

Nostalgia Studio

A game engine for creating collaborative multiplayer

online graphic adventure games

David da Luz Gouveia

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática, Área de Especialização em

Sistemas Gráficos e Multimédia

Orientador: Doutor Carlos Miguel Miranda Vaz de Carvalho

Júri:

Presidente:

Doutor João Paulo Jorge Pereira

Vogais:

Doutor António Manuel Cardoso da Costa

Doutor Carlos Miguel Miranda Vaz de Carvalho

Porto, Outubro 2012

iii

Resumo

No decorrer do projeto SELEAG foi desenvolvido um jogo de aventura gráfica educativo com o

propósito de ensinar história, cultura e relações sociais aos alunos. Este jogo foi avaliado em

contexto de sala de aula em diversos países, obtendo resultados positivos. No entanto, por

motivos técnicos, alguns dos objetivos propostos pelo projeto não puderam ser devidamente

explorados, como permitir que o jogo fosse extensível por outros educadores ou suportar a

colaboração online entre os jogadores.

Nomeadamente, as ferramentas utilizadas para desenvolver o jogo eram demasiado

complicadas para serem utilizadas fora da equipa de desenvolvimento, o que limitou a

extensibilidade do projeto, e tornou impossível que educadores sem conhecimentos de

programação fossem também capazes de traduzir os seus conteúdos educativos para este

formato.

Além disso, apesar do jogo possuir algumas funcionalidades de colaboração online, toda a

interação era efetuada externamente ao jogo, através de um fórum de mensagens, o que

demonstrou ser pouco motivante para os jogadores, pois muitos deles nem se aperceberam

que havia uma componente de colaboração no jogo.

O objetivo desta tese incide sobre estes dois problemas, e consistiu em desenvolver um editor

e motor de jogo com uma interface simples de utilizar, que não necessita de conhecimentos

prévios de programação, e que permite criar jogos de aventura gráfica com uma componente

de colaboração online verdadeiramente embebida na jogabilidade.

A aplicação desenvolvida foi testada por um conjunto de utilizadores de diversas áreas, tendo-

se obtido resultados que demonstram a acessibilidade e simplicidade da mesma,

independentemente do nível de experiência prévio de programação do utilizador. A

componente de colaboração online foi também muito bem recebida pelos utilizadores, os

quais demonstraram bastante interesse em ver jogos de aventura gráfica com componente de

colaboração online serem desenvolvidos no futuro.

Palavras-chave: Editor, Motor, Jogo, Aventura, Gráfica, Point-and-Click, Colaboração, Online,

Multiplayer

iv

v

Abstract

Project SELEAG was responsible for the creation of an educational graphic adventure game

with the purpose of teaching history, culture and social relations to students. However, some

of the goals that were proposed for the project could not be properly explored, such as

allowing the game to be extended and supporting online collaboration between players.

In particular, the tools which were used to develop the game were too complicated to be used

by the general public, which limited the extensibility of the project. Also, although the game

possessed some online collaboration features, all of the interaction was handled outside of

the game through a message forum, and players never saw each other inside the game.

The goal of this thesis was to develop an editor and game engine which allowed the creation

of graphic adventure games with a true online collaboration component, using a simple

interface that did not require previous programming knowledge.

This application was tested by a group of users from different backgrounds, and the results

proved that it was accessible regardless of the their previous programming experience. The

online collaboration was also well received, and the users demonstrated a lot of interest in

seeing graphic adventure games with online collaboration being developed in the future.

Keywords: Editor, Engine, Game, Adventure, Graphic, Point-and-Click, Collaboration, Online,

Multiplayer

vi

vii

Acknowledgments

I would like to express my gratitude to Dr. Carlos Vaz de Carvalho for his guidance, supervision

and mentorship throughout the evolution of my thesis. I would also like to thank him for the

invitation to participate in project SELEAG which eventually led to the idea behind this thesis.

I would like to thank my parents Miguel and Fátima Gouveia for all of their support not only

during the completion of my thesis and my academic life, but in everything else too. I would

also like to thank my girlfriend for the patience she's shown while I was busy working on my

thesis.

I would like to thank my friend Helena Barbosa who helped me tremendously by creating all of

the illustrations and backgrounds for the demo game that was sent to the testers. She did a

great job and I wish her a lot of success in her career!

I would like to thank Duarte Lopes who was my colleague when we worked on project SELEAG,

and ended up doing most of the scripting for Time Mesh by himself, while I was busy getting

started with the engine for Nostalgia Studio.

I would like to thank Jan Nedoma and Thomas Dibke who created the Wintermute Engine and

Visionaire Studio respectively and provided me with some of background history on how and

when each of these engines were created.

Finally I would like to thank everyone who helped test the application and replied to the

survey, including everyone at the Serious Games Network, and Trevor Sundberg from Super

Game Programmer 3 - good luck with your game!

viii

Table of Contents

1 Introduction ... 1

1.1 Project SELEAG ... 2

1.2 Motivation ... 3

1.3 Structure ... 4

2 The Evolution of Adventure Games ... 5

2.1 The Text Adventure .. 8

2.2 The Graphic Adventure .. 10

2.3 The Point-and-Click Interface .. 13

2.4 Technological Advances ... 18

2.5 The Present .. 21

2.6 Summary ... 23

3 Graphic Adventure Game Engines ... 25

3.1 Adventure Game Studio ... 27

3.2 Wintermute Engine ... 33

3.3 Visionaire Studio .. 39

3.4 Summary ... 44

4 Analysis and Requirements .. 45

4.1 Creating the Game World ... 47

4.2 Populating the Game World .. 50

4.3 Bringing the Game World to Life .. 53

4.4 Summary ... 56

5 Architecture and Design ... 57

5.1 Engine Architecture .. 58

5.2 Editor Architecture... 70

5.3 Client Architecture ... 75

5.4 Multiplayer Design .. 76

6 Implementation .. 79

6.1 Engine Implementation .. 79

6.2 Editor Implementation .. 92

6.3 Client Implementation .. 97

x

6.4 Technologies .. 99

6.5 Results ... 100

7 Conclusion .. 107

8 References .. 111

xi

Index of Figures

Figure 1 - Serious Learning Games ... 2

Figure 2 - The Time Mesh game ... 2

Figure 3 - The Time Mesh web platform .. 3

Figure 4 - Monkey Island 2, one of the most popular adventure games of all time. 6

Figure 5 - Tomb Raider I, a classic example of an action-adventure game. 6

Figure 6 – Gobliiins, a puzzle adventure game with a very simple plot. 7

Figure 7 – Steins;Gate, a Japanese visual novel that recently received an anime adaption. 8

Figure 8 - Colossal Cave Adventure, the game that started the adventure genre. 9

Figure 9 - Zork I: The Great Underground Empire .. 10

Figure 10 - Mystery House, the first graphic adventure game... 11

Figure 11 - Wizard and the Princess, a prequel to King's Quest. ... 11

Figure 12 - King's Quest I .. 12

Figure 13 - The Apple Macintosh ... 13

Figure 14 - Enchanted Scepters.. 14

Figure 15 - Déjà Vu ... 15

Figure 16 - Labyrynth ... 15

Figure 17 - Maniac Mansion ... 16

Figure 18 - Some popular games from LucasArts' catalogue. .. 17

Figure 19 - Myst ... 18

Figure 20 - Phantasmagoria ... 19

Figure 21 - Grim Fandango ... 20

Figure 22 - Monkey Island 4 ... 20

Figure 23 - The Longest Journey .. 21

Figure 24 - Ghost Trick ... 22

Figure 25 - Game Maker... 25

Figure 26 - Unity 3D ... 26

Figure 27 - RPG Maker XP .. 26

Figure 28 - The room editor with the walkable area being displayed in blue. 29

Figure 29 - The view editor used to setup character and object animations. 29

Figure 30 - A peek at the AGS code editor and its scripting language. 30

Figure 31 - The dialog editor in AGS which also relies on a scripting language. 30

Figure 32 - Blackwell Unbound .. 32

Figure 33 - Gemini Rue ... 32

Figure 34 – The scene editor in WME showing a pre-rendered 3D background. 35

Figure 35 - The same scene editor but this time working with a 2D scene. 35

Figure 36 – Previewing a 3D actor imported into WME. ... 36

Figure 37 – The scripting language used by WME. .. 36

xii

Figure 38 - Dark Fall: Lost Souls .. 38

Figure 39 - Alpha Polaris ... 38

Figure 40 - The Scene and menus editor in Visionaire. .. 41

Figure 41 - The Character editor in Visionaire showing the animation timeline. 41

Figure 42 - An example of how actions can be created without programming in Visionaire. ... 42

Figure 43 - The dialogue editor in Visionaire Studio. ... 42

Figure 44 - The Whispered World .. 43

Figure 45 - Deponia .. 43

Figure 46 - The three stages of implementing a graphic adventure game. 46

Figure 47 - Nostalgia Studio Architecture .. 58

Figure 48 - Nostalgia Editor Architecture ... 58

Figure 49 - Modules of engine core ... 59

Figure 50 - Types of graphical primitives supported by the engine. .. 60

Figure 51 - The scene graph data structure used by the engine. ... 60

Figure 52 - Architecture of the Audio module ... 61

Figure 53 - Architecture of the Network module ... 61

Figure 54 - Processes scheduled sequentially and in parallel. ... 62

Figure 55 - Example of a visibility graph generated from a polygon .. 64

Figure 56 - Modules of the adventure layer of the engine. ... 65

Figure 57 - The general game object model in Nostalgia Studio. .. 66

Figure 58 - General architecture of an entity from the Logic module 66

Figure 59 - The correlation between Actions and Processes. .. 67

Figure 60 - Architecture of the Gameplay module ... 69

Figure 61- General architecture of the editor. ... 70

Figure 62 - Interaction between the editor and the client... 70

Figure 63 - The sections of the editor .. 71

Figure 64 - Basic wireframe of section organization in the editor. .. 71

Figure 65 – Categories of Components in Nostalgia Editor ... 72

Figure 66 - Architecture of the Nostalgia Client ... 75

Figure 67 - General client execution flow .. 75

Figure 68 - Actors and spectators ... 78

Figure 69 - Primitive class diagram ... 80

Figure 70 - Scene graph implementation ... 80

Figure 71 - Pillar box (left) vs letter box (right) .. 81

Figure 72 - Scene rendered using retro mode with a low virtual resolution 81

Figure 73 - Audio module implementation .. 81

Figure 74 - Implementation of the Network module ... 82

Figure 75 - Process module implementation ... 83

Figure 76 - Graph implementation ... 83

Figure 77 - Visibility graph created from the floor region .. 85

Figure 78 - Basic entity data implementation .. 86

Figure 79 - Game object model hierarchy .. 86

Figure 80 - Logic module implementation ... 87

xiii

Figure 81 - Action module implementation ... 87

Figure 82 - All the controllers of the gameplay module .. 88

Figure 83 - Inventory controller ... 88

Figure 84 - Dialogue controller .. 89

Figure 85 - Chat controller ... 89

Figure 86 - Command controller .. 89

Figure 87 - Cursor controller .. 90

Figure 88 - Speech controller ... 90

Figure 89 - Camera controller .. 90

Figure 90 - InputData structure that encapsulates all user input .. 91

Figure 91 - Sequence diagram that shows network flow .. 91

Figure 92 - Section toolbar ... 92

Figure 93 - Rooms section .. 92

Figure 94 - Characters section.. 93

Figure 95 - Items section .. 93

Figure 96 - Settings dialog .. 94

Figure 97 - Help dialog ... 94

Figure 98 - Action editor .. 95

Figure 99 - Adding new action parts .. 95

Figure 100 - Dialogue editor... 96

Figure 101 - Execution flow of the Nostalgia Client ... 97

Figure 102 - A game created with Nostalgia Studio running ... 98

Figure 103 - The main lobby interface in the prototype .. 98

Figure 104 - How many adventure games the users played .. 101

Figure 105 - Previous programming experience of the users .. 101

Figure 106 - Previous experience with creating adventure games .. 102

Figure 107 - Most important parts of adventure games ... 102

Figure 108 - Nostalgia Studio score averages .. 103

Figure 109 - Multiplayer component features score averages .. 105

Figure 110 - An example of visual programming from the Kodu project 108

xiv

xv

Index of Tables

Table 1 - Timeline of the evolution of adventure games ... 23

Table 2 - Feature set comparison of graphic adventure engines .. 44

Table 3 - Rooms .. 47

Table 4 - Navigation ... 48

Table 5 - Portals.. 49

Table 6 - Objects... 50

Table 7 - Items .. 51

Table 8 - Characters ... 52

Table 9 - Actions ... 53

Table 10 - State .. 54

Table 11 - Dialogue... 55

Table 12 - Space partitioning methods .. 63

Table 13 - Action conditions and respective entities ... 67

Table 14 - List of action parts ... 68

Table 15 - Nostalgia Studio score distribution ... 103

Table 16 - Multiplayer component features score distribution ... 105

xvi

xvii

List of Acronyms

SELEAG Serious Learning Games

XML Extensible Markup Language

ZIL Zork Implementation Language

AGI Adventure Game Interpreter

SCUMM Script Creation Utility for Maniac Mansion

AGS Adventure Game Studio

WME Wintermute Engine

DLL Dynamic Link Library

GUI Graphical User Interface

xviii

1

1 Introduction

Nostalgia Studio is an extension of project SELEAG (Serious Learning Games) [SELEAG, 2011]

whose goal was to evaluate the use of serious games for learning history and social relations

with an extensible multiplayer online game based on collaboration and social interaction. The

game that was developed was a graphic adventure game known as Time Mesh [TimeMesh,

2011] which managed to achieve very positive results, but due to technical constraints, some

of the initial goals could not be explored in depth.

In particular, the multiplayer online features of Time Mesh were mostly limited to the website

that hosted the game, instead of being integrated into the gameplay itself. The main reason

for this limitation is that although multiplayer online play mechanics have already been used

in almost every video game genre, that is not the case with graphic adventure games which

have always remained single player games to this day. Therefore none of the existing game

engine solutions supported this behavior.

Another shortcoming of project SELEAG was its extensibility, because despite the desire to

create a platform where new content could be designed and added independently by

educators, the technology used to develop Time Mesh was too complex to fulfill that goal,

since it required some experience with software development tools and concepts, such as

Adobe Flash and XML.

This work is based around the two limitations described above, and aims to develop a graphic

adventure game engine known as Nostalgia Studio with the following goals in mind:

 Simplicity - Explore to which degree a specialized graphic adventure game engine

could allow people with little or no software development experience to create their

own graphic adventure games.

 Multiplayer online - Explore the possibilities of multiplayer online play as a mean of

collaboration in graphic adventure games, a genre which has always been focused on

single player gameplay.

Chapter 1 - Introduction

2

1.1 Project SELEAG

Project SELEAG was an European project created to evaluate the use of serious games for

learning history, culture and social relations, through the implementation of an extensible,

online, multi-language, multi-player, collaborative and social game platform. The project

counted with the collaboration of seven different partners and resulted in the creation of a

point-and-click adventure game called Time Mesh.

Figure 1 - Serious Learning Games

Time Mesh tells the story of a child who stumbles upon a time machine, and uses it to travel

back in time in order to correct certain events in history that have occurred differently from

what we know. Most of the game is based on actual historical facts, and covers three different

time periods: the Age of Discovery, the Industrial Revolution, and the Second World War. It

would have been interesting to allow more scenarios besides these three to be added to the

game, but with the technology in which the game was created, this was not possible without

significant resources and training.

Figure 2 - The Time Mesh game

The game was created using an Adobe Flash based game engine which allowed it be played

directly from within most web browsers. The game was integrated into a webpage that

required users to register and create teams in order to collaborate with each other.

Collaboration with other teams was necessary because there were two versions of each game

scenario, and knowledge from one version was required to advance in the other. However,

3

the game itself had no knowledge about the existence of the other team, and all interactions

were handled outside the game, on the web platform.

Figure 3 - The Time Mesh web platform

Although Time Mesh was originally meant to be played autonomously by students in their free

times, the game also ended up being tested and used in a classroom context, and has already

been played by over 1.000 different users across several European countries, often as part of

school activities. In general, results have been positive in terms of children enjoyment.

1.2 Motivation

Besides giving continuation to a research that was initiated with project SELEAG, there is also

a strong personal motivation behind the creation of this thesis, because it aims to contribute

to a video game genre that has been one of my favorites since the times of my childhood.

My first contact with graphic adventure games happened around 1994 with the game Monkey

Island 2 by LucasArts. Unlike most of the games that I had played before which usually had

very simple goals, such as reaching the end of the level, or beating your opponent in a fight,

graphic adventure games were all about the story, the characters, the environment and the

puzzles. This concept was extremely new to me, but I was hooked from the first minute, and

ended up playing through almost every graphic adventure game that I could get my hands on.

Unfortunately, that period was the golden era of graphic adventure games, and problems

within the industry have led the genre through a long period of stagnation, until very recently.

It is therefore highly rewarding for me to work on this project, since it aims to contribute to

one of my favorite game genres of all time.

Chapter 1 - Introduction

4

1.3 Structure

1. Introduction -This chapter introduces the context, goals and motivation behind the

implementation of this project.

2. The Evolution of Adventure Games - This chapter provides a detailed description of

what distinguishes adventure games from other game genres. Then it proceeds to

describe the origin and evolution of the genre, and how the subgenre of graphic

adventure games was born from that evolution. Knowing this evolution is important

because it allows us to understand how the core gameplay mechanics and user

interactions have changed, as well as what is expected from a modern graphic

adventure game.

3. Graphic Adventure Game Engines - This chapter introduces the concept of the game

engine as a tool that facilitates the process of developing games, and provides an

overview of the current state-of-the-art when it comes to graphic adventure game

engines, with three popular graphic adventure game engines being presented and

compared.

4. Analysis and Requirements - This chapter describes the first steps taken during the

implementation of the engine. During this process, a set of guidelines and

requirements for Nostalgia Studio were deduced from a extremely detailed

comparison of the existing graphic adventure game engines. Not only does it describe

which features are essential to the engine, but also how each of them should be

implemented in order to make the user experience as simple as possible.

