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a b s t r a c t

This paper addresses the optimal involvement in derivatives electricity markets of a power producer to
hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic opti-
mization technique for long-term risk management tool is proposed. This tool investigates the long-term
opportunities for risk hedging available for electric power producers through the use of contracts with
physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk
preference is formulated as a utility function (U) expressing the trade-off between the expectation and
the variance of the return. Variance of return and the expectation are based on a forecasted scenario
interval determined by a long-term price range forecasting model. This model also makes use of particle
swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On
the other hand, the price estimation depends on load forecasting. This work also presents a regressive
long-term load forecast model that make use of PSO to find the best parameters as well as in price esti-
mation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm
(GA) based approach. A case study is presented and the results are discussed taking into account the real
price and load historical data from mainland Spanish electricity market demonstrating the effectiveness
of the methodology handling this type of problems. Finally, conclusions are dully drawn.

1. Introduction

Long-term contractual decisions are the basis of an efficient risk
management. On a vertical integrated electricity market, price vari-
ations were often minimal and heavily controlled by regulators. In
this structure, electricity price evolution is directly dependent on
the government’s social and industrial policy. The price forecasting
was mainly focused on the underlying costs (namely, fuel prices
and technological innovation among others). Any price forecast-
ing made on this basis was tended to be over the long-term. With
electricity markets re-regulation process, aforementioned features
have been changed dramatically. Thus, ownership on this activity
sector becomes private rather than public or a mixture of both.
Moreover, pools or power exchanges have been introduced for
wholesale trading.

Price forecast on re-regulated electricity markets is a hard
task due to the high pool price volatility. Charge characteristics
(seasonality, mean-reversion and load stochastic growth) and pro-
ducer’s characteristics (technology, generation availability, fuel

prices, technical restrictions, import/export, etc.) are at the origin of 
high price volatility in electricity markets. Several techniques have 
been used for short-term price forecast in electricity markets. In 
[1], artificial intelligent tools were proposed to forecast spot prices, 
namely, a combination of neural networks and fuzzy logic. Indeed, 
neural networks have now an extensive use in load and in price 
forecast [2–6]. Fuzzy techniques mixed with neural networks are 
used to predict possible prices range [7,8]. Stochastic processes are 
also used to analyze time series as ARIMA processes [9]; a class of 
stochastic processes was used to predict next-day electricity prices 
in mainland Spanish and in California markets. In [10], two fore-
casting tools based on dynamic regression and transfer function 
models are presented.

However, for the market agents who want to maximize their 
profits and simultaneously to practice the hedge against the market 
price volatility, the use of forward, futures and options contracts 
become a constant in developed electricity markets. Those types 
of contracts have a maturity that goes from 1 year to several years 
in the future, turning more difficult the decision process related 
to contracts establishment if they are not supported with a robust 
price forecast methodology.

Due to long delivery periods of the contracts described above 
that make more sense to forecast the market price mean value
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for each month. Moreover, contractual positions should be con-
tinuously review (say once a month) or each time the agent needs
to consider the ones already locked. After review references, we
assure that this problem has not been treated deeply in the scien-
tific literature. It is not a good practice in risk management to take
contractual decisions based exclusively on a single forecasted value.
In Section 3 is presented a different approach for long-term price
forecast. The proposed methodology, based on regression model,
aims to find a maximum and a minimum monthly Market Clearing
Price (MCP) average for a programming period, with a desired con-
fidence level ˛. This method makes use of statistical information
extracted from mainland Spanish market historical data. Due to
the complexity of the problem, the parameters are obtained using
the meta-heuristic PSO [11–14]. This model could also be applied
to forecast electricity market price for more than 1 year.

The long-term price forecast makes use of the monthly load
average forecast for the same period. For this reason, the authors
have also developed a long-term monthly load forecast using PSO.

For both models, long-term price and load forecast, PSO perfor-
mance has been evaluated by comparing it with a GA.

