculated in Eq. (3) and (4) can use

previously calculated values. As an example, the calculation of , can be

done using the following recurring formulation:

 (7)

where, a0 is the summation of the first n values.

6.7.3 General Code Optimization

Aside from the techniques described in chapter 5, other techniques were used in order to

increase the performance of applications. Some of those techniques include the techniques

denoted in the paper “Mobile Game Development: Object Oriented or Not?” (Zhang, Han,

Kunz, & Hansen, 2007) which were used in the development of this application and the

offloading library, more specifically:

 Initialize the object when it’s first used and not when it’s created.

 Prioritize local variables rather than class members.

 Increase the methods access time by declaring it final or static when possible.

 Increase the performance of the garbage collector by set an object to null when it is not

going to be used anymore.

 Return null rather than throwing exceptions.

 Reduce resource consumption by reusing exception objects and delegates when

possible.

6.8 Summary

This chapter documents the architecture and design of an application that uses the provided

offloading framework.

The application uses a game engine, which is responsible for the application life cycle, which

includes calling the update() method in the service, which is a physics engine.

In this application, the service is the physics engine and the offloadable object is the physics

objects.

The next chapter presents the results of the tests performed in the application in order to

evaluate the framework.

51

Chapter 7. Tests and Results

In this chapter we describe the tests performed to the real-time offloading

framework. These tests evaluate the overhead introduced by the MobFr and also

the timings related to several experiences performed with the framework.

7.1 Benchmark Tests Mobile Framework

The tests described in this section aim to evaluate the timings of the code mobility operations.

These include the time to transfer an APK between devices, the time it takes to execute an intent

remotely and the time of service migration from a device to another, also known as service

rebinding.

All the tests were performed using one or more of the devices presented in Table 2.

Device

Name
Android OS

Version
Process

Speed
RAM Processor Quantity

Emulator 2.2
3000

MHz
1024 MB Pentium 4 1

HTC

Magic
1.5 528 MHz 288 MB

Qualcomm

MSM7200A
2

Samsung

Galaxy S
2.1

1000

MHz
512 MB

Arm Cortex

A8
2

Toshiba

Folio 100
2.2

1000

MHz
512 MB

Nvidia Tegra

2
1

Table 2. Device Specification

7.1.1 APK Transfer and installation Test

This test measures the time the Package Manager requires to send and install an APK in a

remote device .This test is fundamental for the basic functionality of the framework. If the

mobile framework requires too much time to transfer and install an APK, then it cannot

guarantee the required QoS.

Listing 6 present the source code used to perform this test. The time it takes to transfer and

install an APK is calculated by measuring the time before the call of the package manager and

after it (lines 3 and 5). The method transferAPK() from the

StandardPackageManager class (line 4) issues the command to transfer and install an

APK remotely. Since this method waits for the confirmation from the remote device, the

difference of both times should give an approximate of time it toke to install the APK remotely

(line 6).

52

Listing 6 - APK Transfer and Install Source Code

1. public long transferAndInstallService(String ServiceName,

CooperativeDevice dev)

2. {

3. long timeInit = System.nanoTime();

4. StandardPackageManager.transferAPK(ServiceName, dev);

5. long timeFin = System.nanoTime();

6. return timeFin-timeInit;

7. }

Two devices were used in this experiment: a Samsung Galaxy S and a HTC Magic. The

Samsung Galaxy S issued the transfer and install order to the HTC magic. The communication

involved a wireless network at 54 Mbps and the transferred APK’s size is 116 KB. The results

of 1000 executions of the test are depicted in figure 21.

Figure 24. Remote APK Transfer and Install Test Results

The APK transfer from a device to another requires in average 280 ms with a confidence

interval of 0.21 ms for 95% of the samples with 198 ms being the shortest time and 398 ms

being the longest.

The values shown in the results are higher than the value expected in a framework that installs

the service exactly before its execution. For this reason the neighbor device must be initialized

prior to the start of code offloading procedure.

7.1.2 Remote Intent Execution Test

As detailed in chapter 3, MobFr is capable of executing an Intent remotely using the Execution

Manager module. In this test we have recorded the time elapsed from moment when the Intent is

issued on the main device until the confirmation is received.