5. Architecture and Design - This chapter describes the organization of Nostalgia Studio,

starting from a high-level view of its architecture, followed by a more detailed

description each of its components. Afterwards, it describes in detail how multiplayer

online play was integrated into the gameplay, and how it can be varied to provide

different modes of gameplay.

6. Implementation - This chapter describe how the most significant components of

Nostalgia Studio were implemented from a low-level and technical point of view. This

includes information on the techniques, algorithms, data structures and design

patterns which were employed to solve individual challenges encountered during the

implementation. The chapter ends with an analysis of all results received from a study

that was conducted at the end of the implementation.

7. Conclusion - This chapter concludes the work by looking back into what went right

and wrong during the development of the project, and summarizing all of the work

that was done and the results that were obtained.

5

2 The Evolution of Adventure Games

Video games can be categorized under a multitude of genres, such as action, adventure, role-

playing, simulation, or strategy, depending on their gameplay and interaction styles. This work

focuses entirely on adventure games, so it makes sense to start by providing some insight into

that genre.

There are some elements that can be found in the majority of adventure games [Adams,

2006]:

 They are usually built around a narrative...

 ...in which the player participates by assuming the role of a very small subset of its

characters.

 They are usually driven by puzzle solving rather than by a physical effort...

 ...and rely mostly on exploration...

 ...object manipulation...

 …or dialogue.

Some of these elements make adventure games significantly different from other genres:

 Action - Instead of relying on the player's reflexes like most action games, adventure

games rely on reasoning and logical thinking, which results in a more relaxed

experience.

 Strategy - Although strategy games also rely on logical thinking, they usually require

the player to control a large amount of units, such as an army or entire nation, while

adventure games focus on the main character(s) in the narrative.

Chapter 2 - The Evolution of Adventure Games

6

 Role-playing - While both genres have a lot in common, adventure games are

deterministic in nature and follow a fixed path, while role-playing games have a

statistical background which introduces randomness and variation. They also lack the

management components usually present in role-playing games (e.g. party

management, skill management) [Barton, 2008].

Figure 4 - Monkey Island 2, one of the most popular adventure games of all time.

Since adventure games place a lot of emphasis on story, it is common for them to draw

inspiration from other narrative-based media - such as literature and film - and to encompass

a wide variety of themes, from comedy to horror, or fantasy to science-fiction.

On the subject of action games, there are some adventure games that incorporate action

sequences into their gameplay, but they are always treated independently (e.g. as mini-games)

and remain secondary to the narrative and puzzles. On the other hand, if a game has some

adventure elements but the gameplay is all action based, it is usually categorized under the

sub-genre of action games known as the action-adventure, which will not be covered here.

Figure 5 - Tomb Raider I, a classic example of an action-adventure game.

7

Based on the traits described so far, it is also easy to understand why there has not been

much effort put into creating adventure games with a multiplayer online component. Most

multiplayer online games rely on the game’s progression being flexible, and allowing a large

number of players to interact simultaneously. In an adventure game, where the entire story

progression has been fixed from the start, and the number of controllable characters in the

plot is limited, multiplayer game design becomes a lot more challenging. But on the other

hand, puzzle solving and exploration are both elements that would benefit from cooperation

in a multiplayer environment, at least on a limited scale. Later chapters of this work will

address this particular problem.

Like almost every other genre in existence, the adventure game genre has a few sub-genres

with distinctive features. The most common distinction is made between text adventure

games and graphic adventure games. Text adventure games do not have any graphics, so they

rely entirely on text to present the narrative and to receive player input. Text adventure

games are also frequently known by the synonym, interactive fiction.

Graphic adventure games, on the other hand, provide a visual representation of the world,

and can employ a few different control schemes for player interaction. The most common

control scheme for a graphic adventure game is the use of a pointing device (e.g. the mouse)

or a touch screen interface, and games using that approach are known as point-and-click

adventure games.

The ratio between narrative and puzzles can vary widely from game to game, resulting in very

distinct experiences. Some adventure games place most of their emphasis on puzzles, while

demoting the narrative to a secondary role. These are sometimes known as puzzle adventure

games, and a popular example of this type of game is the 1993 best-seller, Myst.

Figure 6 – Gobliiins, a puzzle adventure game with a very simple plot.

On the other hand, there are also some adventure games that focus almost entirely on

narrative, sometimes at the cost of reducing interaction and gameplay to the bare minimum.

A common example of this approach is the Japanese visual novel genre, which is a form of

Chapter 2 - The Evolution of Adventure Games

8

interactive fiction with anime style graphics, and minimalistic gameplay that consists mostly of

a few branching choices in the game. But unlike most adventure games, visual novels usually

have multiple story paths and multiple endings, and player choices have a strong effect in the

outcome of the game.

Figure 7 – Steins;Gate, a Japanese visual novel that recently received an anime adaption.

2.1 The Text Adventure

2.1.1 Colossal Cave Adventure

The first adventure game dates back to the mid 1970s when Will Crowther, a programmer at

BBN (Bolt, Beranek and Newman) and a caving enthusiast, created a computer game based on

his experiences at the Mammoth Cave system in Kentucky. He named that game Colossal Cave

Adventure but it was often abbreviated to Adventure, a name that would later be used to

define the entire genre [Jerz, 2007]. The game was built around the exploration of a massive

underground realm modeled after the real world, but it also incorporated fantasy elements

such as magic and creatures, influenced by the popular non-computer role-playing game

Dungeons & Dragons.

Wanting to create a game that would be accessible to everyone, Crowther used a natural

language interface which gave the illusion that the player was talking with the computer. The

game relied on narrative to describe the environment, and let the player interact with it using

simple verb-noun instructions such as "get key" or "open door".

Games like this are designated text adventures, or interactive fiction, because of their

similarity to traditional literature with the added interactivity of computer games. It did not

take long for Adventure to achieve considerable following and inspire others to create their

own adventure games, especially after Don Woods, a graduate student at Stanford University,

extended the original game and released it on the ARPANET in 1977 [Woods, 2001].

9

Figure 8 - Colossal Cave Adventure, the game that started the adventure genre.

2.1.2 Zork

Once Adventure reached the MIT (Massachusetts Institute of Technology), it caught the

attention of a group of students: Tim Anderson, Marc Blank, Bruce Daniels, and Dave Lebling

(some of which would later found InfoCom). After enjoying the game for the first couple of

weeks, their thoughts soon turned towards improving it. They identified two major

shortcomings with the game: the rudimentary parser system and the lack of extensibility.

With these in mind, the group set forth to develop a brand new game, and by June 1977, the

first version of Zork had been created [Anderson, 1985]. Zork took place in a fantasy world,

and managed to excel not only from a technical point of view, but also from the quality of its

storytelling. It kept being extended until its commercial release by InfoCom in 1980. It had an

interpreter capable of handling complex sentences such as "kill troll with sword" or "put

crown, scepter and gold into case", which was a huge improvement over its predecessor. It

was also significantly easier to add new content to the game.

The first version of the game only ran on the PDP-10 mainframe computer, which very few

people had access to. With personal computers (such as the Apple II) gaining popularity,

InfoCom decided to take advantage of the situation. But compared with the PDP-10, personal

computers had limited resources, and the multitude of platforms presented a portability

challenge. To deal with the memory constraints of personal computers, they split the original

game in three: Zork I: The Great Underground Empire, Zork II: The Wizard of Frobozz and Zork

III: The Dungeon Master.

They were released one year apart and had several improvements made to their content,

causing the overall storyline to be more coherent. To address the portability problem, they

developed a virtual platform known as the Z-Machine which was programmed in a specialized

scripting language named the Zork Implementation Language (ZIL). All of the game content

Chapter 2 - The Evolution of Adventure Games

10

was specified in ZIL, and porting the game to a different platform only required the creation of

a Z-Machine Interpreter for it. Famous graphic adventure developers such as Sierra On-Line

and LucasArts would later adopt this concept and develop their own scripting languages, AGI

and SCUMM respectively.

Figure 9 - Zork I: The Great Underground Empire

2.2 The Graphic Adventure

2.2.1 Mystery House

Ken Williams and his wife Roberta Williams were also inspired by Adventure to create their

own games. However, their vision was different from the MIT group, and instead of focusing

on text, they decided to take advantage of recent advances in computer hardware and

brought graphics into the genre. Their first game was called Mystery House and it was

released in 1980. The game told an Agatha Christie-like mystery story where the player had to

search for treasures in a house while trying to avoid a less fortunate fate. Roberta designed

the entire game on her own, and Ken implemented it on an Apple II microcomputer.

Mystery House had a very simple parser, but unlike Adventure, each room was accompanied

by a monochromatic picture. This was ground-breaking given the hardware limitations of the

time. For instance, memory was too limited to store a bitmap for each room, so images were

stored as sets of line drawing instructions instead. When the time came to present the picture,

the system executed those instructions in turn.

The game was a commercial success, and so the couple decided to dedicate themselves to

game development. Together they founded what would become Sierra On-Line, a company

responsible for some of the most famous graphic adventures of all time [Loguidice, 2009].

11

Figure 10 - Mystery House, the first graphic adventure game.

2.2.2 Wizard and the Princess

Still in 1980 they released Wizard and the Princess, a game inspired by fairy tales and legends

that Roberta used to love as a child [ACG, 1999]. Unlike its predecessor, Wizard and the

Princess featured colored graphics, making full use of the Apple II's graphic capabilities. The

system allowed a total of 6 colors to be displayed simultaneously, but through clever use of

dithering it was possible to give the illusion that more colors were present. Once again the

game was a success, and also served also to set the theme and tone for a game yet to come.

Figure 11 - Wizard and the Princess, a prequel to King's Quest.

Chapter 2 - The Evolution of Adventure Games

12

2.2.3 King’s Quest

Throughout the following years, Sierra On-Line continued releasing game after game and

reinforcing their status as the leading adventure game developers in the market. But their

biggest contribution to the graphic adventure genre happened in 1984 when IBM

commissioned them to develop a demonstration product for the PCjr [TheDotEaters, 1998].

That product was a graphic adventure game called King's Quest which tells the story of Sir

Graham, a knight on a quest to retrieve three stolen artifacts and become the next king of the

realm.

The game took advantage of the double buffering capabilities of the PCjr and introduced

animated characters. Furthermore, for the first time in a graphic adventure, the main

character could also be seen on screen and controlled using the arrow keys, although all other

actions were still handled through the text parser. It was also on this project that Sierra

developed their scripting system called the Adventure Game Interpreter (AGI). AGI simplified

the process of porting the game to other platforms, which turned out to be critical to the

success of the game.

The PCjr did not sell well because of its experimental keyboard design and a price well above

its competition. As a consequence, King's Quest was not immediately successful. It was only

when the game was re-released for the Tandy 1000 one year later that it became a hit.

Afterwards, its popularity grew exponentially, and the game ended up being released on a

multitude of platforms such as the Apple II, Amiga, and even the Sega Master System.

The game was not without flaws however, most notably due to its high difficulty. Many

puzzles suffered from a very convoluted logic, and the limited text parser introduced many

word guessing challenges because you did not know the names of the objects that were on

the screen. The character was also not easy to control, and a misstep within the world would

frequently mean death. Nonetheless, none of these issues were enough to prevent the game

from achieving a massive fan base.

Figure 12 - King's Quest I

13

Following the success of the first game, Sierra spent the following 10 years devoting

themselves to the creation of graphic adventure games. They took the King's Quest series up

to its eighth installment, and also started other series such as Space Quest, Leisure Suit Larry

and Gabriel Knight.

2.3 The Point-and-Click Interface

2.3.1 Apple Macintosh

Although the adventure genre had evolved significantly with the introduction of computer

graphics and animation, interaction was still handled through the rudimentary parser

interface. One disadvantage of the parser interface was that it required players to guess what

words to write, rather than focusing on what they had to do. While some companies poured

more effort into their parsers and managed to minimize the problem, others did not, resulting

in games that were extremely hard to complete without a user guide. The problem was

aggravated with early graphic adventures, where low fidelity graphics created situations

where the player would have to look at two pixels on the screen and guess whether it was a

rock, an egg, a marble, or part of the scene's backdrop.

Fortunately, a new technology was about to hit the market which would change the universe

of computer games forever. In 1984, Apple introduced the world to its new line of personal

computers, the Macintosh. The Macintosh was the first commercially successful personal

computer based around a graphical user interface rather than a command-line interface. It

also came equipped with a pointing device, whose introduction presented many opportunities

for graphic adventures - by moving the cursor around the scene, the player was now able to

interact with objects directly rather than having to address them by name.

Figure 13 - The Apple Macintosh

Chapter 2 - The Evolution of Adventure Games

14

2.3.2 Enchanted Scepters

The introduction of this pointing device was revolutionary, and developers were quick to

realize the possibilities, with Enchanted Scepters by Silicon Beach Software being released that

same year (1984) for the Macintosh. While Enchanted Scepters did not look too different from

early graphic adventures, objects were selected using the mouse, and commands were chosen

from a drop down menu. No longer were players required to memorize lists of commands or

try to figure out the correct name for an object.

Figure 14 - Enchanted Scepters

2.3.3 Déjà Vu

That was the birth of the point-and-click adventure, a sub-genre of graphic adventures which

is still regarded as one of the most popular types of adventure games. And if Enchanted

Scepters took the first steps in the genre, it was Déjà Vu: a Nightmare Comes True (released in

1985 by ICOM Simulations) that really helped establish it [Moss, 2011].

Besides the features introduced by Enchanted Scepters, Déjà Vu added a command palette

that simplified the task of selecting commands, and an inventory window to help the player

keep track of his possessions. Fans of the genre will probably recognize these features from

most popular adventure games that have been released since then. Sierra also realized the

advantages of the point-and-click interface, and started using it in later iterations of their

King's Quest series.

15

Figure 15 - Déjà Vu

2.3.4 Labyrinth

Another company that left a deep mark on the history of adventure games was Lucasfilm

Games (now LucasArts). In 1986, they released a graphic adventure game called Labyrinth,

based on the movie of the same name. Although the game starts out as a text adventure, it

quickly transitions into a graphic adventure after a few minutes into the game. All interaction

was still handled through the keyboard, but it did not require commands to be typed directly.

Instead they were selected from a slot machine text interface with verbs shown on the left

and nouns on the right.

Figure 16 - Labyrynth

Chapter 2 - The Evolution of Adventure Games

16

2.3.5 Maniac Mansion

But the game that really helped LucasArts establish itself as a strong contender in the graphic

adventure field was Maniac Mansion, released the following year. The game tells the story of

a teenager's attempt to rescue his girlfriend from an evil mad scientist, and was inspired by

previous graphic adventure titles such as King's Quest and Déjà Vu, as well as many B-horror

movies from the 40s and 50s with humorous elements [Kalata, 2011].

A lot of the game's merit is based on how it managed to combine and significantly improve

upon its predecessors' qualities. Maniac Mansion was powered by a system known as the

Script Creation Utility for Maniac Mansion (SCUMM) which was developed by Ron Gilbert, a

well known game designer, programmer and producer.

The SCUMM engine was controlled through a point-and-click interface, with a command

palette and inventory being shown at the bottom of the screen, while the top half presented

the game world to the player (clear influences of ICOM and Sierra respectively).

The story was a lot less linear than previous adventure games, as the player could choose

between different characters, and there were multiple endings to the game depending on the

paths he took. The game was also one of the first examples in video game history to make

extensive use of cutscenes in order to advance the plot.

But the most significant change lied in its design philosophy. Ron Gilbert wanted to create a

user friendly experience, so he looked into streamlining aspects of the game that would not

contribute to the player’s fun. This philosophy was always central in all of LucasArts games,

and from game to game, new guidelines were adopted in order to make them more enjoyable

[Moss, 2011].

The use of the keyboard was completely replaced by the mouse, even for player movement

(through the use of an intelligent pathfinding system). Great care was also put into designing

puzzles that actually made sense, and to introduce problems and solutions in a sensible order.

Figure 17 - Maniac Mansion

17

More recent games also took great care to prevent the player from being able to get

irreversibly stuck, or even to die, an extremely common and annoying occurrence in Sierra’s

games. The combination of all these traits along with large doses of humor, interesting and

likeable characters and involving storylines, made LucasArts into what is perhaps the most

memorable graphic adventure game developer to this day and age.

2.3.6 Other LucasArts Games

Although LucasArts released many great games following Maniac Mansion, it is not within the

scope of this work to cover each of these games individually, as they were mostly refinements

over the existing formula. But to give a brief overview into what their games looked like,

Figure 18 shows some of their most famous ones, in order: Monkey Island 2, Loom, Day of the

Tentacle (a sequel to Maniac Mansion), Indiana Jones and the Fate of Atlantis, Sam & Max Hit

the Road, and Full Throttle.

Figure 18 - Some popular games from LucasArts' catalogue.

Chapter 2 - The Evolution of Adventure Games

18

2.4 Technological Advances

2.4.1 CD-ROM

Technology has always been central to the evolution of video games. Previously we saw how

the introduction of the mouse was enough to lead the graphic adventure genre into a brand

new direction.

Another significant step in that evolution was the introduction of the CD-ROM. With hundreds

of times more storage capacity than its predecessors, it allowed developers the freedom to

add voice-overs, full motion video sequences, recorded soundtracks, and higher resolution

graphics to their games. The main disadvantage was slower read speeds which resulted in

longer load times, but that was a tolerable tradeoff considering the amount of new content it

permitted.

A game that contributed greatly to the CD-ROM's popularity was Cyan World's best-seller,

Myst, released in 1993 [Moss, 2011]. Myst is a puzzle adventure, shown from a first-person

perspective, and showcasing pre-rendered 3D graphics that were extremely sophisticated for

the time. Unlike most adventure games to date, Myst did not have any list of actions to

choose from or a specialized interface, and all interaction was done by clicking directly in the

environment [Loguidice, 2009]. This fact contributed significantly in making the game

accessible to a very large range of people, and with over 6 million copies sold worldwide, it

remained the best-selling PC game for a long time, until it was surpassed by The Sims in 2002

[GameSpot, 2002].