To find best portfolio for a market agent and particularly for pro-
ducers, which allow to hedge against market price volatility and
simultaneously increasing their profits. Ref. [15] proposes solu-
tions for electricity producers in the financial risk management
field for electric energy contract evaluation using efficient fron-
tier as a tool to identify the preferred contract portfolio. In [16] a
decision-support system based on stochastic simulation, optimiza-
tion and multi-criteria analysis, is applied to electricity retailer. A
statistical study of direct and cross hedging strategies using futures
contracts in an electricity market is presented in [17,18]. A frame-
work to obtain the optimal bidding strategy of a thermal price-taker
producer on a pool-based electric energy market is presented in
[19]. The optimal involvement in a futures electricity market of
a power producer to hedge against the risk of pool price volatility
using conditional Value-at-Risk as risk measure is presented in [20].
A risk-constrained stochastic programming framework to decide
which forward contracts the retailer should sign and at price it must
sell electricity and its expected profit is maximized at a given risk
level has been proposed in [21]. A technique based on stochastic
programming to optimally solve the electricity procurement prob-
lem faced by large consumer is presented in [22]. Ref. [23] analyzes
the impact of the degree of unavailability of the generating unit on
its forward contracting decisions.

In this work, long-term risk management tool makes use of a
long-term price range forecast has been developed and discussed.
The proposed long-term risk management tool aims to find the
best portfolio in function of the risk aversion factor (�) of the pro-
ducer, which maximizes the expected return and, simultaneously,
allows hedging against market price volatility. To achieve this, the
decision-support system maximizes a mean-variance utility func-
tion (U) of the total return (�).

In this methodology, a portfolio model based on utility functions
instead of option pricing models [24,25] has been used, because the
financial markets on electricity markets are incomplete (hedging
instruments unavailable). Uncertainties associated to generators
availability, fuel prices, technical restrictions and weather condi-
tions, turn difficult, if not impossible, to find a replicating portfolio,
which perfectly matches the future spot market payoffs. The power
market exercise by some agents is also a source of uncertainty.
Moreover, several markets around the world are still on their recent
stage, with a small number of financial tools for an efficient risk
management. Another issue in power markets is that electricity
cannot be stored for later use. Consequently, the strategy of buy-
ing the asset today to offset part of future losses does not apply.
The closest strategy is to buy a forward or futures contracts. There-
fore, the delivery price of these mentioned contracts should be

equal to the expected spot market price for the delivery period,
which not always happens. Consequently, the electricity markets
are not “complete” (i.e., any desired financial hedges are not avail-
able at a price), so risk attitudes and mean-variance frontiers are
still relevant.

PSO and GA algorithm performance are evaluated to show PSO is
a very successful meta-heuristic technique for solving this problem
in particular.

The paper is organized as follows: Section 2 presents a long-term
load forecasting model, followed by a case study applying afore-
mentioned model. Section 3 presents a long-term price forecasting
method, followed by the application of this method to a case study.
Section 4 shows the problem formulation of the risk management.
Finally, Section 5 draws the relevant conclusions.

2. Long-term load forecast

The proposed method is based on regression models. The main
goal of this methodology is to find the regression parameters that
minimize the absolute error to considered load historical data for
monthly time interval for 1-year period.

Load pattern is not complex as the revealed by the market price.
To find the best regression parameters, load historical data of the
previous 2 years has been used.

2.1. General description

The optimization problem that allows to find the best regression
parameters for the monthly load average is given by (1) and (2):

Min
12∑
i=1

|Ci,j − Ĉi,j|

Subjected to :
Ĉi,j ≥ 0

(1)

with

Ĉi,j = ω1,i · Ci−1,j +ω2,i · Ci,j−1 +ω3,i · Ci,j−2 (2)

2.2. Penalty function

To solve the optimization problem, PSO has been used to find
the best solution.

To satisfy constraint (2) for each period i, the penalization func-
tion (3) has been added to the optimization problem:

pf =
{

0 if Ĉi,j ≥ 0
e100×a2 − 1 otherwise

(3)

where

a = |Ĉi,j| (4)

2.3. PSO and GA parameters

Tables 1 and 2 present the parameters of PSO and GA algorithm,
respectively. Besides the optimum parameters of PSO method,
being also dependent on the fitness function. Experimentations
show that the number of evaluations used cannot compromise the
results and allow to achieve the best solution.