This test is of fundamental importance to the architecture being proposed because if the

execution manager requires too much time, than there is the possibility of the application not

being able to guarantee the required real-time performance

Listing 7 presents the source code used in this test. The operation used to execute and activity

remotely is the executeActivity() from the StandardExecutionManager class.

53

Since that operation waits until the confirmation is received, the difference of the time before its

execution and the time after should result in an approximate of the real value.

Listing 7 - Remote Intent Execution Source Code

1. public long executeActivity(Intent i, CooperativeDevice

dev)

2. {

3. long timeInit = System.nanoTime();

4. StandardExecutionManager.executeActivity(i, dev);

5. long timeFin = System.nanoTime();

6. return timeFin-timeInit;

7. }

The test was executed in two devices: a Samsung Galaxy S and a HTC Magic as presented in

table 2. The Samsung Galaxy S issues the remote execution command that will be received by

the HTC Magic. The communication involved a wireless network at 54 Mbps. Figure 19 shows

the results of 1000 experiments.

Figure 25. Execution results

The results of the experiment show that the remote intent execution requires in average 200 ms

with a confidence interval of 0.39 ms for 95% of the samples. The highest recorded result is 274

ms and the lowest is 20 ms.

The results, as predicted, reveal that executing an Intent remotely requires more time than

txMAxCap. For this reason, the neighbour device is initialized as soon as the framework detects that

it needs to start offloading the code.

7.2 Benchmark Tests Offloading Library

The offloading tests analyze the behaviour and also the delay of the offloading library during

the life cycle of an application. These tests include measuring the core execution time, the

execution time in the offloading library requires before the offloading, and others.

Testing the offloading framework is much different than testing the MobFr operations because

the experience requires much more time and is easily affected by external factors which alter the

behaviour of the application. For example, if the main device is executing another application in

54

parallel, than is possible that the offloading framework predicts that the application needs start

offloading sooner that if no application was being executed simultaneously. The same is true for

the network latency. For this reason, the test application is executed once.

The test consisted in generating a physics object every 128000 ns. When the offloading library

detects that the device will not be able enough resources to execute the service, part of it is

offloaded to a neighbour.

This test was executed in two HTC Magic devices as specified in Table 2. The devices

communicated using a wireless network at the speed of 54 Mbps.

Figure 26 details the general times of the experience. These times are explained in detailed in

the next sections.

Figure 26. Offloading Library Test Results

As the figure shows at 3.712 ms the offloading decided start preparing the neighbour device and

the application starts offloading at 7.808 ms.

7.2.1 Execution

The execution test analyzes the core execution time through the entire experience.

This test is the most important of the experience as it proves that using the specified code

offloading architecture, indeed reduces the load from the device in which the application is

running to the nodes in the network.

In order to calculate the total of the execution time, the time was measured before and after the

invoke of the update() method and the difference was recorded. Figure 27 details the results

of this test.

55

Figure 27. Execution Test Results

The data shows that after starting offloading the execution time decreases significantly. This

proves that offloading does benefit the application. It is also possible to observe that after the

offload process, the data starts increasing again at a slower rate. It can be attributed to the fact

that both devices share the load.

The next section analyses the core execution time in both devices.

7.2.2 Devices Execution

The total execution test consists in measuring the execution time of both all devices during the

experience.

This test provides the opportunity to analyze how the computation load is distributed among all

the devices in the network. The test corresponds to the step 3 in Figure 26.

In order to have the most accurate measures possible, in all devices, the time before executing

the data and the time after were measured and then the difference was interpreted as the time.

The main device stores the result locally while the neighbour device transmits it when they

transmit the altered objects in step 4 which then the main device also stores in the buffer. Figure

28 shows the results of the experience.

Figure 28. Total Execution Test Results

The second device starts executing during at 7.808 ms and both execution times are somehow

similar during the rest of the experience. Both devices have the same characteristics, the

56

difference discrepancy between the core execution times can be related to the data partitioner

algorithm.