Figure 19 - Myst

In 1995, Sierra On-Line released Phantasmagoria, an horror-based graphic adventure which

combined computer generated backgrounds with real life actors. The game required such a

large amount of assets that it spanned a total of 7 CD-ROMs. Phantasmagoria also stirred a lot

of controversy for its mature content, such as gore, violence and sex, which led to the game

19

being banned in Australia and several major retailers refusing to sell it. A year later, a sequel

was released, this time also using real life footage for most of the backgrounds.

Figure 20 - Phantasmagoria

As for LucasArts, the company also made use of the CD-ROM, but in a more traditional and

conservative way, such as improving the graphical and sound quality of their games, and

featuring recorded voice tracks for the character dialogues. These changes were applied not

only to new releases, but to older games as well, which were upgraded and re-released with

new content.

2.4.2 3D Graphics

Another technological advance that had a huge impact on the world of video games, was the

development of real time 3D graphics and 3D graphics hardware. Although 3D graphics were

considered more relevant to other genres, a few adventure game studios also began making

use of 3D graphics in their games.

In 1998, LucasArts switched from their old SCUMM engine into a new 3D engine called the

GrimE, and released Grim Fandango, a dark comedy adventure game taking place in the Land

of the Dead. The game abandoned the classic point-and-click interface in favor of a keyboard-

based control scheme, where the player used the arrow keys to control the main character,

and used another key to trigger an action with the closest object.

Although the game looked 3D, only the characters were actually being rendered as true 3D

models, while backgrounds were still pre-rendered 2D images. But since the style of the

backgrounds matched those of the characters, by carefully overlaying the 3D models on top of

them, it was possible to give the illusion that the entire world was in 3D.

Chapter 2 - The Evolution of Adventure Games

20

Unfortunately, despite being received with great acclaim by the critics, and being considered

as one of the greatest games of all time, the game sold very poorly. With video games in

general becoming increasingly popular with rise of 3D graphics, a very large portion of the

market was now looking into other genres, such as action games like Quake. This fact had a

strong effect on publishers, who started to drop their support for graphic adventure game

developers, especially in the United States, leading to a very clear decline of the genre.

Figure 21 - Grim Fandango

After Grim Fandango, the only graphic adventure game released by LucasArts was the fourth

installment in the Monkey Island series, in the year 2000. Every other attempt ended being

cancelled. Sierra also underwent major changes, with the company being bought by CUC and

Ken Williams stepping down as the CEO as the starting point to the decline of the company.

Figure 22 - Monkey Island 4

21

2.5 The Present

The decline in the graphic adventure genre was mostly felt in the United States, with

influential companies such as LucasArts and Sierra retiring from the scene [Crook, 2007]. Even

if the developers wanted to keep creating graphic adventure games, there was a generalized

lack of support by publishers around the nation, and most new projects ended up being

cancelled. This situation was mostly due to the fact that other game genres were rapidly

increasing in popularity, while adventure games could not keep up with this growth.

Despite the situation in the United States, the graphic adventure genre was still going strong

in the rest of the world, particularly in Europe and Japan. For example, Norwegian developers

Funcom released The Longest Journey in 1999, while French developers Microïds released

Syberia in 2001, both of which were well received by the public. Japanese visual novels on the

other hand, were undergoing a revolution around this time, with games such as To Heart in

1997 and Kanon in 1999, and would only be increasing in popularity in the future.

Figure 23 - The Longest Journey

Some American graphic adventure developers also refused to lay down their arms. In 2004, a

company known as Telltale Games was founded by a group of former LucasArts' employees

that had been working on a cancelled Sam & Max sequel. Managing to acquire the rights to

the series, Telltale Games started releasing new Sam & Max games beginning in 2006, using a

business model that consisted of dividing the games into several, small episodes, and

releasing them individually with one or two months of interval. The same approach has been

reused by the company in several other games such, such as Tales of Monkey Island, released

in 2009, and Back to the Future: The Game, released in 2010 [Moss, 2011].

Another area where graphic adventure games started becoming more popular was in the

video game console market. While graphic adventure games have always received ports for

video game consoles, such as Maniac Mansion for the NES, the lack of a pointing device

usually resulted in a weaker experience with bad controls. But some of the most recent video

game consoles have popularized new interaction methods that fit the graphic adventure

genre perfectly, such as the touchscreen interface of the Nintendo DS or the Wii Remote of

Chapter 2 - The Evolution of Adventure Games

22

the Nintendo Wii, which among other features, serves as a handheld pointing device. This led

to the development of games such as Zack & Wiki, released in 2007 for the Nintendo Wii, or

Ghost Trick, released in 2011 for the Nintendo DS. Smarthphones and tablets with their

touchscreen interfaces have also become a popular target for graphic adventure game

developers, with one of the most popular examples being Machinarium.

Figure 24 - Ghost Trick

After almost a decade of inactivity in this field, LucasArts also had a change of heart and

decided to revisit some of their old adventure titles. From this effort, the first two Monkey

Island games were remade with an entirely new hand-drawn animated art style, high

resolution graphics, re-mastered music presented in full orchestral detail, a new gameplay

interface, an in-built puzzle hint system, and even a way to switch back and forth between the

new and the old style at any time. The second game also included developer commentary and

a behind the scenes art gallery.

Also related to LucasArts, the video game designer Tim Schaffer who played a crucial role in

the development of many of their classics, left the company in 2000 to found Double Fine

Productions. Although Double Fine Productions started by focusing mostly on action games,

such as Psychonauts or Brutal Legend, they are currently trying to make a big comeback into

the graphic adventure genre. Their first step in that direction was the puzzle adventure game

Stacking, released in 2011, but what really took the world by surprise was their use of the

crowdsourcing platform Kickstarter to announce the development of a brand new graphic

adventure game in February 2012 [DoubleFine, 2012]. The project is currently under

development, after managing to gather over 3 million dollars from fans of the genre. This

effort has also caught the attention of other graphic adventure developers who have followed

their lead, with projects such as a Leisure Suit Larry remake and a new game by Gabriel

Knight's creator. All of this proves that era of graphic adventure games might not be over yet.

23

2.6 Summary

Table 1 - Timeline of the evolution of adventure games

Game Company Year Significance

Text Adventure

Colossal Cave
Adventure

Crowther, Woods 1976~ First text adventure

Zork Infocom 1980 Improved Parser

Graphic Adventure

Mystery House Sierra On-Line 1980

First graphic
adventure

Monochromatic
images

Wizard and the
Princess

Sierra On-Line 1980 Colored images

King's Quest
Space Quest

Sierra On-Line 1984+
Animation

Character present
on scene

The Point-and-Click Interface

Enchanted Scepters
Silicon Beach

Software
1984

Point-and-click
interface

Déjà Vu
ICOM

Simulations
1985

Command palette
Inventory

Maniac Mansion
Monkey Island

Day of the Tentacle
Many others

LucasArts 1987+ Fun!

Technological Advances

Myst Cyan World 1993 CD-ROM

Phantasmagoria Sierra On-Line 1995 Real life footage

Grim Fandango
Monkey Island 4

LucasArts 1998+ 3D Characters

The Present

The Longest Journey Funcom 1999 Europe while the
genre was dead in

America
Syberia Microids 2001

Sam & Max
Tales of Monkey Island

Telltale Games 2006 Episodic content

Zack & Wiki
Ghost Trick

Machinarium
Several 2007+

Consoles
Touchscreen

Unnamed Adventure Double Fine 2012
Kickstarter

?

Chapter 2 - The Evolution of Adventure Games

24

25

3 Graphic Adventure Game Engines

A game engine is a software system designed to assist in the creation and development of

video games. This is usually accomplished by providing tools and reusable components that

would otherwise need to be implemented by the development teams. Some game engines,

such as Game Maker, are very generic and flexible in order to be useful for different game

genres (e.g. platform games, simulation games, first-person shooters). Other game engines,

such as the ones described in the following sections, are designed for a specific game genre

and usually provide most of the gameplay constructs required for that type of game, at the

cost of abandoning the flexibility needed to create something different from that pattern.

Figure 25 - Game Maker

While many games are still built from scratch or with custom game engines, an increasing

number of game development studios make use of game engines that have been developed

externally. This allows costs to be reduced dramatically and for teams to concentrate on

creating actual game content. Even when game engines are developed internally, they are

usually reused in future projects, so the benefits are the same. Some game engines such as

the UDK or the CryENGINE bring the technologies that power some of the most advanced AAA

Chapter 3 - Graphic Adventure Game Engines

26

games to the masses, while others such as Unity3D are very simple to use and provide a very

attractive platform for students, hobbyists and indie game developers to create their projects.

Figure 26 - Unity 3D

Finally we have those game engines that have been tailored for a specific game genre. Due to

these constraints, it is possible to find game engines in this category that require no

programming experience from the user, allowing people from all areas to create their own

games. For example, two popular game engines in this category are M.U.G.E.N (for the

creation of 2D fighting games) and RPG Maker (for the creation of tile-based role-playing

games).

Figure 27 - RPG Maker XP

It should come as no surprise that there are also a few free and commercial game engines

focused entirely on the creation of graphic adventure games. The rest of this chapter will be

dedicated to the three most popular graphic adventure game engines of the moment:

Adventure Game Studio, Wintermute Engine and Visionaire Studio . These three engines were

selected because of their popularity and because they have already proven their quality with

all the successful commercial games that have been developed and released with them.

27

3.1 Adventure Game Studio

Adventure Game Studio (AGS) was first released in 1997 as an MS-DOS program called

"Adventure Creator". It was developed by British programmer Chris Jones, and highly inspired

by Sierra On-Line's graphic adventure games, as the first version of the engine was built

specifically for low resolution, keyboard-controlled adventure games.

The initial adoption of the engine was slow, but by 2001 it had achieved widespread

popularity, and managed to keep an edge over its competitors (e.g. AGAST and SLUDGE) due

to the size of its community and the large number of games being released every year.

The feature set also expanded significantly, with new additions such as increased screen

resolution and color depth support, and hardware acceleration. The editor was also rewritten

in 2008 to run on the .NET platform. In 2010, Chris Jones released the source code for the

editor, and in 2011, for the runtime engine, both under the Artistic License version 2. AGS is

not as modern as the other two engines covered here, but with more than a thousand games

under its belt, it still holds a considerable following nowadays.

Website

http://www.adventuregamestudio.co.uk

Current Version

3.2.1 (April, 2011)

License

AGS is in free for commercial use, but there are some factors that need to be considered. In

particular, you must comply with the licenses of each individual third party component that is

required by AGS, as well as changing the default speech font, which is ripped from Space

Quest 4.

“If you wish to make money from anything you create with AGS, which covers both shareware

and commercial releases, there are some factors you need to consider. First of all, the default

speech font in AGS is ripped from Space Quest 4. If you are going to distribute your game

commercially, you should change this because it may make Sierra unhappy. The default

normal font is however drawn by me and freeware. AGS itself, as in the compiled version of

the code written by me (Chris) is freeware and therefore may be distributed commercially

without penalty. However, AGS uses some third-party components which have different

license agreements which you will have to abide by in order to commercially release your

game." (check the reference below for a list of all the third-party components)

[AGS, 2011]

http://www.adventuregamestudio.co.uk/

Chapter 3 - Graphic Adventure Game Engines

28

Features

 Platforms – Only runs on Windows XP and above, although Linux and Mac ports are

available for an older version.

 Resolutions – Supports resolutions from 320x200 for retro games up to 1024x768 for

a more modern look.

 Color depths - Supports 8-bit (palette), 16-bit (hi-color) and 32-bit (true-color)

graphics.

 Graphics – Traditional rendering with DirectDraw5, or hardware accelerated rendering

with Direct3D9.

 Audio formats - Supports multiple audio formats such as OGG, MP3, WAV, MOD, XM,

and MIDI.

 Voice speech - Speech packs supported with easy system to link lines of text to audio

files.

 Video formats – Supports multiple video formats such as AVI, WMV, FLC, and OGV

(Ogg Theora).

 Scripting – Simple yet powerful Java/C#-style language.

 Script editor - Built-in with autocomplete, syntax highlighting, calltips and online help.

 Script debugger - Built-in debugger allows placing breakpoints and stepping through

script code.

 Translations – Built-in support for translating your game text to different languages.

 Plugins - Plugins are available to enhance AGS with extra features.

 Source control - Integration with any MSSCCI systems such as SourceSafe or Preforce.

29

Screenshots

Figure 28 - The room editor with the walkable area being displayed in blue.

Figure 29 - The view editor used to setup character and object animations.

Chapter 3 - Graphic Adventure Game Engines

30

Figure 30 - A peek at the AGS code editor and its scripting language.

Figure 31 - The dialog editor in AGS which also relies on a scripting language.

31

Scripting

#define DOORPANEL_OPEN_TIME 200

int DoorState;
int BuildingState;
int DoorPanelTimer;

function DoorInit() {
 DoorState = CLOSED;
 oDoor.SetView(24,7);
 DoorPanelTimer=0;
 RemoveWalkableArea(2);
 cPiratebob.ChangeRoom(crmDarsDoor,165,73);
}

function DoorOpen() {
 if (DoorState!=OPENED) {
 DoorState = OPENED;
 aDoorOpen.Play();
 oDoor.SetView(24,7,0);
 Wait(50);
 oDoor.Animate(7,3,eOnce,eBlock,eForwards);
 RestoreWalkableArea(2);
 }
}

function DoorClose() {
 if (DoorState!=CLOSED) {
 DoorState = CLOSED;
 oDoor.SetView(24,7,5);
 aDoorClose.Play();
 Wait(1);
 oDoor.Animate(7,3,eOnce,eBlock,eBackwards);
 RemoveWalkableArea(2);
 }
}

function hSidewalk_Look() {
 DisplayMessage(1);
}

function hRoad_Look() {
 DisplayMessage(2);
}

function hSkyline_Look() {
 DisplayMessage(3);
}

function hGap_Look() {
 character[14].Walk(143, 90, eBlock);
 DisplayMessage(0);
 player.ChangeRoomAutoPosition(14);
}

Chapter 3 - Graphic Adventure Game Engines

32

Showcase

Thousands of games have been produced with Adventure Game Studio over the years. The

most notable examples come from Wadjet Eye Games, and independent game development

team that created most of their commercial titles using AGS. They are particularly famous for

the Blackwell series, which started in 2006 and is currently in its fourth installment. The series

is known for its excelent story and voiceovers, having received several awards over the years.

Figure 32 - Blackwell Unbound

Another notable example in their library is Gemini Rue, a science fiction cyberpunk graphic

adventure released in 2011. It should be noticeable from these screenshots, that both Gemini

Rue, and the Blackwell series, despite being relatively recent games, are built with retro-styled

graphics. This is a trait present in most games created with AGS, as the engine does not

support the higher resolutions used by modern games, and works better using low resolution

graphics.

Figure 33 - Gemini Rue

33

3.2 Wintermute Engine

The Wintermute Engine (WME) is a graphic adventure game engine developed by Jan Nedoma

in the Czech Republic, and inspired mostly by the SCUMM engine and the Broken Sword series.

The engine started out as a personal project of the author, but was eventually released to the

public in 2003. Wintermute had a great reception since the beginning, probably due to its

balanced mix between usability and flexibility, and manages to remain a popular game engine

to this day.

One of the distinguishing features of this engine is the support for 3D characters, which was

added in 2005, and allows the creation of games with graphics like Grim Fandango or The

Longest Journey. The engine became open-source in 2007, and a portable version known as

WME Lite was released in 2011, making the engine easier to port to other platforms, such as

the Mac OSX 10.6 and iOS.

Website

http://dead-code.org

Current Version

1.9.1 (January, 2010)

License

Free for commercial use and open-source.

Wintermute Engine Development Kit is provided for free for both hobby and commercial use.

However, if you find it useful and you’d like to support its further development and/or express

your appreciation, you’re encouraged to make a donation.

Engine source code is available upon request under the terms of GNU Lesser General Public

License.

[WME, 2010]

http://dead-code.org/

Chapter 3 - Graphic Adventure Game Engines

34

Features

 Resolution – Supports virtually any screen resolution, from retro-style graphics to

high-resolution games.

 Color depth – Support for 16-bit (hicolor) and 32-bit (true color) graphics, with

automatic conversion if needed.

 Rendering – Supports 3D hardware acceleration to provide fast 2D graphics in high

resolutions, with advanced graphical effects such as transparency, alpha blending and

antialising. Also has a compatibility mode which runs on older computers without

hardware acceleration.

 Supported file formats – The engine supports BMP, TGA, PNG and JPG files for

graphics, OGG and WAV for sound, and OGV and AVI with automatic subtitles display

for video.

 Scripting language – Provides a flexible object-oriented scripting language, which

allows you to add almost any feature or puzzle you need.

 Parallax scrolling – Multi-layered parallax scrolling is natively supported by the engine

with no additional scripting required to implement it.

 Particle effects – Has built-in support for particle effects, such as rain or snow,

through the scripting language.

 Support for 3D characters – Includes support for real-time rendered 3D characters,

that allows 2D environments to be combined with 3D characters to create games like

Syberia or The Longest Journey.

 Effect files – Supports the use of custom HLSL effect files for state-of-the-art 3D

rendering.

 User interface layer – You can build complex user interfaces using several available

controls such as windows and buttons. All the controls are fully skinnable, so you can

change their look to fit your game.

 Localization support – Allows the games to be translated into other languages, a

feature that is not limited to texts, but also fonts, graphics or even sounds.

 Accessibility support – Provides several options to improve accessibility for vision-

impaired players, such as using an automatic text-to-speech synthesizer.

 Plugins – Support for external DLL plguins to add new features to the engine.

35

Screenshots

Figure 34 – The scene editor in WME showing a pre-rendered 3D background.

Figure 35 - The same scene editor but this time working with a 2D scene.

Chapter 3 - Graphic Adventure Game Engines

36

Figure 36 – Previewing a 3D actor imported into WME.

Figure 37 – The scripting language used by WME.