2.4. Case study

This test case uses a real load historical data (2001–2006) that
has been extracted from the mainland Spanish market has been
used to forecast the monthly load average for the year 2007. Fig. 1
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Table 1
PSO parameters.

Number of particles Number of iterations Number of evaluations Cognitive
acceleration

Social
acceleration

Initial inertia
weight

Final inertia
weight

Maximum
velocity (Vmax)

20 20,000 400,000 2 2 0.9 0.2 0.1

Table 2
GA parameters.

Population size Number of generations Number of evaluations Crossover rate Mutation rate

50 8000 400,000 0.8 0.2

Fig. 1. Monthly load average for mainland Spanish market from 2001 to 2006.

shows the mentioned monthly load average historical evolution
curve.

To find the best parameters, it was used the meta-heuristic PSO
has been used and compared with a GA from performance point of
view.

The stopping criterion is the maximum number of evalua-
tions, fixed in 400,000 evaluations for both algorithms. To achieve
the convergence PSO are necessary 20 particles and 20,000 iter-
ations for PSO and a population size of 50 individuals and
8000 generations for GA. Results are presented in Tables 3–5,
respectively.

It can be seen from Table 5 that, for this particular problem, PSO
is faster than GA (less time) and finds better solutions (lower fitness
value). These simulations have obtained by a computer Pentium 4,
3.2 GHz processor and 1 GB of RAM.

The monthly load average forecast for the year 2007 is presented
in Fig. 2.

Table 3
SO results.

ω1,i ω2,i ω3,i

January 0.4099 0.5828 0.0414
February 0.2155 0.5589 0.3085
March 0.5184 0.0417 0.4245
April 0.1375 0.3334 0.5762
May 0.2997 0.6321 0.0924
June 0.4830 0.0038 0.6494
July 0.1764 0.3302 0.6237
August 0.0830 0.8266 0.2521
September 0.0812 0.1572 0.8987
October 0.5528 0.4613 0.0035
November 0.2369 0.6747 0.1523
December 0.4859 0.3283 0.2155

Table 4
GA results.

ω1,i ω2,i ω3,i

January 0.9990 0.0001 0.0625
February 0.0623 1.0000 0.0179
March 0.0010 0.0044 1.0793
April 0.0011 0.6140 0.4299
May 0.0977 0.5102 0.4351
June 0.2549 0.0001 0.8783
July 0.0007 0.4268 0.7173
August 0.6182 0.0620 0.3740
September 0.0930 0.8799 0.1183
October 0.5190 0.0000 0.5390
November 0.2506 0.0100 0.8149
December 0.0301 0.0156 0.9999

Table 5
PSO and GA fitness function comparison.

Algorithm Fitness function value Time (s)

PSO 0 51.45
GA 0.0148 662.73

3. Long-term price range forecast

The proposed model aims to forecast the maximum and mini-
mum monthly market price average with a desired confidence level
˛, by using load and price statistical historical information data. The
following methodology is deployed:

(1) For each month of the historical data, the monthly average
load is divided on fixed and equal windows of size L. Then, for
each window L and for the desired confidence level ˛, statis-
tical information is extracted from the correspondent monthly
average market price namely, the significance interval corre-

Fig. 2. Monthly load average forecast for the year 2007 on mainland Spanish market.
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sponding to maximum and minimum price is between the
interval (50 +˛/2) and (50 −˛/2), respectively.

(2) For each historical monthly market price average, we find the
correspondent maximum and minimum monthly market price
average from the window L that it belongs. Based on this infor-
mation, for each month of the year a regression is determined
for the maximum and minimum monthly market price average
with the objective to minimize the absolute error considering
annual historical data. The regression independent variables
used are: the monthly market price average of the previous
month and the monthly load average.