7.2.3 Data Transfer

The data transfer test analyzes the time required to transport the offloadable objects between the

main device and the neighbour device and their return

This test analyses the approximate delay caused by the network latency when the Offloadable

objects are transferred from a device to another.

In order to measure its time, the time is measured before sending the data to the neighbour

device and after receiving it. The difference between those times results in a number which is

then subtracted the execution time of device and the number obtained is used as the correct

result. Figure 29 shows the results of the experience.

Figure 29. Data transfer Test Results

The network latency is in average 40 ms. As detailed in chapter 6, usually, in a electronic game,

the physics engine is executed in every frame. If a game runs at 30 frames per second, that

means that the update method has 33.0 ms to executed. Since the network latency is in average

40 ms, it is not possible in the proof-of-concept application, hence the decision to execute the

physics engine every 128 ms.

7.2.4 Offloaing Framework Delay

The offloading delay test analyses the delay caused by the offloading library.

This test consists in evaluating the time to execute the three following operations:

 Calculate if the application requires more resources;

 Offload code to the neighbour device;

 Data partitioning between all the devices in the network in case the service is going to

be executed remotely;

 The aggregation of the data;

 Registering the core execution times of all the devices.

In order to calculate this time, the time at the beginning of the update method and at the after

finishing all the preparations is measured and then subtracted to achieve the end result. It’s also

important to observe that when the device is not offloading its data, the offloading library does

not partitionate the data. The test is better detailed in Figure 31.

57

Figure 30. Pre Offload Test Results

The results show that the delay in average is 3.82 ms with a confidence interval of 0.04 ms for

95% of the samples. This information is important during the development of an application that

uses the Real Time Offloading Framework because if the service’ tMaxCap is small, then this

delay may cause consequences in the execution of the service.

59

Chapter 8. Conclusion and Future

Work

This chapter analyses the context and objectives of this thesis and highlights the

possible directions of future work.

8.1 Research Context and Objectives

The use of smartphones and other Internet enabled devices is changing the habits of users,

which more and more require that their desktop applications are seamlessly supported in these

resource-constrained devices. One solution to support these requirements is to offload some of

the applications’ services to devices nearby, taking advantage of high-capacity local networks.

Code offloading techniques have proven to be useful in increasing the performance or the

battery life of mobile devices.

The goal of this thesis is to create an offloading mechanism that considers the QoS of the

applications, offloading services to neighbour nodes and, at the same time, adapting to changing

real-time execution parameters of the application.

The offloading mechanism involves a constant monitoring of the time required to execute a core

service, on the main device. Based on past execution times of the core service, the offloading

algorithm predicts the future ones. If the algorithm determines that the required execution rate

cannot be maintained, then the offloading procedure is triggered in advance, minimizing

possible timing errors.

There is no feasibility analysis without an implementation of an application that can

demonstrate the main mechanisms being proposed. Therefore, an application is presented in

Chapter6 which evaluates the feasibility of the approach.

The evaluation of the algorithms and the framework is elaborated through the test and analysis

of the application behaviour.

60

8.2 Future Work

Although the proposed framework is implemented and analyzed it is possible to propose future

work.

The proposed implementation uses linear regression as the statistic method for predicting future

core service execution times. This approximation has been chosen since it is one of most simple

with low complexity. An alternative solution is to use exponential regression or polynomial

regression. It would be interesting to compare different approaches and estimate the precision

and computation trade-offs of each one.

The network latency is an important factor in code offloading applications. The proposed

system is design in LAN networks. It would be interesting to modify the underlying components

to provide full support for WAN topologies and analyze the impact.

The distribution algorithm used in this application uses very specific guidelines when

distributing the data. It would be appropriate to design and implement different distribution

algorithms that take in consideration the resources of the devices.

No framework can truly be analyzed when tested on a small number of applications. The final

proposal for future work consists in testing the framework in different applications with

different services and requirements.

61

Papers and Technical Reports

Papers

Handling Mobility on a QoS-Aware Service-based Framework for Mobile Systems

(Gonçalves et al., 2010) - Paper published in IEEE/IFIP International Conference on Embedded

and Ubiquitous Computing that details the design and implementation of MobFr, the code

mobility framework used in this dissertation. The conference took place in Hong-Kong, China

in December 2010.