37

Scripting

#include "scripts\base.inc"

// load the old guy person
global OldGuy = Scene.LoadEntity("entities\oldguy\oldguy.entity");
OldGuy.SkipTo(505, 330);

// setup actor's initial position depending on where he came from
if(Game.PrevScene=="street")
{
 actor.SkipTo(139, 428);
 actor.Direction = DI_DOWNRIGHT;
}
else
{
 actor.SkipTo(314, 505);
 actor.Direction = DI_DOWNRIGHT;
}

// point the "camera" at the actor
Scene.SkipTo(actor);

global StateRoom;

on "book"
{
 Game.Interactive = false;
 actor.Talk("OK, I'll put the book back.");

 // walk to the desk
 actor.GoTo(782, 645);
 actor.TurnTo(DI_UPLEFT);

 // play "take" animation
 actor.PlayAnim("actors\molly\ul\take1.sprite");

 // show the book entity again and remove "book" item from the inventory
 Game.DropItem("book");
 var EntBook = Scene.GetNode("book");
 EntBook.Active = true;

 // play the second "take" animation
 actor.PlayAnim("actors\molly\ul\take2.sprite");
 Game.Interactive = true;
}

on "LookAt"
{
 actor.GoToObject(this);
 actor.Talk("It's a sturdy looking desk.");
 if(!Game.IsItemTaken("book")) actor.Talk("There's a book lying on it.");
}

Chapter 3 - Graphic Adventure Game Engines

38

Showcase

Wintermute has been used to develop a considerable amount of games, but the ones that

stand out the most are the ones that make use of the engine’s advanced graphical features.

One example is Dark Fall: Lost Souls, a first-person horror-adventure game that managed to

provide a full panoramic 3D experience by creating every scene in the game as a textured 3D

object, with the camera being positioned from the inside. This is typically not possible in a

Wintermute game, and serves to showcase how flexible the engine can be.

Figure 38 - Dark Fall: Lost Souls

Another good example of the power of Wintermute is from the indie game Alpha Polaris,

which also an horror adventure game, but from a third-person perspective and featuring 3D

characters over beautiful pre-rendered backgrounds.

Figure 39 - Alpha Polaris

39

3.3 Visionaire Studio

Visionaire Studio is a graphic adventure game engine that was primarily developed with

simplicity and usability in mind. It started out as a school project by Timotheus Pokorra and

Thomas Dibke in 1998, but they were later joined by Alex Hartmann and Robert Neumann as

the project grew. The first public version of Visionaire was released around 2001, with the

second version being released in early 2004.

At the time of writing, the engine is in its third version and still being actively developed. The

biggest selling point of the engine was that it did not require any scripting knowledge by the

user, and every action in the game can be created directly through the editor's interface,

although advanced users can still write scripts directly in the Lua programming language. The

creators are also currently working on new additions to the engine, such as multi-platform

support and 3D characters, which should make it an even stronger contender in the field.

Website

http://www.visionaire-studio.net

Current Version

3.6 (August, 2011)

License

There are free and commercial licenses depending on the scope of the game.

"To obtain a license for Visionaire 3.x, the users have 3 different options to choose from:

License Option 1 - Freeware

The freeware version of Visionaire 3.x is available here and does not cost anything. After

having downloaded the software, the user can test the software extensively. All features of

Visionaire 3.x are available for that - there are no constraints of functionality. But the user of

the freeware version has no possibility of compiling his games into one file (Vis game file).

Therefore, the "uncompiled game resources" can be still edited with the Visionaire editor, i.e.

the files can be seen and edited by other users of Visionaire. Also only freeware-games may

be developed. It's prohibited to use the freeware-version of "Visionaire" for developing or

distributing commercial games.

License Option 2 - Limited Distribution

The full version of Visionaire 3.x can be purchased for 35 Euros. With this version it is possible

to compile the project to a finished game. A finished game consists of one or multiple files and

cannot be edited by the Visionaire Editor anymore. With this license you can develop and

http://www.visionaire-studio.net/

Chapter 3 - Graphic Adventure Game Engines

40

distribute both freeware and commercial games with limited distribution rights. The games

are only to be sold for a maximum price of 15 Euro (or the according value in another

currency). It is allowed to sell your games yourself or on a shareware platform. If the game is

developed for a third party (e.g. publisher or client for an ad game) then license option 3 is

required.

License Option 3 - Unlimited Distribution

The unlimited distribution rights for a game can be purchased for 1000 Euro. The Visionaire

3.x full version is included with this license. If requested it is possible to receive intermediate

builds (internal Visionaire versions between two public releases). This allows you to get a

version with possible important bugfixes or features faster than with the regular releases."

[Visionaire, 2011]

Features

 Resolution - Supports basically all reasonable screen resolutions, including widescreen.

 Supported formats - Supports most popular multimedia formats and video codecs.

 Action System - Offers an easy to use and flexible action system, so that even users

without programming skill can create all of the common elements of the game.

 Scripting - Beyond the action system, Visionaire provides even more flexibility

through the integrated Lua scripting language.

 Hardware Acceleration - Uses OpenGL hardware acceleration to achieve optimal

speed.

 Flexible Interface - Visionaire's flexible interface system allows the use of many

different interfaces for commands, placeholders, switches and much more.

 Special Effects - Provides in-built support for parallax scrolling and particle, without

the need for any code.

 Multi-language - Games created with Visionaire can be translated into as many

languages as you want. Unicode is used for maximum flexibility and to support even

complicated characters like those in Cyrillic or Chinese.

41

Screenshots

Figure 40 - The Scene and menus editor in Visionaire.

Figure 41 - The Character editor in Visionaire showing the animation timeline.

Chapter 3 - Graphic Adventure Game Engines

42

Figure 42 - An example of how actions can be created without programming in Visionaire.

Figure 43 - The dialogue editor in Visionaire Studio.

43

Showcase

Several notable games have been created with Visionaire Studio, most of which tend to

feature high-definition 2D graphics. Although there is still no support for 3D characters like

Wintermute, most games created with Visionaire manage to have a distinctively modern look

to them. One example is The Whispered World, developed by Daedalic Entertainment and

released in 2010. The game features gorgeous painted scenery and cartoon characters, and

makes extensive use of parallax scrolling, with rooms often having more than ten layers of

detail.

Figure 44 - The Whispered World

Another example by the same developers is Deponia, released in 2012, and featuring the

same level of graphical detail as The Whispered World. Furthermore, the game was created in

widescreen format, making it a perfect fit for modern computers screens.

Figure 45 - Deponia

Chapter 3 - Graphic Adventure Game Engines

44

3.4 Summary

All of the engines presented in this chapter are extremely powerful, and capable of creating

virtually any graphic adventure game imaginable. At their core however, there seems to be a

different philosophy and target audience between the engines, which is worth noting:

 Adventure Game Studio is used almost exclusively for creating retro adventure games,

and it is still evident that the engine was heavily inspired by Sierra's old AGI engine.

The editor is simple, and despite making use of a scripting language, the language is

not too difficult to learn, in part due to the built-in auto-complete feature of the code

editor.

 Wintermute aims to provide modern features and flexibility, and is the only one of the

three engines that currently supports 3D characters. All of this power comes at the

cost of added complexity, and both the editor and the scripting language are

significantly harder to learn and to use.

 Visionaire on the other hand aims for absolute ease of use, by making everything

available from within the interface, and eliminating the need to learn a scripting

language entirely. Despite that, the editor is feature packed and modern, allowing

smooth high definition graphics and special effects.

But the differences described above are mostly just guidelines, inferred from the types of

games that are usually created with each of them, and not actual limitations of the engines,

which aside from a few technical differences, have very similar feature sets. The table below

should provide a general comparison between each of the engines from a feature set point of

view.

Table 2 - Feature set comparison of graphic adventure engines

 AGS Wintermute Visionaire

Platforms Windows Windows Windows

License Free Free Commercial

Screen Resolutions Limited Any Any

Hardware Acceleration Yes Yes Yes

Scripting Required Required Optional

Parallax Scrolling Plugin Yes Yes

Particle Systems Plugin Yes Yes

3D Characters No Yes No

Localization Yes Yes Yes

Text-to-Speech No Yes No

Plugins Yes Yes No

Latest Update April, 2011 January, 2010 August, 2011

Philosophy Classic Experience Power / Flexibility Simplicity

45

4 Analysis and Requirements

In regard to the three graphic adventure game engines presented in the previous chapter, if

you ignore the features that distinguish them from each other, it is easy to realize that there is

a lot in common between them, such as having rooms, characters, objects, items, actions and

dialogue sequences. That's because all of these traits are pretty much required by the

majority of graphic adventure games, and therefore must be supported by any graphic

adventure game engine.

The goal of this chapter is to take the common ground between these engines and use it to

identify the feature set that must be implemented in Nostalgia Studio, as well as the best way

to implement each of these features in order to maximize the simplicity of the user

experience.

In general terms, we could say that the after the game has been designed, the process of

implementing a graphic adventure game goes through three different stages. The process is

iterative and each of the stages will usually need to be visited multiple times and in different

orders. Those stages are:

1. Creating the game world with all of its rooms.

2. Populating the game world with objects and characters.

3. Bring the game world to life with scripted actions and dialogues.

The first stage consists of creating all the environment that composes the game world, which

in virtually every graphic adventure game, consists of a set of rooms. Rooms need to carry

metadata that allows characters to navigate within and between them. In order for players to

navigate within a room, the bounds of the floor and any obstacles in the room must be

marked. As for navigation between rooms, that is usually accomplished by adding doors, or

Chapter 4 - Analysis and Requirements

46

invisible regions in the rooms, that teleport the player to a new destination after examining or

entering. This information is usually added manually by the developer when creating the room.

The second stage consists of creating characters and objects and adding them to the rooms

created on the first stage. Another important concept of most graphic adventure games is the

item, which is an object the player can hold in his inventory for later use. Some items are

directly related with objects in the world, while others are added directly to the player's

inventories without.

The third and final stage consists of adding behavior and interaction to the world. This is

usually done by defining chains of automated action sequences that take place when certain

events occur. This is the stage where the narrative and puzzles are added to the game.

Figure 46 - The three stages of implementing a graphic adventure game.

The method used to gather all the information presented in this chapter was to specify a very

simple game scenario that contained all of the minimum requirements of a graphic adventure

game, and then implement that scenario in each of the three game engines. Every step of the

process was documented, and that information combined and organized into a set of

common tasks and categories. The requirements of that scenario were:

 To have two separate rooms, linked by a door, where the character is free to navigate.

 To have two characters, one controlled by the player, and one non-playable character.

 To have an object in one of the rooms that the character could pick up.

 To be able to have a conversation with the non-playable character.

 To be able to give the an item to the non-playable character.

 To have the dialogue with the non-playable character change once the item was given.

47

4.1 Creating the Game World

4.1.1 Rooms

The first step in creating the game world is to create some rooms. Rooms in graphic adventure

games are usually small in size, but packed with detail, and frequently have several layers of

imagery. Some layers are drawn behind the characters (i.e. background) while others may

appear in front of them (i.e. foreground). In some games, layers scroll by at different speeds

(i.e. parallax scrolling) which gives a strong illusion of depth to the scene.

Table 3 - Rooms

 AGS Wintermute Visionaire

Create
room

Right-click on "Rooms"
node.

Right-click on "Scenes"
folder.

Create new entry in the
"Scenes and menus"

section.

Add
background

Choose a single image
for the background.

Room can have as many
layers as needed. Each

layer holds a single
image and can be set as

either background of
foreground.

Choose a single image
for the background.

Add
foreground

Paint over parts of the
background image to
mark them as walk-

behinds.

The only way is to create
objects for the

foreground images and
disabling interaction.

Choose
room size

Deduced automatically
from the background

image.

Deduced automatically
from the main layer.

Deduced automatically
from the background

image.

Parallax
scrolling

Only by using plugins.
Implemented by varying

the size of the layers.

Implemented at the
object's level, by

selecting different scroll
speeds for each object.

Comments: The approach used by AGS to create a foreground layer is interesting, but requires

you to draw the contour of the foreground precisely, which can be difficult with the mouse.

Using separate images for background and foreground would be easier. In this respect,

Wintermute has the advantage because it allows rooms to have as many layers as needed,

while Visionaire does not have the concept of layer, requiring objects to be used to emulate

them.

Solution: Nostalgia Studio will work a bit differently than these three engines. Rooms will

always have only two layers, the background layer and the foreground layer, but these layers

will be able to hold an unlimited number of images in them. Images will be added to the room

using a drag-and-drop interface, and may then be ordered, scaled, rotated and positioned

freely within the room. In practice, this allows infinite layers like Wintermute. Parallax

scrolling will not be implemented at this time for the sake of simplicity.

Chapter 4 - Analysis and Requirements

48

4.1.2 Navigation

At this point, the main look of the room is already specified, but it is simply a collection of

images, with no metadata associated. For the characters to be able to walk around in this

room, it is necessary to mark which areas should be treated as the floor, and which areas are

obstacles. Another important thing to decide is the scale and depth of the room, which

basically corresponds to how large the characters should look in each portion of the room.

Table 4 - Navigation

 AGS Wintermute Visionaire

Define
floor

Draw floor region by
using a set of tools very

similar to MS Paint.

Draw floor polygon
starting from a rectangle
and shaping it by adding

new vertices on the
borders.

Draw floor polygon
sequentially, vertex by
vertex, right clicking at

the end to close it.

Define
obstacles

Draw using the right
mouse button to erase

parts of the floor.

Add new regions for the
obstacles, but mark

them as blocked.

Start drawing a new
polygon while holding

down the ALT key.

Define
paths

Deduced automatically
from the floor, but has
performance issues at

higher resolutions.

Need to manually place
waypoints around
convex vertices of

obstacles.

Draw waypoints inside
the floor polygon, and

then link them manually
to form a graph.

Define
scale

Select min and max
scaling values for each

walkable area.

Add horizontal lines to
the room known as scale

levels.

Select scaling factor for
each node in the
waypoint graph.

Comments: Overall, the easiest approach is the one used by AGS, where you simply draw the

floor area, and then erase the portions that correspond to obstacles. However, because it

allows such fine grained control over the shape of the floor, the implementation suffers from

performance problems. In particular, pathfinding in AGS works almost at the pixel level, using

a grid representation, and so the amount of nodes increases exponentially with the size of the

rooms and the resolution of the game. Wintermute and Visionaire both use points-of-visibility

pathfinding with a polygonal representation of the floor, which performs a lot better than AGS,

but both require the designer to create the graph manually. In this regard, Wintermute only

requires nodes to be placed on the floor, with edges being deduced automatically, while

Visionaire requires both nodes and edges to be placed manually, a process which is very

flexible, but cumbersome.

Solution: Nostalgia Studio will also use a polygonal points-of-visibility pathfinding, but trying

to construct the underlying graph automatically from the given floor shape. As for scaling, it

will use a simplified version of Wintermute's approach, where the designer only needs to

choose the scaling level for the top and the bottom of the room.

49

4.1.3 Portals

Even after players have the information required to navigate within a room, they still need a

way to travel between rooms. This is usually done by creating some sort of invisible region on

the floor that reacts to the player stepping on it and teleports the character to another

location in the world. In some cases, the teleportation could happen in response to examining

some object on the scene, such as a door, but the overall process is still similar enough, so it

will not be described separately.

Table 5 - Portals

 AGS Wintermute Visionaire

Define
region

Create a hotspot on
room-A with the

drawing interface.

Create a region on
room-A with the

polygon interface.

Create an action area on
room-A with the

polygon interface.

React to
character
entering

Add a new event to the
hotspot that reacts to

the player standing on it.

Assign a new script file
to the region. Add code

to the script file to
handle the actor entry

event.

Add action to the action
area that executes when

a character enters.

Teleport to
destination

On the event, add code
to send the player to
room-B. Destination

coordinates are input
manually.

On the event add code
to change room. On

room-B's script file add
code to position the
character when he

appears.

Add empty object to
room-B where the

character should appear.
Add action part to the
action that teleports

character to that object.

Comments: Defining a region and making it react to a character stepping on it is very similar in

all three engines, except that Visionaire does not require any code to be written. However,

there's quite a bit of variation in how the teleportation action is defined, and each of the

solutions has its own set of quirks. AGS has the simpler solution, the only disadvantage being

that you need to check the X and Y coordinates of the destination, and write them down

manually. An interface to help with this selection would be helpful. Wintermute is the most

contrived, because the act of changing room, and the act of positioning the character in the

new room, are handled separately and in completely different script files. As for Visionaire,

the only downside is needing to create an object to serve as the target of the teleportation.

Solution: Since Nostalgia Studio is aiming for a codeless experience, it will work similarly to

Visionaire Studio, but also allowing the destination to be chosen directly without the need to

create an extra object. In other words, a new dialog will appear allowing the character to

choose one of the rooms and click directly where the character should appear, or select one

object from the room. Additionally, it will also provide a specialized type of region just for

portals which already groups the character enter event and the teleport action, since it's such

a common combination.

Chapter 4 - Analysis and Requirements

50

4.2 Populating the Game World

4.2.1 Objects

An object in a graphic adventure game can be considered as any part of the rooms that is

interactive or animated. Objects usually have a name assigned to them, and can be the target

of player actions, although sometimes they exist only to provide animation to the rooms.

Another characteristic of objects is that their position and depth in the scene can be dynamic,

allowing characters to walk both behind and in front of them depending on their relative

positions.

Table 6 - Objects

 AGS Wintermute Visionaire

Create
object

Choose objects
category when editing
a room and right-click
directly in the room.

Add a sprite entity while
editing a scene. Can

optionally be placed in a
special layer for free

entities.

Add a new object in the
"Scenes and objects"

tab of the room.

Define
graphics

For simple objects
choose image directly.
For animated objects
create and assign a

view.

For simple objects choose
image directly. For

animated objects create
and assign a sprite.

Simple objects and
animated objects are
both handled in the

objects properties, but
on separate tabs.

Define
interactivity

All objects are
interactive unless
disabled in code.

There's an interactive
property which can be

specified on the objects.

Objects need a collision
region to be interactive.

Define
origin

By default the bottom
of the object is used as
the origin, but it can be

overridden with a
baseline property.

For simple images the
center is used as the

origin, while for sprites
there's a cross marking it.

By default the center of
the object is used as the

origin, but it can be
overridden with a

centerline property.

Object
sorting

Objects are
automatically sorted by

their origins.

Regular entities appear in
the specified order. Free

entities appear along with
the region the object is in.

Objects are
automatically sorted by

their origins.

