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Abstract. Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as
engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting
from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated
as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical
problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem
was codified in AMPL.
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INTRODUCTION

Mathematical Program with Complementarity Constraints is an exciting new application of nonlinear techniques. In
Engineering, problems dealing with contact, obstacle and friction, process modeling, deformation and traffic conges-
tion are treated. An important reason why complementarity optimization problems are so important in Engineering is
because the concept of complementarity is tantamount with the notion of system equilibrium. They are very difficult
to solve as the usual constraints qualifications, necessary to guarantee the algorithms convergence, fail in all feasible
points. This complexity is caused by the disjunctive constraints. Researchers have been studied the MPCC theory and
proposing efficient algorithms - one can emphasize the work of Fukushima and Pang [1], Scholtes [2], Anitescu [3],
Ralph [4] and Fletcher et al. [5]. The interior point method (IPM), the sequential quadratic programming (SQP), the
smooth nonlinear programming, the penalty technique and regularization scheme are some strategies that have been
studied to implement numerical algorithms. Recent studies of Scheel and Scholtes [6] have proved that the strong
stationarity of an MPCC equals the first order optimality conditions of the NLP equivalent. This fact motivates the
scientific community to use NLP approaches to deal with MPCC. Some relevant works are [7], [8], [9] and [10].
As the number of vehicles and the need for transportation grow, traffic light control can be used to augment the flow
of the traffic in urban environments. Schutter and Moor [11], study the optimal traffic control problem for an inter-
section of two two-way streets. They derive an approximate model that describes the evolution of the queues lengths
as a continuous function of time. Starting from this model it is possible to compute the traffic light switching scheme
that minimizes a criterion such as average queue length, worst case queue length or average waiting time. The main
difference on this approach and the most existing methods is that the model allows the green-amber-red cycle time to
vary from one cycle to another.
A signalized intersection regulated by pre-timed control problem with four traffic lanes is considered. This problem
is formulated as an MPCC problem and solved by the algorithm combining the SQP and the hyperbolic penalty tech-
nique [12].
This paper is organized as follows. We start presenting the MPCC formulation and the hyperbolic penalty technique.
Next section defines the traffic problem to solve. The results are reported in the Computational Experiments section.
Finally some conclusions are carried out.
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MPCC DEFINITION

We consider Mathematical Program with Complementarity Constraints (MPCC):

min f (x)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
0 ≤ x1 ⊥ x2 ≥ 0,

(MPCC)

where f and c are the nonlinear objective function and the constraint functions, respectively, assumed to be twice
continuously differentiable. E and I are two disjoined finite index sets with cardinality p and m, respectively. A
decomposition x = (x0,x1,x2) of the variables is used where x0 ∈ Rn (control variables) and (x1,x2) ∈ R2q (state
variables). The expressions 0 ≤ x1 ⊥ x2 ≥ 0 : R2q → Rq are the q complementarity constraints. One attractive
way of solving (MPCC) is to replace the complementarity constraints by a set of nonlinear inequalities, such as
x1 j x2 j ≤ 0, j = 1, . . . ,q, and then solve the equivalent nonlinear program (NLP):

min f (x)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,
x1 jx2 j ≤ 0, j = 1, . . . ,q.

(NLP)

HYPERBOLIC PENALTY TECHNIQUE

A way to deal with the complementarity constraints is to apply a penalty technique. In this work an hyperbolic penalty
function presented by Xavier [13] is used to penalize the complementarity constraints (x1 jx2 j ≤ 0, j = 1, . . . ,q) in
(NLP):

P(x,u,v) = f (x)+Pt and Pt =
q

∑
j=1

−u(x1 jx2 j)+
√

u2(x1 jx2 j)2 + v2

where Pt is the penalty term and u, v are parameters with u,v ≥ 0, u → ∞,v → 0. It is a two phase penalty approach:
in the first stage, the initial parameter u increases, thus causing a reduction in the penalty to the points outside the
feasible region while at the same time there is a reduction in the penalty for the points inside the feasible region. This
phase continues until a feasible point is obtained. From this point on, u remains constant and the values of v decrease
sequentially. In this approach, the complementarity terms are penalized and a sequence of the following nonlinear
constrained optimization problem is solved as far u is incremented and v decreased:

min P(x,u,v)
s.t. ci(x) = 0, i ∈ E,

ci(x)≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

(PEN)

The feasibility test carried out to xk, to update the penalty parameters is as below




vk+1 = vkρ2, 0 < ρ2 < 1, if x1 jx2 j >

−vk

1000
uk+1 = ukρ1, ρ1 > 1, otherwise

, j = 1, . . . ,q.