Service Offloading in Adaptive Real-Time Systems (Ferreira et al., 2011) – Paper published

in the 6th IEEE International Workshop on Service Oriented Architectures in Converging

Networked Environments (SOCNE2011). The paper details the design of the offloading

architecture defended in this dissertation.

Offloading QoS-enabled Applications in the Android Platform (Maia, et al., 2011) – Paper

submitted as an entry to the RTSS @ Work 2011 competition. The paper served as an

introduction a project using on the Real-time Offloading Framework that is currently under

development.

TRs

Physics Distribution using Code offloading (Silva, 2011) – Technical report that documents

the design of the physics distribution algorithm.

An analysis on Object serialization Methods in Java (Silva & Ferreira, An analysis on Object

Serialization Methods in Java, 2010) – This technical report analyses the use of different

serialization methods in java.

63

Bibliography

Ahn, Y., Cheng, A., Back, J., & Fisher, P. (2009). A multiplayer Real-Time Game Protocol

Architecture for Reducing Network Latency. IEEE Transactions on Consumer Electronics (pp.

1883-1889). IEEE.

ALRahmawy, M., & wellings, A. (2007). A Model for Real Time Mobility Based on the RTSJ.

JTRES'07 (pp. 155-164). Vienna: ACM.

Bai, J., & Leong, B. (2008). Is it Pratical to Offload AI over the Network? The 16th IEEE

International Conference on Network Protocols (pp. 1-6). Orlando: IEEE.

Ballinger, D., Turner, D., & Concepcion, A. (2011, March). Artificial Intelligence Design in a

Multiplayer Online Role Playing Game. Eight International Conference on Information

Technology: New Generations , pp. 816-821.

Bernier, Y. (2001). Latency Compansation Methods in Client/server In-game Protocol Design

and Optimization. Proceedings of the Game Developers Conference (pp. 1-13). Orlando, FL:

Game Developers Conference.

Bolliger, J., & Gross, T. (1998). A Framework-Based Approach to the Development of

Network-Aware Application. IEEE Transactions and Software Engeering. IEEE Computer

Society.

Botsch, M., & Kobbelt, L. (2003). High-Quality Paoint-Based Rendering on Modern GPUs.

11th Pacific Conference on Computer Graphics and Applications (PG'03) , pp. 1-9.

Brandt, D. (2009). Accelerating Online Gaming. Reykjavik : Reykjavik University.

Cao, J., Zhang, D., McNeill, K., & Nunamaker, J. (2004). An Overview of Network-Aware

Applications for Mobile Multimedia Delivery. 37th Hawaii International Conference on System

Sciences (pp. 1-10). Hawai: IEEE Computer Society.

Carzaniga, A., Picco, G., & Vigna, G. (1997). Designing Distributed Applications with Mobile

Code Paradigms. Proceedings of the 19th International Conference on Software Engneering

(ICSE 97) (pp. 22-32). Boston MA, USA: ACM.

64

Carzaniga, A., Picco, G., & Vigna, G. (2004). Is Code Still Moving Around? Looking Back at a

Decade of Code Mobility. 29th International Conference on Software Engineering (ICSE'97

Companion) (pp. 1-10). Minneapolis: IEEE Computer Society.

Catto, E. (2007, 09 10). Box2D. Retrieved 02 02, 2011, from Box2D: http://box2d.org/

Chabukswar, R., & Lake, A. (2005). Multi-threaded Rendering and Physics Simulation. Intel,

Intel Software Solutions Group. Chicago: Intel.

Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M., & Chandramouli, R.

(2004). Studying Enery Trade Offs in Offloading Computation/Compilation in Java-Enabled

Mobile Devices. EE Transactions On Parallel And Distributed Systems. 15, pp. 1-16. Essex:

IEEE Computer Aociety.

Chun, B.-G. I. (2011). Clonecloud: Elastic execution between mobile device and cloud. EuroSys

2011.