Comments: There is not much of a difference between how objects are handled in the three

engines, since all of them consider objects to be a part of the rooms. All of them also use

separate parts of the interface to handle static and animated objects, which is a bit redundant,

since static images could just as well be treated as animations with a single frame. As for the

depth of an object in the room, there's always a point within the object that acts as its origin

and is used to determine the drawing order of object. Players usually have control over the

object's origin. But while AGS and Visionaire sort objects by their vertical positions,

Wintermute requires additional regions to be created, and has the distinction between

51

regular and free entities. Another interesting difference is that in AGS and Wintermute,

objects are interactive by default, while in Visionaire the user must remember to draw a

collision region for the object before any interaction becomes possible.

Solution: Nostalgia Studio will keep the general framework used by these engines, but try to

simplify the process where possible. There will be no distinction between static images and

animations, and interactivity will be controlled by a simple property. As for the order of

objects, it will be possible to choose whether an object should be treated as background,

foreground or dynamic. When the selected positioning is dynamic, the objects will be

automatically sorted by their origin, which is marked by a cross when defining the object

graphics.

4.2.2 Items

One major part of graphic adventure games is to collect items and use them or combine them

in several situations to advance the plot. There's usually an inventory window where a grid of

the items currently in possession of the player is displayed. Sometimes these items

correspond to an object in a room, so that when the player picks up the object, it disappears

from the room and an item appears in the player's inventory. Other times there's no relation

to any object, and the item exists only in the inventory.

Table 7 - Items

 AGS Wintermute Visionaire

Create item
Create in the inventory
items section by right-

clicking.

Write new entry in a
global text file with all
the items in the game.

Add a new entry to the
items section.

Define
graphics

Choose images for the
item in its properties.

Write path to images
directly in the text file.

Choose image or
animation in the item's

properties.

Link to
object

There's no actual link.
Can be specified in the

object's properties.
There's no actual link.

Comments: Items are very simple, and can almost be considered as being just a name and a

image. But Wintermute is harder to use than the alternatives because instead of providing an

interface for creating items, it uses a definition text file that users have to edit manually. An

interesting bit is that Wintermute allows objects to be associated with an item, which allows

the act of picking up an object and adding that item to the inventory to be automated.

Solution: Nostalgia Studio will have a separate section of the editor dedicated to creating and

editing items like AGS and Visionaire.

Chapter 4 - Analysis and Requirements

52

4.2.3 Characters

Similarly to objects, characters are also interactive and animated entities of the game world.

However, there are many additional actions that a character can perform, which an object

cannot. A character can walk around the game world, often changing the room that they're in.

A character can talk, which is usually implemented by displaying the text above their heads.

You can often engage in conversation with non-playable characters, so they need to have

dialogue sequences associated with them. Characters can change the direction that they're

facing. All of these require a large number of animations to be defined, for each state and

direction combination that the character could be in. Finally, some characters can be

controlled by the player, and need to have an inventory to carry items with them.

Table 8 - Characters

 AGS Wintermute Visionaire

Create
character

Right-click in the
characters node

Right-click either in the
actors or entities folder.

Actors can walk while
entities cannot.

Add a new entry in the
characters section.

Define
graphics

Create a view for each of
the character states and

assign them in the
character's properties.

Each view has one
animation for each

direction.

When creating an actor
or entity, a set of sprites
is automatically created

for each state and
direction. Edit those

sprites.

Character has a set of
outfits. Each outfit has a
set of states. Each state

has a group of
animations for each

direction.

Switch
costume

Either change all views in
code or switch to

another character.

Either load a separate
actor file, or load new

animations in code.

Simply change the
current outfit of the

character.

Place in
world

In the character's
properties, select the

starting room and
starting position.

Edit the room's script
file and load the actor

there, while the position
is set in the actors

definition file.

Create a mock object in
the room, and link the
character's "Character

stands at" property to it.

Set main
character

Press a button labeled
"Make this the player

character" in the
character's properties.

The main character is
the one assigned to the
global actor variable in
the game's init script.

Select as the active
character in the game

properties.

Comments: Compared to the other two, Wintermute is a lot harder to use because it requires

editing definition files and code for almost every step in the process. On the other hand,

Visionaire is very simple, especially because it has the concept of outfit which helps to group

every related animations together.

Solution: Nostalgia Studio will follow Visionaire's approach, except not requiring an object to

be created to mark the starting position of the character.

53

4.3 Bringing the Game World to Life

4.3.1 Actions

Perhaps the most important feature required to add behavior to a graphic adventure game, is

the ability to react to certain events in the game, usually triggered by the player, and execute

a series of actions in response. These actions encompass everything that can be done in the

game, such as making characters speak, changing the room that is currently on display, picking

up an item, or triggering a dialogue sequence.

Table 9 - Actions

 AGS Wintermute Visionaire

Attach
action to

entity

All rooms have a script file
containing all the actions

for that room and any
object, region or hotspot in

that room. Actions for
characters and items go in

a global script file. Each
action is a separate

function in those files.

Rooms, characters,
objects, and almost

everything gets its own
separate script file with
the actions related to

then. Some are created
automatically while
others are attached

manually on the
properties of the entity.

Almost everything in
the editor has an
actions tab that

allows new actions to
be created with an

interface.

Select
trigger
reason

The name of the function
decides under which
conditions the action

should execute. But the
events interface for each
entity already creates the

functions for you.

Add an event construct
such as "on event name"
to the correct script file,
with all the action code
inside. Must know the
correct event name.

When editing an
action, there's an

execution type
property that allows
the trigger reason to
be selected from a
list of possibilities.

Define
action

content

Add code to the function
created for the action in

the step above.

Add code to the event
created in the step above.

Add new action parts
to the action, and
select what they

should do from a list.

Comments: This is one of the aspects where each of the engines handles it very differently.

Both AGS and Wintermute require users to write code in a special scripting language, but

between the two, AGS is significantly easier to use, not only because there are a lot less files

to deal with, but because the code editor has many features to help you program. Visionaire

on the other hand, doesn't require you to write any line of code, and all actions in the game

can be simply selected from a list in the interface and configured accordingly.

Solution: Since one of the goals of Nostalgia Studio is to be used by people without

programming knowledge, the approach followed will be very similar to the one used by

Visionaire.

Chapter 4 - Analysis and Requirements

54

4.3.2 State

Another important feature required to add behavior to the game world is the ability to store

information for later use, and the ability to follow different paths of execution depending on

the content of that information. This information can vary from simple boolean, yes or no

values (used for example to signal whether an event has already taken place) to a numerical

value (used for example to limit the amount of times that a player can perform an action). At

the minimum, the application should be able to compare the contents of that information

with another value, and based on the result decide what should be executed.

Table 10 - State

 AGS Wintermute Visionaire

Storing
state

Local variables are
defined directly in the

script files. Global
variables have a

separate interface just
for them.

Local and global
variables are defined
directly in the script

files. Only global
variables are persistent.

All entities in the game
world have their own set
of conditions (boolean)
and values (number or

string) and everything is
created in the interface.

Branching
on state

With a typical if-else
programming construct.

With a typical if-else
programming construct.

There are action parts
such as "If condition"

and "If value" that allow
conditional behavior.

Comments: The way AGS and Wintermute both handle state and branching is typically the

same as in most programming languages, using variables, assignments and "ifs". The only

exception to this are the global variables in AGS which are created separately with an

interface, although their manipulation is still done through code. Visionaire on the other hand,

doesn't require any programming and handles everything through the interface. The key

difference however is that almost every entity in the game can hold its own set of conditions

and values, instead of having a global pool of variables. While the way Visionaire stores its

state is interesting, it also requires splitting that state between everything in the world which

could become harder to manage. The distinction between a condition and value also adds one

more concept that could be avoided by keeping both in the same category.

Solution: While the encapsulation provided by Visionaire in having variables stored inside any

of the game's entities can be useful, it can also make the task of managing data more

complicated because it ends up being split among an unbound number of entities. Therefore,

Nostalgia Studio will opt for the most rudimentary solution which is having a single global pool

of boolean values, known as flags.

55

4.3.3 Dialogue

Almost every graphic adventure game allows the player to engage in conversation with the

non-playable characters that populate the game world. During these conversations, the player

is usually presented with a list of responses to choose from, and the game can have different

outcomes depending on what choices are made.

Table 11 - Dialogue

 AGS Wintermute Visionaire

Create
dialogue

Right-click on "Dialogs"
node. Uses a different

but more simple
scripting language than

regular actions.

Program the dialogue
sequence manually in
the character's script
file, using loops and

conditionals, along with
the AddResponse and

GetResponse functions.

Go to the character and
add a new entry in the
dialogue tab. Dialogues
are basically a tree of
dialogue parts, and

there's an interface to
help building them.

Start
dialogue

In a script, address the
dialogue by id and call

Start on it.

Put all of the dialogue
code in a function inside

the character's script,
and call it when needed.

Add an action part of
type "Start dialog"

pointing to the dialogue
you want to start.

End
dialogue

Use the stop command
inside the dialogue.

Manually exit the
function on the code.

Select a property on the
dialogue part that ends

the dialogue.

Branching
state

There are commands to
disable dialogue options.
More complex behavior

must be coded.

Everything must be
programmed manually.

Individual dialogue parts
can be made to appear

only when a certain
condition is true.

Triggering
actions

Add script code inside
dialogue but indent it.

Add them directly in the
code where needed.

Each dialogue part can
be linked to an action.

Comments: On one end of the spectrum we have Wintermute which does not provide any

specialized support for dialogues and ends up requiring every conversation to be coded

manually. This approach is obviously extremely flexible, but requires the same boilerplate

code to be repeated every time a normal conversation should take place. On the other end

there's Visionaire which organizes dialogues as a tree of choices and provides an interface for

editing these trees, without a single line of code having to be written. Finally there's AGS

which is somewhere in between, because although it also requires scripting, it uses a separate

simplified language created just for dialogue, which is significantly simpler than the regular

scripting language used by actions. There's also an interface for adding new entries to the

dialog and controlling some of its options.

Solution: Nostalgia Studio will follow the approach used by Visionaire and provide a

specialized interface for editing dialogue trees.

Chapter 4 - Analysis and Requirements

56

4.4 Summary

To summarize all of the analysis performed in this chapter, the following guidelines will be

followed when developing Nostalgia Studio:

 Rooms - Rooms will be divided into two layers, one for background and one for

foreground, and users will be able to drag and drop any number of images into these

two layers, as well as translate, rotate, scale and reorder them as needed.

 Navigation - Walkable areas will be created by drawing a polygon with the shape of

the floor. Obstacles will be represented by erasing parts of the floor. Pathfinding will

use the points-of-visibility technique, but unlike the other engines, will construct the

underlying graph without any additional aid from the user.

 Portals - Portals will be created by drawing a polygon region on the room, and either

adding a teleport action when a character enters, or using a built-in portal type which

only requires the destination to be chosen.

 Objects - Objects will be created within the rooms interface, and placed either on the

background or foreground layers, or set to be dynamically sorted along with

characters. This sorting will be performed based on the object's origin which will be

marked by a cross when defining the object's graphics.

 Items - Items will be treated independently from objects and have their own section

in the editor.

 Characters - Characters will be able to have multiple costumes, each costume being a

grouping of animations for each possible state and direction of the character.

 Actions - Action sequences will be created by choosing and chaining actions from the

editor's interface, without any need for code to be written by the user. It will be

possible to add actions to most of the game's entities, such as rooms, characters,

objects, regions and items.

 State - State will be kept globally, in the form of a collection of boolean values known

as flags. There will be actions to branch execution depending on the current state of a

flag.

 Dialogue - Dialogue will be stored as part of the characters to which they belong, and

will be organized as a tree of choices with its own interface for editing.

57

5 Architecture and Design

When looking into the target audience for Nostalgia Studio, it is clear that there are two very

distinct groups of users: those who will be using it to create games, and those who will be

playing the completed games. Nostalgia Studio handles this distinction by providing two

separate applications: the Nostalgia Editor aimed at the first group, and the Nostalgia Client

aimed at the second group. In order to reduce code duplication and improve the organization

of the framework, both the editor and the client work on top of a third component known as

the Nostalgia Engine, which contains all the shared functionality [Gregory, 2009]. Also,

although the client can be executed independently from the editor, the editor does take

advantage of the client in order to allow its users to preview the games they are creating. To

summarize, Nostalgia Studio is composed by three separate components:

 Engine - The Nostalgia Engine is a dynamic library that provides most of the

functionality required by the editor and the client. In other words, it does most of the

heavy lifting for Nostalgia Studio. It is divided into two layers, one for low-level game-

agnostic features (such as graphics, audio, input, networking) and one for high-level

game-specific features (such as the gameplay, actions, rooms and characters).

 Editor - The Nostalgia Editor is the application used to create new games in Nostalgia

Studio. It is based around a drag-and-drop interface and strives to insulate the user

from the implementation details that are usually required to create a game. Its goal is

basically to create content that the engine and client knows how to execute, and to

provide a way to edit that content.

 Client - The Nostalgia Client is the application used to play games created with

Nostalgia Studio. Most of its features are actually implemented in the Nostalgia

Engine, and the client only behaves as a front-end for the player to have access to

those features. It is also used by the editor as a previewer when creating games.

Chapter 5 - Architecture and Design

58

The figure below demonstrates the relationship between each of these components. Notice

that the engine is internally divided into two separate layers, labeled Core and Adventure

respectively. More information on this organization will be provided in the next section.

Notice also how the relative sizes of each component varies, in order to reflect the fact that

almost all of the functionality is provided by the engine, while the client does little more than

act as a front-end for the engine.

Figure 47 - Nostalgia Studio Architecture

5.1 Engine Architecture

Nostalgia Engine is the component that provides most of the functionality present in

Nostalgia Studio. The internal architecture of the component is represented in the following

figure.

Figure 48 - Nostalgia Editor Architecture

59

The most prominent detail in the engine architecture is that it is divided into two layers. Also,

Notice the arrows in the diagram which represent the direction in which these layers interact

with each other. The main goal of each of these layers is described below.

 Core Layer - Provides general game-agnostic functionality which might be useful for

almost any game. This layer relies on several external libraries for support of low-level

operations such as graphics, audio playback and networking.

 Adventure Layer - Adds functionality that is specific to the implementation of graphic

adventure games. This layer is built on top of the core layer and does not

communicate with any of the external libraries directly.

Each layer exists in separate library files (i.e. separate DLLs) which are included as references

by both the engine and the client. This separation was extremely helpful in reducing

dependencies between modules, and making the code more manageable and reusable

[Martin, 2008].

5.1.1 Core Layer Architecture

Despite none of the features present in the core layer being directly related to the gameplay

portion of graphic adventure games, this is still where most of the processing in Nostalgia

Studio takes place. The functionality provided in this layer is extensively used by the rest of

the application, and covers a very large spectrum of different technical areas.

Figure 49 - Modules of engine core

The figure above shows that the engine core is organized into a series of modules, each being

implemented as a separate namespace. These modules are designed to be fairly independent

from each other, except for a few minor exceptions.

Graphics Module

The Graphics module is responsible for all the rendering in the application. This module

implements a retained mode renderer, where all the data required to render an entity to the

screen is stored inside of a separate object, known as a Primitive. This means that instead of

Chapter 5 - Architecture and Design

60

the game entities knowing how to draw themselves, they delegate that work to a primitive

object from the Graphics module. This object is then automatically rendered by the engine

each frame without direct interference from the game entity. The engine supports five basic

types of primitives:

Figure 50 - Types of graphical primitives supported by the engine.

But although it is possible to render primitives independently from each other, it is far more

common for an entire scene to be rendered at once. The Graphics module contains a custom

scene graph data structure [Akenine-Moller, 2008] known as the Stage for this purpose. The

stage is divided into layers, has a controllable camera, and interacts with the Input module in

order to handle mouse interactions with the primitives.

Figure 51 - The scene graph data structure used by the engine.

Besides being capable of rendering primitives there are also other features in the graphics

module such as:

 Resolution independence rendering

 Rendering graphics with a retro look

 Rendering of geometric shapes

Input Module

The Input module is just an extension to the already existing Microsoft XNA Input Library. The

most important feature it adds is the capability to distinguish between when a key was

pressed only once from when it is being continuously held down. Other features include

detecting which of the mouse buttons was pressed, and how much the mouse has moved

since the previous frame.

61

Audio Module

The Audio module is responsible for both the loading and playback of songs and sound effects

in the engine. It adds an abstraction layer on top of the FMOD API which simplifies the process

of playing audio by introducing a distinction between:

 Songs - Sound files which are automatically looped and where only of them can be

playing at any time. When one song ends and another one starts, the engine also

takes care to cross-fade their volumes.

 Sound Effects - Sound files which are played only once and have no limit to how many

instances can be playing at once.

Figure 52 - Architecture of the Audio module

Network Module

The Network module is responsible for the exchange of data over a network. It adds an

abstraction layer on top of the Lidgren Networking Library which simplifies all interactions

down to three components:

 Server - Object that awaits connections from one or more clients. Can receive

messages from any connected client, and can send messages to individual clients or to

all clients at once.

 Client - Object that connects to a server. Once connected, it can both send and

receive messages from the server.

 Message - An object that encapsulates any type of data to be sent over the network.

Figure 53 - Architecture of the Network module

Chapter 5 - Architecture and Design

62

Content Module

The Content module is responsible for loading images and fonts at runtime, unlike the existing

Microsoft XNA Content Pipeline which only works at design time. It is also capable of loading

files from inside ZIP files, courtesy of the DotNetZip Library. This feature is used extensively by

the editor in order to package all the images loaded by the user into a single file.

Processes Module

The Processes module provides a framework for scheduling and executing sequences of

actions. This system is actually responsible for controlling most of the gameplay in Nostalgia

Studio. Since these actions execute over a certain period of time, the terminology Process is

used to distinguish them from simple method calls which have immediate execution

[McShaffry, 2012]. The system allows processes to be chained sequentially or in parallel.

Figure 54 - Processes scheduled sequentially and in parallel.

Although most processes are implemented specifically for a particular game, there are a few

general purpose processes provided in the module, such as the ability to suspend execution

for a certain period of time, or an utility to convert any regular function call into a process.

Pathfinding Module

The Pathfinding module is capable of calculating the shortest path between any two locations

in the world. This process can be considered as two separate problems:

 Calculating the shortest path between a pair of nodes in a graph data structure. This is

a very common computer science problem and there are many algorithms available to

do it. The one used here is the A* search algorithm [DeLoura, 2000], and the graph

uses an adjacency list representation [Dickheiser, 2006].