3.1. Case study

The optimization problem allow to find the best regression
parameters for the maximum monthly market price average with
confidence level ˛, is given by (5) and (6):

Min
12∑
i=1

N∑
j=1

|Pmax,˛
i,j

− P̂max,˛
i,j

|

Subjected to :
P̂max,˛
i,j

≥ 0

(5)

with

P̂max,˛
i,j

= ˛1,i · Ci,j + ˛2,i · Pi−1,j (6)

The optimization problem allow to find the best regression
parameters for the minimum monthly market price average with
confidence level ˛, is formulated by (7) and (8):

Min
12∑
i=1

N∑
j=1

|Pmin,˛
i,j

− P̂min,˛
i,j

|

Subjected to :
P̂min,˛
i,j

≥ 0

(7)

with

P̂min,˛
i,j

= ˇ1,i · Ci,j + ˇ2,i · Pi−1,j (8)

After finding the best regression parameters for the maximum
and minimum monthly market price average, it is necessary to
forecast the load for the months which is intended to forecast the
monthly market price average range.

To forecast monthly market price average range for the month
i, (6) and (8) should be changed to (9) and (10), respectively:

P̂max,˛
i,j

= ˛1,i · Ĉi + ˛2,i · Pi−1 (9)

P̂min,˛
i,j

= ˇ1,i · Ĉi + ˇ2,i · Pi−1 (10)

Due to the high value of the monthly load average, the monthly
market price average, a scale factor ı is applied to the monthly
load average to avoid high values of ˛1,i and ˇ1,i to facilitate the
convergence of the optimization problems.

Based on the aforementioned idea, Eqs. (9) and (10) should be
changed to (11) and (12) as follows:

P̂maxi,j = ˛1,i · Ĉi · ı+ ˛2,i · Pi−1 (11)

P̂mini,j = ˇ1,i · Ĉi · ı+ ˇ2,i · Pi−1 (12)

This method can also be used to forecast the monthly mar-
ket price average range for several programming periods ahead
using the following strategy: the average of monthly market price
average range forecast for the programming period p will act as
the previous monthly market price average for the programming
period p + 1.

To solve the optimization problems the PSO algorithm was used
and its’ performance compared with the performance of a GA.

3.2. Penalty functions

To find the best solution of problems (5) and (7) PSO and GA
algorithm were used. In order to satisfy the constraint of the opti-
mization problem (5), the penalty function given by (13) and (14)
was used:

p =
{

0 if P̂max,˛
i,j

≥ 0

e100×b2 − 1 otherwise
(13)

with

b = |P̂max,˛
i,j

| (14)

To satisfy the constraint of the optimization problem (7) the
penalty function given by (15) and (16) is used:

p2 =
{

0 if P̂min,˛
i,j

≥ 0

e100×c2 − 1 otherwise
(15)

with

c = |P̂min,˛
i,j

| (16)

3.3. PSO and GA parameters

The PSO and GA parameters used to find the best solution are
presented in Tables 6 and 7, respectively. Besides the optimum
parameters of PSO method, being also dependent on the fitness
function. Experimentations show that the number of evaluations
used cannot compromise the results and allow to achieve the best
solution.

3.4. Case study

To test our model, in this section the monthly market price aver-
age is forecasted for the year 2007 in mainland Spanish market with
a confidence level ˛= 95%. It is assumed that t = 0 corresponds to
31 December of the year 2006. The historical data used was the
monthly market price and load average from 2001 to 2006 pre-
sented in Figs. 1 and 3, respectively.

Table 6
PSO parameters.

Number of
particles

Number of
iterations

Number of
evaluations

Cognitive
acceleration

Social
acceleration

Initial inertia
weight

Final inertia
weight

Maximum
velocity (Vmax)

20 20,000 400,000 2 2 0.9 0.2 0.2

Table 7
GA parameters.

Population size Number of generations Number of evaluations Crossover rate Mutation rate

50 8000 400,000 0.8 0.2
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Fig. 3. Monthly market price average for mainland Spanish market from 2001 to
2006.

Table 8
Average of the regression parameters using PSO algorithm.