TRAFFIC MODEL FORMULATION

The traffic problem to be solved has the following MPCC formulation:
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min
4

∑
i=1

1
λ̄i

(
1

2N
(x0)i +

N−1

∑
k=1

1
N
(xk)i +

1
2N

(xN)i

)

s.t. 0 ≤ xk ≤ xmax
ymin ≤ yR ≤ ymax
ymin ≤ yG ≤ ymax
x2k+1 ≥ x2k +b1yG +b3 , x2k+1 ≥ b5
x2k+1 ≥ x2k +b1yG +b3 ⊥ x2k+1 ≥ b5
x2k+2 ≥ x2k+1 +b2yR +b4 , x2k+2 ≥ b6
x2k+2 ≥ x2k+1 +b2yR +b4 ⊥ x2k+2 ≥ b6

(1)

where, the objective function represents the total average waiting time experienced by vehicles in all queues. The
problem formulation assumes that the duration of the yellow time (dY ) and clearance time (dC) is fixed. Since short
cycles imply more stops and long cycles causes long delays, maximum and minimum durations for the red and green
time (yR and yG) have been also added to the problem constraints. The number of vehicles in lane i at time instant k
is represented by (xk)i. The maximum queue length in each traffic stream is xmax, N is the time periods considered. In
addition, the following vectors are defined [14]:

xk = [L1(tk), L2(tk), L3(tk)], L4(tk)]T , k ∈ N0
b1 = [λ̄1 − µ̄1, λ̄2, λ̄3 − µ̄3, λ̄4]T

b2 = [λ̄1, λ̄2 − µ̄2, λ̄3, λ̄4 − µ̄4]T

b3 = [(λ̄1 − κ̄1)dY + λ̄1dC, λ̄2(dC +dY ), (λ̄3 − κ̄3)dY + λ̄3dC, λ̄4(dC +dY )]T

b4 = [λ̄1(dC +dY ), (λ̄2 − κ̄2)dY + λ̄2dC, λ̄3(dC +dY ),(λ̄4 − κ̄4)dY + λ̄4dC]T

b5 = [max{(λ̄1 − κ̄1)dY + λ̄1dC, λ̄1dC}, 0, max{(λ̄3 − κ̄3)dY + λ̄3dC, λ̄3dC}, 0]T

b6 = [0, max{(λ̄2 − κ̄2)dY + λ̄2dC, λ̄2dC}, 0, max{(λ̄4 − κ̄4)dY + λ̄4dC, λ̄4dC}]T

(2)

where for each lane, i.e, for i = 1, . . . ,4:

• λ̄i is the average arrival rate;
• µ̄i is the average departure rate when the traffic signal is green;
• κ̄i is the average departure rate when the traffic signal is yellow;
• Li(tk) is the queue length at time instant k.

COMPUTATIONAL EXPERIMENTS

This section summarizes the results of the computational tests solving (1) with the hyperbolic penalty algorithm. The
problem was tested with nine sets of parameters, corresponding to nine problems (P1-P9). Table 1 reports parameters
for each test problem, the four arrival rates and the results of the optimization process, namely the green split time (yG),
the red split time (yR) and the cycle length. The cycle length, in the last column, is defined by: yG + yR + 2(dC + dY )
(see [14] for more details ).

TABLE 1. Results

Problem λ̄1 (veh/h) λ̄2 (veh/h) λ̄3 (veh/h) λ̄4 (veh/h) yG (s) yR (s) Cycle (s)

P1 150 850 250 750 7 19.7 36.7
P2 150 800 250 700 7 17.5 34.5
P3 500 900 600 800 18.3 30.3 58.6
P4 500 850 600 750 17.1 27.3 54.4
P5 550 900 650 800 23.9 35.7 69.6
P6 650 800 750 700 27.9 32 69.9
P7 300 750 400 650 7.2 15.7 32.9
P8 450 600 550 500 10.3 12.5 32.8
P9 700 750 800 650 29.7 28.8 69.5
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The parameters used are:

µ̄i = 1800 veh/h κ̄i = 1800 veh/h for i = 1, . . . ,4
x0k = 2%λ̄k x0 j = 1%λ̄k for k = 1, 3, j = 2, 4
xmaxi = 25 for i = 1, . . . ,4
dY = 3 s dC = 2 s
ymin = 7 s ymax = 60 s

(3)

CONCLUSIONS AND FUTURE WORK

A signalized traffic intersection model formulated as an MPCC problem was solved using a MATLAB iterative
algorithm based on the hyperbolic penalty function. The numerical results show that the hyperbolic penalty function
performs well solving the problem. In addition, the cycle length and green split results are very close to the ones
achieved by Ribeiro et al. [14]. The problem was codified in AMPL and is free available in MacMPEC database [15]
named TrafficSignalCycle. As a future work, we intend to encode four new versions, changing the objective function -
average queue length over all queues, average queue length over the worst queue, average waiting time over the worst
queue and the worst case queue length.
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