 Building a graph that accurately represents the game world. This is where game

specific knowledge is required. This step boils down to partitioning the world into a

finite series of nodes, with edges representing locations that are accessible from each

other. There are however, many possible ways to do this, as shown in the table below

[Rabin, 2002].

63

Table 12 - Space partitioning methods

Regular
Grid

Partition the world into a regular grid of squares,
and create one node for each unobstructed cell in

the grid. Then add edges between adjacent
nodes.

Quadtree

Similar to the previous method, but instead of
partitioning the space into regular sized cells, a
recursive process of subdivision is used which

allows finer cells to be created near the
obstacles, while using coarser cells where detail is
not important. This decreases the number overall

number of nodes compared to the regular grid.

Navigation
Mesh

Partition the walkable area into a mesh of
interconnected convex polygons. Each polygon

becomes a node in the graph, and shared
polygon edges become the edges of the graph.
The most popular way to create a navigation

mesh is by triangulation.

Visibility
Graph

One way to create a visibility graph is to add a
graph node for each convex vertex of the

obstacles in the world, and connect every pair of
nodes that are in line-of-sight. Another approach

is to have the level designer create the graph
manually, which is usually referred to as a

waypoint graph.

The approach chosen to be implemented in Nostalgia Studio was the visibility graph, because

it is the easiest to construct for any arbitrary shape, and the resulting paths are guaranteed to

be as direct as possible. This also means that the user only needs to draw a polygon

corresponding to the walkable area of the world, and the graph can be automatically

generated from it.

The Pathfinding module encapsulates both of these operations into an object called the Floor,

making it extremely simple to use. The adventure layer only needs to provide the module with

a polygon of the floor, and everything else is handled automatically.

Chapter 5 - Architecture and Design

64

Figure 55 - Example of a visibility graph generated from a polygon

Math Module

The Math module is an extension to the math library provided by XNA. In addition to a few

general purpose functions that are not present in the original library, most of the new

functionality belongs to the field of geometry, including:

 Axis-aligned and oriented bounding rectangles

 Polygons and related operations

 Line segments and related operations

Helper Module

The Helper module aggregates all the functionality that does not fall within one of the other

categories. This includes additional data structures and algorithms which are not provided by

the .NET framework but are required for the implementation of other modules, and other

general extensions to the existing functionality of .NET and XNA. It also provides several

debug utility classes which were extremely useful during the development process, including:

 Framerate Monitor - Automatically outputs the number of frames per second at

which the game is currently running to the top of the screen.

 Logger - A global class that can be used to output errors or other messages from

anywhere within the application into an output file. Uses HTML for formatted output.

 Messenger - Similar to the logger, but instead of outputting to an external file,

messages are printed directly to the top of the screen. It is also possible to define the

duration of each message, before they are automatically removed.

 Profiler - Allows precise measurement of the execution time for a specific block of

code.

65

5.1.2 Adventure Layer Architecture

Unlike the core layer which focuses mostly on general-purpose features, the adventure layer

only provides functionality that is directly related to the implementation of graphic adventure

games. It relies heavily on the core layer and ties all of the pieces together in order to create a

working game. It is divided into the five modules represented below.

Figure 56 - Modules of the adventure layer of the engine.

Data Module

The Data module contains structures to store all of the data that defines a game. This is

usually referred to as the game object model. All of these structures have in-built support for

XML serialization which allows them to be written and read to the disk in a readable format. In

a Model-View-Controller architecture, this module would be roughly equivalent to the model

component, but without any rules attached to the data. This separation of data and logic is

particularly useful for the editor, which never needs to touch any other module of the engine

besides this one.

The game object model in Nostalgia Studio is composed by the following types of entities:

 Rooms - Any of the environments that the player can navigate in.

o Objects - Any interactive or animated portion of the rooms.

o Regions - Invisible areas on the ground that may trigger certain events.

o Floors - The shapes that define where the characters can walk.

 Characters - Interactive entities that can walk, talk, carry items. There are playable

characters and non-playable characters.

o Costumes - A group of animations for each state that a character can be in.

o Dialogues - Interactive dialogue sequences related to a character.

 Items - Anything that the characters can pick up and store in their inventories.

Chapter 5 - Architecture and Design

66

Figure 57 - The general game object model in Nostalgia Studio.

Logic Module

The internal structure of the Logic module is almost the same as the Data module, but instead

of storing only data, it defines how each of the game entities should be displayed, and how

they should behave. Every entity in the Logic module is designed in the same way, which

consists of combining one object from the Data module with one primitive from the Graphics

module, and adding all the operations that are expected from that entity (e.g. letting a

character know how to talk or to walk).

Figure 58 - General architecture of an entity from the Logic module

Once again there is a strong resemblance to the Model-View-Controller architecture, with the

primitive acting as the View component, while the logic object acting simultaneously as the

remaining portion of the Model component where rules and behavior are enforced, and as

the Controller component which ties everything together.

Actions Module

The Actions module allows sequences of game events to be attached to almost every type of

entity in the game. These sequences of game events are known as Actions and each of them is

composed by a Condition and a list of one or more Action Parts:

67

 Condition - The condition of an action is what the player has to do for the action to be

triggered. The available conditions can vary from entity to entity, and there are many

different types of conditions, such as performing a command, using an item, or

clicking the entity directly. It is also possible to limit this action to a specific subset of

playable characters.

 Action Part - Actions are divided into several atomic steps known as action parts,

with each part representing an individual change that should be applied to the state

of the game. There are action parts for many different types of situations, such as

making an object disappear, or teleporting a character to another room.

The logic for each action part is implemented as a separate object from the Processes module

of the core engine. Then every time the player interacts with an entity, the engine searches its

Actions for a matching Condition, and generates the correct process for each of its action parts.

Figure 59 - The correlation between Actions and Processes.

Not every Condition is supported by every entity type The tables below list all of the

conditions and the action parts supported by the engine.

Table 13 - Action conditions and respective entities

Condition Description Room Object Region Character Item

Command
The player has performed
a command on an entity.

 X X

Item
The player has used an

item on an entity.
 X X X

Click
The player has clicked on

an entity.
 X X

Enter
The character has entered

a room or a region.
X X

Leave
The character has left a

room or a region.
X X

Chapter 5 - Architecture and Design

68

Table 14 - List of action parts

Type Entities Entities Description

Change Floor Room Room
Change the floor that is currently being

used by a room.

Change Name

Object
Region

Character
Item

Properties
Change the name that is displayed when

hovering the mouse over an entity.

Change
Interactive

Object
Region

Properties
Determine whether an entity should be

interactive.

Change Visible Object Properties Show or hide an entity.

Change
Direction

Character Properties
Change the direction a character is

facing.

Change Speed Character Properties Change the walking speed of a character.

Change
Animation

Object Animations
Change to a custom animation stored in

an object.

Play Animation
Object

Character
Animations

Play a custom animation stored in an
object or character once.

Change
Costume

Character Animations
Change the costume that is currently

being used by a character.

Teleport To Character Moving
Teleport a character to any other

location in the world.

Walk To Character Moving
Make a character walk to another

location within the same room.

Speak Character Talking
Make a speech bubble appear above a

character's head with the specified text.

Start Dialogue Character Talking
Initiate the dialogue sequence associated

with a character.

Add Item Item Item
Add an item to the inventory of a

character.

Remove Item Item Item
Remove an item from the inventory of a

character.

Add Flag Game Logic Change the value of a global flag to true.

Remove Flag Game Logic
Change the value of a global flag to

false.

Conditional Game Logic
Branch execution based on the value of a

flag.

Wait Game Logic Wait a certain amount of time.

Play Song Game Sound
Change the song that is currently being

played in the background.

Stop Song Game Sound
Stop the song that is currently being

played in the background.

Play Sound
Effect

Game Sound Play a sound effect once.

69

Gameplay Module

The Gameplay module is responsible for taking all of the entities defined in the previous

modules, and making them work together as a whole. It is divided into a series of controllers,

each responsible for a different portion of the game, such as the inventory window, or the

command interface.

Figure 60 - Architecture of the Gameplay module

Another important task executed by the Gameplay module is to make sure that all the input

that comes from the player, is not executed immediately but instead sent to the Network

module first so that it can be shared with all other clients. This is the basis for all the

multiplayer gameplay.

Network Module

The Network module of the adventure layer provides another level of abstraction on top of

the Network module of the core layer. This abstraction was given the name of Player and its

main goal is to process input from the user which is provided by the Gameplay module, and

decide what do with it. The two possible outcomes are to ask the Gameplay module to

execute the input immediately, or relay that information over the network so that every

player can execute the same operation. This depends of course on the role of the player:

 Single Player - If the game is running in single player mode, neither a server nor a

client is created. Instead, all user input is returned and executed immediately.

 Multiplayer Client - If the game is running in multiplayer mode, but the player was

not the one who created the game, only a client instance is created. Then, whenever

new input arrives, this input is first sent to the server. Once a response is returned,

the user input is executed.

 Multiplayer Host - If the game is running in multiplayer mode, and the player was the

one who created the game, both a server and a client are created on the same

process. The server limits itself to receiving messages and broadcasting them to every

client that is connected to him. The client works exactly the same as in the example

above.

Chapter 5 - Architecture and Design

70

5.2 Editor Architecture

Nostalgia Editor is the application which allows users to create their own graphic adventure

games in Nostalgia Studio. It relies heavily on the functionality of the Nostalgia Engine, but all

of the interface was created by using Windows Forms and Microsoft XNA directly. The editor

is divided into two logical halves:

 Sections - A Section is a portion of the editor which can be accessed directly from the

section toolbar, and is usually responsible for a major task within the editor, such as

editing a room or a character. Only one Section can be visible at a time (except for two

types which open in a separate window) but the user can easily switch between them.

Sections are implemented as a combination of one or more Components.

 Components - Components are the building blocks used to create each Section. Most

are focused on a very specific task, such as editing actions or animations. They are

also designed to be reusable in more than one Section when needed. Some

components can also appear in a separate window.

Unlike the two big layers of the Nostalgia Engine which were stored in separate library files,

Sections and Components both live within the same application, and the separation is merely

conceptual.

Figure 61- General architecture of the editor.

The Nostalgia Editor allows users to preview and debug the games that they are creating. But

in order to avoid code repetition, this is accomplished by invoking the same Nostalgia Client

application that is used by the players, but with a special flag that indicates that it should be

executed in debug mode.

Figure 62 - Interaction between the editor and the client.

71

5.2.1 Sections

The editor is divided into five different sections. The first three deal with editing major entity

types and can only be opened one at a time, while the last two appear in a separate window.

All of these sections can be accessed through the section toolbar at the top of the application.

 Rooms Section - Create and edit all of the rooms in the game, including scenario,

objects, regions and floors, along with their respective actions.

 Characters Section - Create and edit all of the characters in the game, including their

costumes, dialogues and actions.

 Items Section - Create and edit all of the items in the game, along with their

respective actions.

 Settings Dialog - Opens a new window that lets you change the general settings of the

game.

 Help Dialog - Opens a new window showing help for the section currently being

displayed.

Figure 63 - The sections of the editor

The section toolbar also has a preview button, but this is not considered a section because all

it does is launch the Nostalgia Client application with the correct parameters.

Figure 64 - Basic wireframe of section organization in the editor.

Chapter 5 - Architecture and Design

72

5.2.2 Components

There are a lot of Components in the Nostalgia Editor, and each is designed to fulfill a different

task. Most of the work performed by the Nostalgia Studio happens inside of some Component.

Components are not only combined and used by each of the four main Sections, but some of

them are also used by other Components.

Although there is no common architecture that correlates all of the Components, they can

generally be sorted into one of the four categories below:

 Editors – Components that allow the user to create or modify a specific portion of the

game, such as a room or a character.

 Widgets – Small components with a very specific goal, that serve as the building

blocks for larger components.

 Dialogs – Components that appear on separate window and require the user to give

his feedback before returning control to the main application.

 Browsers – Components that presents a set of data in a meaningful way and allow the

user to select part of that data.

Figure 65 – Categories of Components in Nostalgia Editor

Editors

All of the Components in this category allow the user to create or modify some portion of the

game, such as a room or a character. Most of them are complex enough that they require

assistance from other Components.

 Room Editor - One of the most complicated Components which allows all of the

content of a room to be created. This includes the scenario, objects, floors and

regions. Because of this multiplicity, the Room Editor requires the use of many other

Components.

 Character Editor - Another large Component which allows characters to be created,

along with their costumes, actions and dialogues. Also requires the use of several

other Components.

 Item Editor - Allows the creation of items, a process which is significantly easier than

the previous two examples.

73

 Action Editor - Provides an interface for creating and editing actions. The interface is

automatically generated from the contents of each action part, so new action parts

can be added easily to the engine without having to modify the editor.

 Dialogue Editor - Provides an interface for creating and editing dialogue sequences.

These sequences are presented to the user as a tree-like structure of speech lines and

responses.

 Stage Editor - Lets the user interact and modify the Primitives contained in a Stage

(see Graphics module of the Engine Core). Some of its features include translating,

rotating, scaling, flipping, sorting, creating, deleting and copying Primitives. It is useful

in many contexts such as creating the scenario for a room, determining the placement

of objects, or editing animations.

 Polygon Editor - Lets the user construct or modify a polygon on a vertex to vertex

basis. It supports two different modes of operation, one for adding and one for

subtracting regions from the polygon. It is useful when creating floors and regions for

the rooms.

 Animation Editor - A component for creating and editing animations, with a drag-and-

drop interface and a timeline similar to Adobe Flash. It is useful when editing

costumes for a character or when defining the animations of an object.

Widgets

Unlike Editors which are generally large and capable of performing many different tasks,

Widgets are small and reusable components with a very focused goal. Most of them are

generic and could even be used in some other applications.

 Compass - Lets the user select one of the four cardinal directions by clicking with the

mouse on the sides of a compass image.

 Timeline - Displays a control for selecting frames in an animation sequence, which is

very similar to the timeline in Adobe Flash.

 XNA Control - An important part of the editor which provides a way to use the XNA

API for rendering inside of a Windows Forms application. It is used for most of the

graphical rendering in the editor.

 Canvas - Renders a canvas with a look inspired by Adobe Photoshop, where a

checkered pattern is used to represent transparency, and anything outside the canvas

is painted dark gray.

 Multiple Pages Panel - An extension of a regular tab control where the tab handles

are not visible to the user, but can be switched programmatically.

Chapter 5 - Architecture and Design

74

Dialogs

Dialogs are components that appear in a separate window, and require a response from the

user before returning control to the main application. Some of these Dialogs are simple

wrappers around existing Components, while others are designed from scratch to run on a

separate window.

 Location Picker - Allows the user to pick a location inside one of the game rooms.

Optionally, it can display a list of all the rooms in the game, allowing the user to select

both the room and the location at the same time.

 Sprite Cropper - Allows the user to define the boundaries of any sprite. Cropping can

be performed by manually dragging the corners of the crop area, but there's also an

option to automatically divide the image into a regular grid, and pick one of the cells

to be used.

 Object Animations Editor Dialog - Shows a new window with a list of animations for

the selected object, and an animation editor for modifying them.

 Action Editor Dialog - Wraps the regular action editor so that it can appear in a

separate window.

 Settings Dialog / Help Dialog - Although they were described earlier as being treated

as sections because they are accessible directly from the section toolbar, internally

they are constructed just like any other component.

Browsers

Browsers are components which serve to display a set of information to the user, allowing to

select a subset of that information. Some Browsers also incorporate the option to add,

remove, reorder, or rename entries in that set.

 Generic Tree - An extension of a tree view control which maps to any collection in the

game object model and allows objects to be created, renamed, reordered or removed.

 Room Tree / Character Tree / Costume Tree / Action Part Tree - Specialized tree view

controls providing access to other parts of the game object model which the generic

tree cannot handle, as well as adding custom behavior.

 Image Browser - Shows a set of image thumbnails organized into folders which the

user can browse, select, and modify. Also allows new images to be imported.

 Sound Browser - Shows a set of sound clips that the user can browse, select, modify

and preview. Also allows new sounds to be imported.

75

5.3 Client Architecture

The Nostalgia Client is the smallest of the Nostalgia Studio components, but only because

most of its functionality exists in the engine instead. It is the application used to play the

games created with Nostalgia Studio. It is divided into the following three modules:

 Game - The heart of the client which is basically a XNA Windows Game application

acting as a front-end for the features provided by the engine. Other than that, it is

also responsible for loading the game data, and checking if the game should run in

debug mode or not (used by the editor).

 Lobby - Provides an interface to create and join multiplayer game sessions. Only

shown when the game is not running in debug mode.

 Debug - Provides an interface to directly control the game state in ways that would

otherwise not be possible. Only shown when the client is running in debug mode.

Figure 66 - Architecture of the Nostalgia Client

Like described above, whether the lobby or the debug interface are shown depends on the

mode in which the client is running. This can be controlled by a command line argument when

running the application. The flowchart below shows the general execution flow since the

application starts, until the game is running in either single player or multiplayer mode.

Figure 67 - General client execution flow

Chapter 5 - Architecture and Design

76

5.4 Multiplayer Design

Concluding this chapter will be a discussion about the design of the multiplayer portion of

Nostalgia Studio, for which a few decisions had to be made. In particular, the four main points

that required consideration were:

 How can players collaborate in the game?

 How many players can be playing simultaneously?

 Will all the players have the same role?

 Is there any room for variation in the gameplay?

5.4.1 Types of collaboration

The concept of collaboration boils down to having multiple parties working together to

achieve a common goal. Collaboration is frequently employed in multiplayer games where

players work together instead of against each other.

But collaboration can also happen in single player games. For instance, the graphic adventure

genre is single player by nature, but that did not prevent other people, such as family or

friends, from also watching the game and give their own suggestions to the player. There's no

reason why this type of collaboration could not be adapted to an online multiplayer game

environment.

This leads us to distinguish between two types of collaboration in multiplayer video games:

 Active Collaboration - This type of collaboration occurs when players possess direct

control over the game world. This is usually accomplished by giving the player control

over a character or avatar within the world, although in some cases the game world

can be modified directly. In this model, players collaborate by actually performing the

actions they deem fit for each occasion.