Chun, B.-G., & Maniatis, P. (2009). Augmented Smartphone Applications Through Clone

Cloud Execution. 12th Workshop on Hot Topics in Operating Systems (HotOS XII) (pp. 1-5).

Monte Verità, Switzerland: USENIX.

Chun, B.-G., & Maniatis, P. (2010). Dynamically Partitioning Applications between Weak

Devices and Clouds. MCS '10 Proceedings of the 1st ACM Workshop on Mobile Cloud

Computing & Services: Social Networks and Beyond (pp. 1-5). New York: ACM.

Chun, B.-G., Ihm, S., Maniatis, P., & Naik, M. (2010). CloneCloud: Boosting Mobile Device

Applications Through Cloud Clone Execution. Orlando: ARXIV.

Cuervo, E., Balasubramanian, A., & Cho, D.-k. (2010). MAUI: Making Smartphones Last

Longer With Code Offload. MobiSys 10 (pp. 49-62). San Francisco, California: ACM.

Cunningham, W. (2009, January 8). Ford Sync Version 3.0. Retrieved February 15, 2011, from

Cnet: http://reviews.cnet.com/8301-13746_7-10138116-48.html

Cush, J. (2010, July 18). Analysts: Tablets to Outsell Netbooks by 2012. Retrieved February 15,

2011, from TabletPC Review:

http://www.tabletpcreview.com/default.asp?newsID=1460&news=apple+ipad+tablet+computer

+netbook

Egham. (2010, November 10). Gartner Says Worldwide Mobile Phone Sales Grew 35 Percent

in Third Quarter 2010; Smartphone Sales Increased 96 Percent. Retrieved February 23, 2011,

from Gartner: http://www.gartner.com/it/page.jsp?id=1466313

Eichelkraut. (2002). An Architecture for Real-Time Mobile Agent systems. Science Applications

International Corporation.

Ferreira, L. L., Silva, G., & Pinho, L. M. (2011). Service Offloading in Adaptive Real-Time

Systems. 6th IEEE International Workshop on Service Oriented Architectures in Converging

Networked Environments (SOCNE) (pp. 1-6). Toulouse, France: IEEE Conputer Society.

Ferreira, L. (2011). On the use of Code Mobility Mechanisms in Real-Time Systems. 1-5.

65

Ferreira, L., Silva, G., & Pinho, P. (2011). Service Offloading in Adaptive Real-Time Systems .

International IEEE Workshop on Service Oriented Architectures in Converging Networked

Environments (SOCNE) (pp. 1-6). Toulouse, France: IEEE Conputer Society.

Fiedler, G. (2006, 09 02). Networked Physics. Retrieved 02 14, 2011, from Gafferon Games:

http://gafferongames.com/game-physics/networked-physics/

Flinn, J., Park, S., & Satyanarayann. (2002). Balancing Performance, Energy; and Quality in

Pervasive Computing. 22nd International Conference on Distributed Computing Systems

(ICDCD'02) (pp. 1-10). IEEE Computer Society.

Fritsch, T., Ritter, H., & Schiller, J. (2006). CAN mobile gaming be improved? The 5th

Workshop on Network & System Support for Games 2006 - NETGAMES 2006 (pp. 1-4).

Singapore: ACM.

Fuggetta, A., Pietro, G., & Vigna, G. (1998). Understanding code Mobility. IEEE Transactions

On Software Engeneering. 24. IEEE.

Geoffray, N., Thomas, G., & Folliot, B. (2006). Transparent and Dynamic Code Offloading for

Java Applications. (pp. 1-17). Paris: Springer-Verlag Berlin Heidelberg.

Glinka, F., Plob, A., Muller-Iden, J., & Gorlatch, S. (2007). RTF: A Real-Time Framework for

Developing Scalable Multiplayer Online Games. NETGAMES 2007 (pp. 81-86). Melbourne:

IEEE.

Gonçalves, J., Ferreira, L. P., & Silva, G. (2010). Handling Mobility on a QoS-Aware Service-

based FrameWork for Mobile Systems. IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, 2010 (pp. 97-104). Hong Kong, China: IEEE Computer Society.

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2003). Adaptative offloading

Interference for Delivering Applications in Pervasive Computing Enviroments. Proceedings of

the first IEEE International Conference on Pervasive Computing and Communications

(PerCom'03) (pp. 1-8). Fort Worth: IEEE Computer Society.

Gui, N., Vincenzo, F., Sun, H., & Blondia, C. (2008). A framework for adaptative real-time

OSGi component model. ARM '08 Proceedings of the 7th workshop on Reflective and adaptive

middleware (pp. 35-40). New York: ACM.

Hassan, Z. (2008). Ubiquitous Computing and Android. Third International Conference on

Digital Information Management, 2008. ICDIM 2008. (pp. 166-171). London, England: IEEE

Computer Society.

He, Z., & Liang, X. (2006). A Point-Based Rendering Approach for Mobile Devices. 16th

International Conference on Artificial Reality and Telexistence (ICAT'06) , pp. 1-5.

Kemp, R., Palmer, N. K., & Bal, H. (2010). Cuckoo: a computation Offloading Framework for

Smartphones. MobiCASE '10: Proceedings of The Second international Conference on Mobile

Computing, Applications, and Service (pp. 182-184). San Diego: MobiCASE.

Khan, S., Khan, S., & Banuri, S. (2009). Analysis of Dalvik Virtual Machine and Class Path

Library. Technical Report, Institute of Management Sciences , Security Engineering Research

Group, Peshawar, Pakistan.

66

Kim, J., & Jamalipour, H. (2001). Traffic Management and QoS Provisioning in the Future.

IEEE Personal Computation (pp. 46-55). IEEE Computer Society.

Knutsson, B., Lu, H., Xu, W., Hopkins, & Bryan. (2004). Peer-to-Peer Support for Massively

Multiplayer Games. IEEE INFOCOM 2004 (pp. 1-12). Hong Kong: IEEE.

Kremien, O., & Kramer, O. (1992). Methodical Analysis of Adaptive Load Sharing Algorithms.

IEEE Transactions on Parallel and Distributed Systems (pp. 747-760). Florida: IEEE Computer

Society.

Krikelis, A. (1999). Mobile Multumedia Considerations. IEEE Concorrency (pp. 85-87). IEEE

Computer Society.

Krikellis, A. (2000). Considerations for new generation of mobile communication systems.

IEEE Concorrency (pp. 80-82). IEEE Conputer Society.

Kristensen, M., & Bouvin, N. (2010). Scheduling and development support in the Scavenger

cyber foraging System. Pervasive and Mobile Computing (pp. 677-692). Elsevier.

Kumar, K., & Lu, Y.-H. (2010). Cloud Computing for Mobile Users: Cam Offloading

Computation Save Energy? IEEE (pp. 1-14). West Lafayette: IEEE Computer Society.

Kundu, T., & Paul, K. (2011). Improving Android performance and energy efficiency. 24th

Annual Conference on VLSI Design (pp. 256-261). Chennai: IEEE COmputer Society.

Kurki-Suonio, R. (1994). Real Time: Further Misconception (or Half-Truths). (pp. 71-75). IEEE

Computer Society.

Kwok, T. (1992). Wireless Network Requirements of Multimedia Applications. (pp. 1-5).

Cupertino, Ca: IEEE Computer Society.

Li, B., & Nahrstedt, K. (1999). A Control-Based Middleware Framework for Quality-of-Service

Adaptations. (pp. 1632-1650). IEEE Computer Society.

Linear Regression and Excel. (2000, 04 18). Retrieved 02 10, 2011, from Physics Laboratory:

http://phoenix.phys.clemson.edu/tutorials/excel/regression.html

Lonnie, R., Welch, R., Behrooz, P., Shirazi, A., Cavanaugh, D., Fontnot, C., et al. (2000,

November). Load balancing for dynamic real-time systems. Cluster Computing , pp. 125-138.

Maia, C. (2011). Cooperative Framwork for Open Real-Time systems. Porto, Portugal: Instituto

Superior de Engenharia do Porto.