 Passive Collaboration - This type of collaboration occurs when players exchange

thoughts and ideas with each other, but don't have direct control over the game

world. This exchange of ideas can occur, for instance, in a chat window or over a VoIP

connection. It also requires having at least one player with an active role in the game,

to put into practice the ideas suggested by everyone.

When implementing active collaboration into a game, it is also a good idea to design the

gameplay so that it requires collaboration. In a graphic adventure game this could be

implemented for instance, by giving the ability to solve different puzzles to different

characters, so that everyone is needed to progress in the game.

77

5.4.2 Number of players

Another aspect that needs to be taken into consideration, is the expected size of our game

environment. There are many multiplayer online games that handle hundreds of players

simultaneously, but most of them have huge open worlds for the players to inhabit without

interfering with each other negatively.

On the other hand, graphic adventure games are typically made up from small interconnected

rooms with a large density of detail. Imagine a hundred players sharing one of these rooms

while trying to solve a puzzle, and most of the benefits of collaboration are soon to fly out of

the window. For the usual size and scope of a graphic adventure game, an upper limit of 3 or 4

active players would be a much more reasonable limit.

But that's mostly a problem with an active collaboration scheme, due to our characters'

physical boundaries overlapping each other and/or the environment, making the whole

experience too cluttered and confusing.

With passive collaboration though, players do not occupy a physical space in the game world.

This means that more of them could be playing at the same time without causing problems to

the gameplay experience (although there's still a risk of confusion due to information

flooding). The drawback is that passive collaboration is arguably much less interesting than

active collaboration, and would not be captivating enough to satisfy the average player.

5.4.3 Player roles

In order to cope with this situation, it's necessary to find a middle term between a fully active

collaboration scheme and a fully passive collaboration scheme. The approach taken by

Nostalgia Studio is to provide both types of collaboration simultaneously, which is possible by

identifying two different types of players:

 Actor - A player that has direct control over one playable character, and is free to act

by himself within the game. He is free to communicate with all other players in the

same game session by using the in-game chat.

 Spectator - A player that can watch the course of the game from the point of view of

any Actor, being able to decide at any point which Actor he'd like to follow. He can

also communicate with all other players in the same game session by using the in-

game chat.

Then, when creating a game with Nostalgia Studio, the developer specifies the exact amount

of actors required to play it. On the other hand, the maximum number of spectators is

arbitrary, and can be left for the host of each game session to decide.

Chapter 5 - Architecture and Design

78

Figure 68 - Actors and spectators

5.4.4 Game Modes

By varying the control mechanism that decides who gets to be an actor and who gets to be a

spectator, it is possible to create different types of game sessions. However, I should start by

clarifying that by host I refer to the person who initiates the game session, and as such holds

additional administrative rights.

This implies that in any of these game modes the hosting player is always capable of

controlling the role allocation directly, or to expel offending players from the game session.

What changes is what all of the other players are allowed to do. Here are some examples of

possible game modes:

 King - In this mode only the host has the ability to decide who plays as an actor and

who plays as a spectator. It is worth noting that being a host does not force him to be

an actor. For instance, a teacher moderating a game session in a classroom may

choose King mode and have control over who plays at each moment, without playing

an active role in the game.

 Tag - In this mode any of the actors may choose to revoke their own responsibilities

and pass them on to a spectator, without requiring the host's intervention.

 Timed - In this mode, everyone gets a turn at being an actor. At certain intervals, roles

are cycled, and the next spectators in the list become actors while the actors go back

to being spectators.

79

6 Implementation

Due to the size of Nostalgia Studio, it will be impossible to cover all of the implementation

details in such a limited amount of space. Instead, this chapter will try to focus on the most

important details of the implementation. For the engine, the inner workings of the most

relevant modules will be described together with a few class diagrams, while for the

implementation of the gameplay and the editor, screenshots of the application will also be

shown. But to start the chapter, we'll see an overview of all the different technologies which

were used to implement Nostalgia Studio.

6.1 Engine Implementation

As seen in the previous chapter, the engine is divided into two layers. Each of these layers was

implemented as a separate project inside the Visual Studio solution, and both of them were

set to compile as library files (i.e. as DLLs) instead of as applications (i.e. as EXEs).

6.1.1 Core Layer Implementation

Graphics Module

The heart of the Graphics module is the Primitive which is implemented an abstract base class

from which each concrete type of primitive inherits. The base class provides a common set of

features for all primitives, such as having a position and knowing how to draw itself. Then

every specific type of primitive inherits from this base class to add its own implementation for

rendering images, text, polygons or animations.

There is also a special type of primitive known as the group primitive, which is capable of

containing other primitives within itself. The group primitive was implemented by applying

the composite design pattern [GoF, 1995] to the class hierarchy. But the most important detail

about this type of primitive is that it behaves like a node in a scene graph in the sense that all

Chapter 6 - Implementation

80

of its children's properties become relative to the parent, allowing complex primitive

hierarchies to be created.

Figure 69 - Primitive class diagram

Because the group primitive already handles all of the parent-children transformation process,

implementing a scene graph becomes extremely easy. The stage class is simply a list of layers,

with each layer encapsulating a group primitive as its root. Most of the processing is then

delegated to the group primitives. There is also a camera class associated with the stage

which works by constructing a view transformation matrix which can then be applied by the

XNA Graphics Library when rendering.

Figure 70 - Scene graph implementation

The engine achieves independence resolution in the games by letting the user define a virtual

resolution for the game. Then a render target of the chosen resolution is created and

everything is rendered to it first. Then at the end the contents of the render target are

rendered to a fullscreen quad making it match whatever resolution the user is actually using.

The aspect ratio of the game is preserved during this last operation by adding a letterbox or

81

pillarbox as needed. Notice how the exact same portion of the room is visible in both images

below despite the different window sizes.

Figure 71 - Pillar box (left) vs letter box (right)

The retro rendering mode in Nostalgia Studio is achieved by setting the texture filtering mode

to point when rendering. This works especially well when working with a very low virtual

resolution, because it allows pixels in the images to stand out, as shown in the image below:

Figure 72 - Scene rendered using retro mode with a low virtual resolution

Audio Module

The audio module is composed by a single class known as the AudioManager which

encapsulates and manages a System object and one or more Sound objects from the FMOD

API. The interface is extremely simple providing one method to load new sound files, three

methods to start and stop playing these sound files, and an update method which is used to

service the FMOD audio system, and to implement volume fading between songs.

Figure 73 - Audio module implementation

Chapter 6 - Implementation

82

Network Module

The Network module encapsulates some of the native classes from the Lidgren Network

Library, and exposes a very simple interface based around an abstraction known as the

message. Users can define new types of messages simply by implementing the IMessage

interface, and the Server and Client classes will automatically know how to send or receive

them over the network.

The message interface requires two methods that know how to read and write the message

data into a network packet, and a unique type identifier which is required for the message

object to be reconstructed on the destination. This reconstruction required the use of C#'s

reflection features in order to determine the type of the message and recreate it at run-time.

Figure 74 - Implementation of the Network module

Processes Module

The core of the Processes module is an abstract base class called the Process which is basically

a variation of the command design pattern [GoF, 1995], in the sense that it encapsulates a

request or operation inside of an object, but in this case that operation has a lifetime and gets

executed over time instead of immediately. Concrete types of processes are then inherited

from this base class [McShaffry, 2012]. The game itself provides most of the implementations,

but there are also two generic types of processes provided directly in the engine:

 Wait process - Process that waits for a certain period of time before flagging itself as

finished.

 Action process - Process that holds a delegate to a method. That method is executed

once the first time the process is updated, and the process immediately exits

afterwards.

But a single process is not too useful by itself. The real power of the system comes when we

allow more than one process to be linked together and executed in a meaningful order, such

as in parallel or sequentially. In order to remain as flexible as possible, the composite design

83

pattern [GoF, 1995] was once again used here to represent the concept of a process which

hosts other processes.

There are two types of composite processes in the engine. The first type is used to execute

processes in parallel, which means that every process it contains gets executed every frame,

independently from every other process. The second type creates a sequence of processes,

but only the first process in the sequence gets executed each frame. The remaining processes

need to wait for the first one to finish before their turn arrives. Furthermore, since parallel

and sequence are processes themselves, they can be combined in order to create more

intricate execution flows.

Figure 75 - Process module implementation

Pathfinding Module

The graph data structure used by the engine for pathfinding uses an adjacency list

representation, where each node in the graph contains a reference to each of its neighbors.

The graph is undirected so when an edge is created the connection is performed on both

nodes involved. There is also no explicit object to represent an edge because there was no

need to store a weight in this scenario (each node holds a position and the weight is always

the distance between these positions).

Figure 76 - Graph implementation

The pathfinding algorithm used was the popular A* search algorithm which performs a best-

first search on the graph using an heuristic function that combines the cost to any given node

Chapter 6 - Implementation

84

with an estimate from the cost from that node to the goal. The implementation used was

based on the one provided by Eric Lippert [Lippert, 2007] and can be found below:

List<Vector2> FindPath(Node start, Node end)
{
 // The set of nodes already evaluated
 var closed = new HashSet<Node>();
 // The set of nodes to be evaluated next, sorted by priority
 var queue = new PriorityQueue<double, Path>();
 // Add start node to the queue
 queue.Enqueue(0, new Path(start));
 // Repeat until there are no more nodes to evaluate or path found
 while (!queue.IsEmpty) {
 // Get next node with highest priority from the queue
 Path path = queue.Dequeue();
 // If node was already evaluated ignore it and skip ahead
 if (closed.Contains(path.LastStep)) continue;
 // If we've reached the destination end here and return the path
 if (path.LastStep.Equals(end)) return path.ToList();
 // Mark the current node as having been evaluated
 closed.Add(path.LastStep);
 // Enqueue neighbors of the node using the A* heuristic as priority
 foreach (Node n in path.LastStep.Neighbours) {
 Path newPath = path.AddStep(n, Distance(path.LastStep, n));
 queue.Enqueue(newPath.TotalCost + Distance(n, end), newPath);
 }
 }
 return new List<Vector2>(); // If no path was found return empty list
}

The Path data structure in the implementation is an helper class which basically behaves like a

normal graph node, but also keeps a list of all previous nodes traversed to get there, making it

easier to construct the complete path when the algorithm ends.

As described during the previous chapter, Nostalgia Studio uses a visibility graph

representation which is built from the shape of the floor. The process of constructing the

visibility graph is divided into two separate phases:

1. Create Nodes - For each vertex in the floor polygon, run a concavity test on the vertex,

and add a new node to the graph containing the position of that vertex whenever the

test returns true.

2. Create Edges - For each node in the graph, run a line-of-sight test against every other

node in the graph, and add a new edge whenever the test returns true.

85

Figure 77 - Visibility graph created from the floor region

Another important detail that should be mentioned is that in order to run the A* search

algorithm on a visibility graph, the ending points of the path must first be added to the graph

as temporary nodes, and only removed after the algorithm ends. The process of creating

these temporary nodes is exactly the same as the one described above.

The concavity test and the line-of-sight tests are both provided by the math module. The first

one is a simple cross product calculation between the vertex and its adjacent ones. The line-

of-sight test relies on a geometrical line segment intersection test, and its implementation can

be seen below:

bool InLineOfSight(Polygon polygon, Vector2 start, Vector2 end)
{
 // Not in LOS if any of the ends is outside the polygon
 if (!polygon.Inside(start) || !polygon.Inside(end)) return false;

 // In LOS if it's the same start and end location
 if (Vector2.Distance(start, end) < epsilon) return true;

 // Not in LOS if any edge is intersected by the start-end line segment
 foreach (var vertices in polygon) {
 var n = vertices.Count;
 for (int i = 0; j < n; i++)
 if (LineSegmentsCross(start, end, vertices[i], vertices[(i+1)%n]))
 return false;
 }

 // Finally the middle point in the segment determines if in LOS or not
 return polygon.Inside((start + end) / 2f);
}

6.1.2 Adventure Layer Implementation

Data Module

The data module contains objects to store all of the state of the game. At its core there is a

base class known as EntityData which guarantees that every unity gets a unique Id and has in-

built XML serialization support.

Chapter 6 - Implementation

86

Figure 78 - Basic entity data implementation

All types of entities inherit from this base class and add their own data to it, forming the

hierarchy represented below. The inheritance above was omitted from this second diagram in

order to reduce the clutter. Some entities have also been marked with the Actions stereotype,

which means that they are capable of holding actions within them.

Figure 79 - Game object model hierarchy

Logic Module

The logic module takes every type of entity that supports actions and creates a new class for

each of them. These classes bind the data together with a primitive for the view and all the

operations that should be supported by the entity. The full hierarchy can be seen below.

87

Figure 80 - Logic module implementation

Actions Module

The actions module contains both the data and logic related to actions. Every action is

composed by a series of action parts. Each action part contains the same number of

parameters, but a type property controls their meaning. Then the logic half consists of a class

that takes an action as input and generates a sequence process containing one specialized

process for each different type of action part.

Figure 81 - Action module implementation

Gameplay Module

The gameplay module is divided into a series of controllers each responsible for a different

portion of the game. All of these controllers are aggregated in a single controller known as the

GameplayController. This controller is also responsible for managing all of the game state, and

Chapter 6 - Implementation

88

communicating user input to the network module. Below you can see the general architecture

of the module, and an overview of what each of the controllers looks like.

Figure 82 - All the controllers of the gameplay module

The inventory controller is responsible for drawing and handling interactions with the current

character's inventory. When this controller is visible, all other types of interactions with the

game are disabled.

Figure 83 - Inventory controller

The dialogue controller is responsible for displaying a list of dialogue choices and allowing the

player to select one of them. When this controller is visible, all other types of interaction with

the game are disabled. Once a dialogue choice is selected, the controller automatically hides.

89

Figure 84 - Dialogue controller

The chat controller is responsible for receiving text input from the user, which is then sent to

every other player by the engine. It darkens the screen slightly and places a blinking

placeholder symbol at the bottom of the screen to indicate that the game is currently in chat

mode. When this controller is visible, all other types of interaction with the game are disabled.

Figure 85 - Chat controller

The command controller displays a circular formation of icons corresponding to each

command that the player can perform, and allows him to select one of the commands with

the mouse.

Figure 86 - Command controller

The cursor controller is responsible for drawing the mouse cursor at the correct position. It is

also capable of displaying an item image and a text message on the cursor. The image is used

Chapter 6 - Implementation

90

by the engine when the player grabs an item from the inventory, and the text is used to

display information whenever the mouse is over a game entity.

Figure 87 - Cursor controller

The speech controller is responsible for checking if any character is speaking in the current

room, and drawing what they are saying to the correct location on the screen, with the

correct speech color.

Figure 88 - Speech controller

The camera controller makes sure the camera is focused on the current character, and

automatically scrolls the camera whenever the character reaches the edges of the screen, in

order to try to get the character to appear at the center of the screen once again.

Figure 89 - Camera controller

91

Network Module

The main purpose of the network module is to communicate every single action that a player

does to every other player in the game. In order to pass this information around, a special

structure known as InputData was created which is capable of representing every type of user

interaction within the game.

Figure 90 - InputData structure that encapsulates all user input

All of the communication code is stored inside of a player object which the gameplay

controller holds a reference to. Then whenever some input is detected, that input gets sent to

the player object first instead of being executed immediately. The sequence diagram below

demonstrates this process, and how the player class handles the single player mode

differently from the multiplayer mode.

Figure 91 - Sequence diagram that shows network flow

The network module works with four custom types of messages:

 Input Message - Message containing all the details of a user interaction with the game.

 Chat Message - Message containing the text the player has written in the chat mode.

 Ready Message - Sent by the client when the game has finished loading.

 Play Message - Sent by the server when all clients have sent their ready messages.

Chapter 6 - Implementation

92

6.2 Editor Implementation

The editor was implemented using Windows Forms as the main GUI Toolkit, which is flexible

enough to allow custom controls to be developed [MacDonald, 2005]. However, it also uses

Microsoft XNA to render some of the most graphical controls. This is not supported natively

by Windows Forms, so a custom control had to be implemented. Unlike the previous section

about the implementation of the engine which was a lot more technical, this section will be

mostly focused on what the editor ended up looking like. For starters, here's the look of the

section toolbar from which every other section can be reached.

Figure 92 - Section toolbar

6.2.1 Sections

The first section shown when a new game is created is the rooms section, and it is also the

most complex of all of them. The room tree on the bottom-left of the screen also allows

objects, floors and regions to be accessed and modified. The room section makes use of

several components, such as the stage editor, the image browser, the polygon editor and the

canvas, among others.

Figure 93 - Rooms section

93

The second session on the toolbar is the characters section. This section is also very complex

since not only does it allow the general properties of a character to be changed, it also takes

care of his placement inside the rooms, his costumes and animations, and his dialogues. All of

these tasks are handled by separate components, and are all combined inside of the character

section.

Figure 94 - Characters section

The items section on the other hand is one of the simplest, containing only a generic tree, a

canvas and an image browser.

Figure 95 - Items section

Chapter 6 - Implementation

94

The settings dialog is also very simple, providing a few simple controls to the edit the game's

general properties. There is also a button that launches an action editor in order to set any

actions that should be executed when the game first starts.

Figure 96 - Settings dialog

The help dialog uses a web browser control to display the manual which is bundled with the

editor in HTML format. It is also capable of detecting which section or sub-section the user is

currently viewing, and showing the corresponding documentation accordingly.

Figure 97 - Help dialog

95

6.2.2 Components

As seen on the previous chapter, there are many different components in the editor. However

most of them were already visible on the screenshots shown before, so they won't be

repeated here. Instead we'll see the two most important components that have not been

shown yet. First we have the action editor, which is shown here inside of a dialog. Almost

every section in the editor provides access to the action editor through a button labeled

Actions.

Figure 98 - Action editor

Adding new action parts to the game is done through a context menu which appears when

the user right-clicks on the Action Parts folder. This context menu is divided into categories,

and provides a logical hierarchy of action parts, making it easier to navigate to the type of

action part that we want to create.