Maia, C., Silva, G., Ferreira, L., Pinho, M. N., & Gonçalves, J. (2011, June 23). Offloading

QoS-enabled Applications in the Android Platform. pp. 1-6.

Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T., et al. (2002). Towards

a Distributed Platform for Resource-Constrained devices. Proceedings of the 22nd International

Conference on Distributed Computing systems (ICDCS'02) (pp. 1-9). Vienna: IEEE Computer

Society.

67

Mininel, S., Vatta, F., Gaion, S., Ukovich, W., & Fanti, M. (2009). A Customizable Game

Engine for Mobile Game-Based Learning. IEEE International Conference on Systems, man, and

Cybernetics (pp. 2445-2450). San Antonio: IEEE.

Mogul, J. (2003). TCP offload is a Dumb idea whose time has come. 9th Workshop on Hot

Topics in Operating Systems (HotOS IX) (pp. 1-6). Lihue, Hawaii, USA: USENIX.

Monkkonen, V. (2010, 09 06). Gamasutra. Retrieved 02 16, 2011, from Multithreaded Game

Engine Architectures:

http://www.gamasutra.com/view/feature/1830/multithreaded_game_engine_.php

NI Developer Zone. (2010, January 8). What is a Real-Time Operating System (RTOS)?

Retrieved May 23, 2011, from Nation Instruments:

http://zone.ni.com/devzone/cda/tut/p/id/3938#toc0

Nimmagadda, Y. K. (2010, October). Real-time moving object recognition and tracking using

computation offloading. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) , pp.

2449-2455.

Nimmagadda, Y., Kumar, K., Lu, Y.-H., & Lee, C. S. (2010). Real-time Moving Object

Recognition and Tracking Using Computation Offloading. The 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 2449-2455). Taipei, Taiwan: IEEE

Computer Society.

Nogueira, L., & Pinho, L. (2009). Time-bpimded Distributed QoS-Aware Service Configuration

in Heterogeneous Cooperative Environments. Porto, Portugal: IPP Hurray!

Open Handset Alliance. (n.d.). Android Overview. Retrieved September 12, 2011, from Open

Handset Alliance: http://www.openhandsetalliance.com/android_overview.html

Ou, S., Yang, K., & Zhang, J. (2007). An effective offloding middleware for pervasive services

on mobile devices. Pervasive and Mobile Computing 3 (2007) (pp. 1-24). Chicago: Elsevier

B.V.

Ouliafito, A., Ricconene, S., & Scarpa, M. (2007). An analytical Comparison of the client-

Server, romete evaluation and mobile agents paradigms. (pp. 1-20). IEEE Computer Society.

Paczkowski, J. (2009, Agust 21). iPhone Owners Would Like to Replace Battery, AT&T.

Retrieved January 11, 2011, from All Things D: http://allthingsd.com/20090821/iphone-owners-

would-like-to-replace-battery-att/

Patel, N. (2010, October 29). Google TV review. Retrieved February 18, 2011, from Engadget:

http://www.engadget.com/2010/10/29/google-tv-review/

Phys 2D. (2008, 10). Retrieved 02 11, 2011, from Phys 2D: http://phys2d.cokeandcode.com/

Pruett, C. (2010, 07). Replica Island. Retrieved 09 22, 2010, from Google Code:

http://code.google.com/p/replicaisland/

Radwanick, S. (2011). 2010 Mobile Year in Review. (pp. 4-11). comScore.

68

Rho, S. (2004). A Distributed HArd Real-Time Java System for High Mobility Components.

PhD Thesis, Texas A&M University, Office of Graduate Studies of Texas A&M University,

San Antonio. Texas.

Rich, C., & Claypool, M. (2000). Basic Game Physics. Chicago: IMGD.

Schilling, C. (2011, August 23). From Snake to Tegra: the evolution of mobile phone gaming.

Retrieved September 2, 2011, from Recombu.com: http://recombu.com/news/from-snake-to-

tegra-the-evolution-of-mobile-phone-gaming_M14965.html

Shi, Y., Gregg, D., Beatty, A., & ertl, A. (2005). Virtual Machine Showdown: Stack Versus

Registers. VEE'05 (pp. 153-161). Chicago, Illinois, USA: ACM.