Figure 99 - Adding new action parts

Chapter 6 - Implementation

96

And here's the dialogue editor, which can only be accessed when editing a non-playable

character. The dialogue is shown as a tree of choices, with an interface on the right to edit the

content of each of these choices.

Figure 100 - Dialogue editor

The top half of the interface allows the basic properties of the dialog choice to be edited, such

as deciding what each of the characters should say when the choice is selected, and what

should be the next dialog choices displayed after this one is selected.

The bottom half of the interface is used for setting more advanced properties of the dialog

choice, such as executing an action when the choice is selected, or hiding this choice from the

menu whenever a certain flag is set.

97

6.3 Client Implementation

The Nostalgia Client is a small Microsoft XNA Windows Game project which delegates almost

all of its work to the Nostalgia Engine. The main responsibilities of the client are to load and

validate the game data, display the lobby interface, and finally start the game. The flowchart

below shows the main execution flow implemented in the client.

Figure 101 - Execution flow of the Nostalgia Client

The client can be started with the following two optional command line arguments:

NostalgiaClient.exe -p path -d

 The first argument (-p) specifies which game data file should be loaded. If this

argument is missing, the client tries to search the current directory for a data file with

the same name as the executable.

 The second argument (-d) can be added to run the client in debug mode. In this mode

the game starts immediately as single player, without presenting the lobby to the

player. This argument is used by the Nostalgia Editor when previewing the game that

is being created.

An external library was used to facilitate the parsing of the command line arguments.

Chapter 6 - Implementation

98

6.3.1 Game Module

The game module limits itself to instantiating a GameplayController with the loaded game

data and the Player instance returned from the lobby.

Figure 102 - A game created with Nostalgia Studio running

6.3.2 Lobby Module

The lobby is a Windows Forms form which is shown automatically when the client starts, and

is mostly responsible for selecting between playing in single player or multiplayer modes,

creating a Player instance of the appropriate type for the selected mode, assigning a unique

index to the Player which determines the characters he controls, and marking the Player as a

spectator if he joined after all the character slots had been filled.

In this version of the prototype, the lobby is extremely minimalistic, and does not provide all

the different game modes and features suggested in the previous chapter.

Figure 103 - The main lobby interface in the prototype

6.3.3 Debug Module

When running in debug mode, an extra window should open with an interface that allows the

game state to be directly manipulated. This interface was not implemented in the prototype.

99

6.4 Technologies

Nostalgia Studio was created using Microsoft Visual Studio 2010 and the C# programming

language. It also makes use of several other technologies as described in the previous chapter:

 .NET Framework (http://msdn.microsoft.com/netframework/)

o The .NET Framework (pronounced dot net) is a software framework developed by

Microsoft that runs primarily on Microsoft Windows. It includes a large library and

provides language interoperability (each language can use code written in other

languages) across several programming languages.

o Windows Forms is a GUI toolkit provided by the .NET Framework, and was used to

create most of the interface for Nostalgia Editor.

 Microsoft XNA (http://create.msdn.com)

o Microsoft XNA is a set of tools with a managed runtime environment provided by

Microsoft that facilitates video game development and management. The version

of Microsoft XNA used by Nostalgia Studio was version 4.0.

 FMOD API (http://www.fmod.org/)

o FMOD is a proprietary audio library made by Firelight Technologies that plays

music files of diverse formats on many different operating system platforms, used

in games and software applications to provide audio functionality. The library is

already distributed with a C# wrapper which made it easy to integrate into

Nostalgia Studio.

 DotNetZip (http://dotnetzip.codeplex.com/)

o DotNetZip is an easy-to-use, fast, free class library and toolset for manipulating zip

files or folders in .NET. All the images imported into the Nostalgia Editor were

stored inside zip files with a modified file extension. Then the engine proceeds to

load these images at runtime directly from within the zip files.

 Lidgren.Network (http://code.google.com/p/lidgren-network-gen3/)

o Lidgren.Network is a networking library for .NET framework which uses a single

UDP socket to deliver a simple API for connecting a client to a server, reading and

sending messages.

 Clipper (http://sourceforge.net/projects/polyclipping/)

http://msdn.microsoft.com/netframework/
http://create.msdn.com/
http://www.fmod.org/
http://dotnetzip.codeplex.com/
http://code.google.com/p/lidgren-network-gen3/
http://sourceforge.net/projects/polyclipping/

Chapter 6 - Implementation

100

o The Clipper library primarily performs boolean clipping (intersection, union,

difference and XOR) on polygons in 2D space. There are no restrictions on either

the number nor the type of polygon that can be clipped. They can have holes, be

self-intersecting and even have coincident edges. The library also performs

polygon offsetting.

 Command Line Parser Library (http://commandline.codeplex.com/)

o The Command Line Parser Library offers to CLR applications a clean and concise

API for manipulating command line arguments and related tasks. It was used only

by the Nostalgia Client.

 Notify Poperty Weaver (https://github.com/SimonCropp/NotifyPropertyWeaver)

o Uses IL weaving to inject INotifyPropertyChanged code into properties. This made

the task of implementing data binding in the editor a lot less cumbersome,

because the same boiler plate code did not have to be repeated everywhere.

 JetBrains Resharper (http://www.jetbrains.com/resharper/)

o A refactoring and productivity extension for Microsoft Visual Studio which was

also invaluable during the development process.

6.5 Results

After a complete prototype of Nostalgia Studio was implemented, it was sent to a selected

group of users, together with a few instructional videos and a demo game that was built using

the editor. This demo made use of the multiplayer features of the engine and was designed so

that it required the two characters to collaborate in order to perform certain actions.

After the users had experimented with the editor and the demo, they were asked to answer a

survey about their general opinion of the editor and of the multiplayer component of the

game. Below is an analysis of those results gotten from a total of 12 different users.

6.5.1 Questions about the target public

First the subjects were asked how many adventure games they had already played before, in

order to ascertain their familiarity with the genre. Two of them had never played any

adventure game before, but the majority had played at least two adventure games before.

As an optional comment to this question, users could also add the name of their favorite

adventure game. The names that were referenced the most were some of the classic

http://commandline.codeplex.com/
https://github.com/SimonCropp/NotifyPropertyWeaver
http://www.jetbrains.com/resharper/

101

LucasArts adventure games such as Monkey Island, Day of the Tentacle and Grim Fandango

(which also happen to be favorites of mine).

Figure 104 - How many adventure games the users played

Then their previous experience with computer programming was evaluated. Results were

varied, with some of the subjects having no previous programming experience, while others

had moderate or considerable experience. However, results from the next section showed

that there was not a predictable correlation between having previous programming

experience and being able to use the application.

Figure 105 - Previous programming experience of the users

Finally the subjects were asked if they had ever designed or developed an adventure game

before. Two thirds of them replied that they had never done that before. Curiously, none of

the subjects who replied affirmatively used one of the three game engines covered in this

work. This is probably due to the fact that most of the subjects came from an academic

Chapter 6 - Implementation

102

background, while these three game engines are most widely used by the game development

industry.

Figure 106 - Previous experience with creating adventure games

Finally this opportunity was also used to determine which aspects of adventure games were

considered most important. As we'll see later when discussing the aspects of the multiplayer

component, there turned out be a strong correlation between what users liked in a regular

adventure game, and what users would like to see in a multiplayer adventure game.

Users were asked to select two out of six different categories related to the gameplay in an

adventure game. The results show that the most important portions of an adventure game in

the eyes of the users were the puzzles and the story, although a few users also favored

exploration and characters.

Figure 107 - Most important parts of adventure games

103

6.5.2 Questions about Nostalgia Studio

On the second page of the survey, users were asked to rate their experience with the

Nostalgia Studio application on seven different categories. Results were extremely positive

with every category getting an average score above 4 values on a scale of 1 to 5. All of the

averages were very close to each other it is hard to determine which category the users

enjoyed the most, although statistically speaking, performance and visual appearance were

the categories with the highest score.

Figure 108 - Nostalgia Studio score averages

Interestingly though, despite the average being roughly the same in every category, opinions

were extremely divided in some cases. For example, there were a few subjects who gave

simplicity, ease of learning or visual appearance a score of 2, while the majority rated these

categories with a score of 5.

Cross referencing this information with the users background information did not give

conclusive results though. For instance, the user who had the most difficulty learning how to

use the editor was one of the users who had considerable programming experience. However,

there were also users in the same situation who thought the editor was very easy to learn.

Table 15 - Nostalgia Studio score distribution

Rating 1 2 3 4 5 Average

Simplicity 0 1 2 3 6 4,17

Ease of use 0 0 3 4 5 4,17

Ease of learning 0 1 2 4 5 4,08

Robustness 0 0 3 5 4 4,08

Performance 0 0 2 4 6 4,33

Visual appearance 0 1 1 3 7 4,33

Games quality 0 0 1 7 4 4,25

Chapter 6 - Implementation

104

Besides this rating system there were also two optional questions where the users could add a

comment about what they liked the most and the least about the editor. Once again this

proved that opinions were extremely divided. For example, one user said that his favorite part

of the editor was the visual appearance, while another user said he did not like the visual

appearance of the application.

In general though, the aspect about the editor that most users commented positively about

was the editor's simplicity and ease of use, in particular among people with no programming

experience, who were surprised that it was possible to create a game as easily as this. This

result is extremely positive since that was one of the main goals that this project tried to

achieve.

6.5.3 Questions about the multiplayer component

The third and final page of the survey was dedicated to evaluating the usage of multiplayer

collaboration in adventure games. The demo game provided along with Nostalgia Studio was

used as a tool for the users to experience this type of gameplay and form their opinion. They

were then asked to rate the importance of five different features in the context of a

multiplayer adventure game.

This time the results were a lot more stable, and the feature that was considered most

important for a multiplayer adventure game was having puzzles that required collaboration

between players. This choice makes make perfect sense when we consider that the feature of

adventure games that users voted on the most on the first page was the puzzles.

Every other feature that directly affected this collaboration such as having characters with

different skills, allowing players to trade items and the ability to chat with each other were

also considered very important. Conversely, there was also one feature that almost every user

gave little importance to, which was allowing spectators to watch the game, although it was

not completely disregarded either.

105

Figure 109 - Multiplayer component features score averages

Table 16 - Multiplayer component features score distribution

Rating 1 2 3 4 5 Average

Puzzles that require collaboration 0 0 0 3 9 4,75

Characters with different "skills" 0 0 1 3 8 4,58

Trade items 0 0 1 5 6 4,42

Chat with other players 0 0 1 5 6 4,42

Spectators 2 2 5 3 0 2,75

Finally, the interest of the users in seeing a multiplayer online adventure game being

developed in the future was measured. In general, all of the subjects were very interested in

seeing this happen, with an average interest rating of 4.5 out of 5. This result is motivating

and shows that multiplayer online collaboration in graphic adventure games is an area which

should be further explored.

Chapter 6 - Implementation

106

107

7 Conclusion

This project started out as a way to address some of the limitations which were found during

the development of Time Mesh. In particular, the tools which were used to develop the game

were too complex for the general public, making it difficult for other people outside of the

development team to create their own educational scenarios for the game. Furthermore, the

multiplayer collaboration which was supposed to be one of the central points of the game,

ended up being too disconnected from the gameplay itself, and was not given the proper

attention.

It was because of those limitations that Nostalgia Studio was created. Nostalgia Studio

provides a simple way to create graphic adventure with a drag and drop, "what you see is

what you get" type of interface, and at the same time allows those games to be played by

multiple players over a network. There are also several elements embedded into the

gameplay which motivates collaboration between player, such as the ability to create puzzles

that only certain characters can solve, the ability to trade items between players, and a chat

system for player communication.

Thinking back on what the biggest problems during the development of Nostalgia Studio were,

the main problem was underestimating the amount of work required to create a complete

game engine and editor like this from scratch. This process ended up taking one year longer

than initially planned, and many features had to be cut from the final version of the prototype

in order to finish it on time. Nonetheless, the prototype still ended up containing all of the

essential features which were required for it to be fully evaluated.

The results from that evaluation were extremely positive, both regarding the simplicity and

ease of use of the application itself, and also about the prospects of incorporating multiplayer

gameplay into future adventure games. One of the users who participated in the evaluation,

coming from an educational background and having absolutely no knowledge of computer

programming, has already shown interest in using the application in a classroom environment.

Another user, which was a professional game developer, also gave very good feedback on the

Chapter 7 - Conclusion

108

application and was particularly excited about the multiplayer component of the game, which

he felt was capable of making any type of game more interesting. Overall I believe that both

of the goals which were initially set for Nostalgia Studio were successfully achieved.

On a personal level, what I considered to be the most positive aspect about the development

of Nostalgia Studio was all the experience I gained from it, as it forced me to research and

implement all of the systems that go into creating a complete game engine. This led me to

learn about graphics, audio, input, resource management, networking, artificial intelligence

scripting, data structures, algorithms, design patterns, and many others. All of this experience

will certainly be invaluable to me in the future since I intend to start working as a professional

game developer.

Also, as a long time graphic adventure fan, it was extremely rewarding to study all of its

history and evolution, as well as to get acquainted with some of the best graphic adventure

game engines that are currently available to the general public. Surprisingly, when I first

started working on this thesis, the genre of graphic adventure games was still in the same

lukewarm state it had been in since the end of the 90s. However, with the successful Double

Fine Adventure Kickstarter campaign on February 2012, new awareness has been given to the

genre, and many of the masterminds behind the old classic graphic adventure games are now

trying to make a comeback. These are certainly great news to all the fans of the genre

worldwide.

There is room for new features to be added to Nostalgia Studio in the future, such as adding

localization support or a save game system. The interface of the action editor could also be

modified to use a visual programming scheme instead of the more traditional approach, which

might make the experience even more appealing to the general public.

Figure 110 - An example of visual programming from the Kodu project

Another relevant idea for future development would be replace some of the technologies

used with cross platform alternatives such as switching to an OpenGL renderer and using the

cross platform Mono framework instead of the Microsoft .NET Framework which is currently

109

being used. This would make Nostalgia Studio accessible to a larger audience instead of

running only on the Windows platform. There are also a few routes of improvement for the

multiplayer component of the game, such as extending the lobby system to introduce the

different game modes described in chapter five.

To conclude this thesis, I would like to urge graphic adventure game developers to take

inspiration from this work and consider the benefits of incorporating online collaboration into

their future games. The majority of the users who evaluated Nostalgia Studio stated that they

were very interested in the idea of playing a collaborative graphic adventure game, and I

believe we are looking at a subject which holds a lot of potential and could evolve the genre of

graphic adventure games even further.

Chapter 7 - Conclusion

110

111

8 References

ACG. (1999, October). Roberta Williams - Sierra On-Line - Interview. Retrieved August 2011,

from http://www.adventureclassicgaming.com/index.php/site/interviews/127/

Adams, E. (2006). Fundamentals of Game Design. Prentice Hall.

AGS. (2011). Adventure Game Studio Legal Information. Retrieved January 2012, from

http://www.adventuregamestudio.co.uk/aclegal.htm

Akenine-Moller, T. (2008). Real-Time Rendering, Third Edition. AK Peters.

Anderson, T. (1985, Winter). The History of Zork - First in a Series. Retrieved August 2011, from

http://www.ifarchive.org/if-archive/infocom/articles/NZT-Zorkhistory.txt

Barton, M. (2008). Dungeons and desktops : the history of computer role-playing games.

Wellesley: A K Peters.

Crook, D. (2007, May). The Circle of Life: An Analysis of the Game Product Lifecycle. Retrieved

September 2011, from

http://www.gamasutra.com/view/feature/1453/the_circle_of_life_an_analysis_of_.php

DeLoura, M. (2000). Game programming gems. Boston: Charles River Media.

Dickheiser, M. (2006). C++ For Game Programmers. Charles River Media.

DoubleFine. (2012, February). Kickstarter Double Fine Adventure. Retrieved August 2012, from

http://www.kickstarter.com/projects/doublefine/double-fine-adventure

GameSpot. (2002, March 22). The Sims overtakes Myst. Retrieved from

http://www.gamespot.com/pc/strategy/simslivinlarge/news_2857556.html

GoF. (1995). Design patterns : elements of reusable object-oriented software. Reading:

Addison-Wesley.

Chapter 8 - <References

112

Gregory, J. (2009). Game engine architecture. Wellesley: A K Peters.

Jerz, D. (2007, Summer). Somewhere Nearby is Colossal Cave: Examining Will Crowther's

Original "Adventure" in Code and in Kentucky. Retrieved August 2011, from

http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html

Kalata, K. (2011). The guide to classic graphic adventures. Hardcoregaming101.net.

Lippert, E. (2007, October 2). Path Finding Using A* in C# 3.0, Part One. Retrieved February

2012, from Eric Lippert's Blog:

http://blogs.msdn.com/b/ericlippert/archive/2007/10/02/path-finding-using-a-in-c-3-0.aspx

Loguidice, B. (2009). Vintage games : an insider look at the history of Grand Theft Auto, Super

Mario, and the most influential games of all time. Boston: Focal Press/Elsevier.

MacDonald, M. (2005). Pro .NET 2.0 Windows Forms and Custom Controls in C#. Apress.

Martin, R. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

McShaffry, M. (2012). Game coding complete. Boston: Course Technology, Cengage Learning.

Moss, R. (2011). A truly graphic adventure: the 25-year rise and fall of a beloved genre.

Retrieved October 2011, from http://arstechnica.com/gaming/2011/01/history-of-graphic-

adventures/

Rabin, S. (2002). AI game programming wisdom. Hingham: Charles River Media.

SELEAG. (2011). Serious Learning Games. Retrieved September 2011, from

http://www.seleag.eu

TheDotEaters. (1998). Computer Game History. Retrieved August 2011, from

http://www.thedoteaters.com/p4_stage2.php

TimeMesh. (2011). Time Mesh. Retrieved September 2011, from http://timemesh.eu

Visionaire. (2011). Visionaire Studio License Information. Retrieved January 2012, from

http://www.visionaire-studio.net/cms/licences.html

WME. (2010). Wintermute Engine License Information. Retrieved January 2012, from

http://dead-code.org/home/index.php/license/

Woods, D. (2001, June). Interactive Fiction? I prefer Adventure. Retrieved August 2011, from

http://www.avventuretestuali.com/interviste/woods-eng