Silva, G. (2011). Physics Distribution using Code offloading. Porto: Instituto Superior de

Engenharia do Porto.

Silva, G., & Ferreira, L. L. (2010). An analysis on Object Serialization Methods in Java., (pp. 1-

8). Porto, Portugal.

Soh, J., & Tan, B. (2008). Mobile Gaming. Communications of the ACM. 51, pp. 35-39.

Association for computing Machinery.

Sommer, S. S. (2010). Service Migration Scenarios for Embedded Networks. 2010 IEEE 24th

Intl. Conf. on Advanced Information Networking and Applications Workshops , pp. 502-507.

Stankovic, J. (1988). A Serious Problem for Nest-Generation Systems. (pp. 10-19). IEEE

Computer Society.

Stankovic, J. (1996). Strategic Directions in Real-time and Embeded Systems. ACM Computing

Surveys (pp. 751-763). ACM.

Vaughan-Nichols, S. (2003). OSs Battle in the Smartphone market. IEEE procedings on

Industry Trends (pp. 10-12). Los Alamitos: IEEE Computer Society.

Vigna, G. (2004). Mobile Agents: Ten Reasons For Failure. IEEE International Conference on

Mobile Data Management, 2004 (pp. 1-2). Santa Barbara: IEEE.

Wang, A., Sorteberg, E., Jarrett, M., & Hjermas, A. (2008). Issues Related on Mobile

Multiplayer Real-time Games over Wireless Networks. International Symposium on

Collaborative Technologies and Systems (pp. 237-246). Chicago: IEEE and ACM.

Weinsberg, Y., Dolev, D., Anker, T., & Wyckoff, P. (2007). Hydra: A Novel Framework for

making High-Performance Computing Offload Capable. Proceedings 2006 31st IEEE

Conference on Local Computer Networks (pp. 1-9). Tampa, FL: IEEE.

Weinsberg, Y., Dolev, D., Wyckoff, P., & Anker, T. (2007). Accelerating Distributed

Computing Applications Using Network Offloading Framework. IEEE International Parallel

and Distributed Processing Symposium (pp. 1-10). Long Beach, California, USA: IEEE

Computer Society.

What is Android? (2009, 10 10). Retrieved 02 11, 2011, from Android Official Website:

http://developer.android.com/guide/basics/what-is-android.html

69

Xian, C., Lu, Y.-H., & Li, Z. (2007). Adaptive Computation Offloading for Energy

Conservation On Battery-Powered Systems. ICPADS '07 Proceedings of the 13th International

Conference on Parallel and Distributed Systems. 01, pp. 1-8. Washington, DC, USA: IEEE

Computer Society.

Xin, C. (2009, September). Artificial Intelligence Application in Mobile Phone Serious Game.

First International Workshop on Education Technology and computer Science , p. 10931095.

Xin, W. (2009). Discussions on Mobile Phone Game Implemented. ISECS International

Colloquium on Computing, Communication, Control and Management (pp. 514-516). Sanya:

IEEE.

Yang, B., & Zhang, Z. (2010). Design and Implementation of High Performance Mobile Game

On Embedded Device. 2010 International Conference on Computer Application and System

Modeling (ICCASM 2010) (pp. 196-199). Taiyuan, China: IEEE Computer Society .

Yang, K., Ou, S., & Chen, H.-H. (2008, January). On Effective Offloading Services for

Resource-Constrained Mobile Devices Running Heavier Mobile Internet Aplication. IEEE

Communications Magazine , 56-63.

Zhang, W., Han, D., Kunz, T., & Hansen, K. (2007). Mobile Game Development: Object-

Orientation or Not. 31st Annual International Computer Software and Applications Conference

(COMPSAC 2207) (pp. 1-8). IEEE.

Zhang, Y., Yang, J., & Li, W. (2008). Towards Energy-Efficient Code Dissimination in

Wireless Sensor Networks. IEEE International Symposium on Parallel and Distributed

Processing, 2008. IPDPS 2008. (pp. 1-5). Pittsburgh: IEEE Computer Society.