˛1,i ˛2,i ˇ1,i ˇ2,i

January 0.4456 0.0277 0.2546 0.0157
February 0.1891 0.6436 0.2953 −0.0695
March 0.1981 0.7087 0.2843 −0.0235
April 0.4574 −0.0237 0.3104 0.0199
May 0.3853 0.2774 0.3096 0.1273
June 0.2907 0.5413 0.2126 0.5159
July 0.4171 0.1400 0.2787 0.1700
August 0.4721 −0.1493 0.3216 0.0456
September 0.3312 0.4298 0.3263 0.1708
October −0.0319 1.3919 0.2886 0.2084
November 0.1773 0.6830 0.2266 0.3287
December 0.4767 0.0638 0.1978 0.3137

The proposed model needs the monthly forecasted load for the
year 2007. The results of PSO algorithm have been used and pre-
sented in Fig. 2 because it achieve better results, namely lower
Mean Absolute Percentage Error (MAPE).

PSO performance is compared with the one achieved by GA. The
stopping criterion is the maximum number of evaluations, fixed
in 400,000 evaluations for both algorithms. To achieve the conver-
gence PSO are necessary 20 particles and 20,000 iterations for PSO
and a population size of 50 individuals and 8000 generations for
GA. Due to random initialization, the trajectory for each run is dif-
ferent; so 10 runs are used to find the average and the standard
deviation of the results. The scale factor ı applied the monthly load
average was set equal to 2 × 103.

Results are presented in Tables 8 and 9, respectively.
The regression parameters standard deviation for the monthly

market price range forecast using the PSO and a GA is presented in
Tables 10 and 11, respectively.

Table 9
Average of the regression parameters using GA.

˛1,i ˛2,i ˇ1,i ˇ2,i

January 0.4478 0.0155 0.2832 −0.0545
February 0.1764 0.7185 0.2635 0.0914
March 0.2563 0.5457 0.2726 0.0362
April 0.4052 0.2419 0.2430 0.2249
May 0.3921 0.2444 0.3188 0.0841
June 0.3203 0.4612 0.2955 0.1264
July 0.3809 0.2797 0.1399 0.6120
August 0.4235 −0.0337 0.3216 0.0458
September 0.2061 0.9289 0.4496 −0.2597
October 0.0538 1.1331 0.3700 0.0094
November 0.0494 1.0624 0.2076 0.4003
December 0.4893 0.0074 0.1555 0.4396

Table 10
Standard deviation of the regression parameters using PSO algorithm.

˛1,i ˛2,i ˇ1,i ˇ2,i

January 0.0001 0.0004 0.0002 0.0005
February 0.0000 0.0001 0.0002 0.0005
March 0.0116 0.0488 0.0040 0.0202
April 0.0002 0.0006 0.0035 0.0143
May 0.0023 0.0106 0.0002 0.0007
June 0.0000 0.0000 0.0001 0.0003
July 0.0691 0.2512 0.0094 0.0250
August 0.0064 0.0141 0.0004 0.0008
September 0.0853 0.2917 0.0029 0.0112
October 0.1287 0.3145 0.0550 0.1721
November 0.0059 0.0159 0.0076 0.0282
December 0.0119 0.0535 0.0146 0.0656

Table 11
Standard deviation of the regression parameters using GA.

˛1,i ˛2,i ˇ1,i ˇ2,i

January 0.0088 0.0276 0.0740 0.3483
February 0.0007 0.0041 0.0182 0.0920
March 0.0212 0.0563 0.0088 0.0311
April 0.0823 0.3006 0.0343 0.0910
May 0.0166 0.0783 0.0110 0.0515
June 0.0105 0.0279 0.0037 0.0157
July 0.0631 0.2216 0.0898 0.2774
August 0.0143 0.0404 0.0449 0.1063
September 0.0774 0.3150 0.0653 0.2385
October 0.0361 0.1133 0.1728 0.4750
November 0.0469 0.1465 0.0049 0.0165
December 0.0113 0.0506 0.0187 0.0519

The mean and the standard deviation of the fitness functions for
the 10 runs are presented in Table 12. Table 12 also includes the
mean time necessary to reach the optimal solution for PSO and GA.

Analyzing Tables 10 and 11, it can be verified that, for this par-
ticular problem, PSO solutions are more robust (smaller standard
deviation values) than the ones attained with the GA.

It can be verified from Table 12 that, for this particular problem,
PSO is faster than GA (smaller mean time), finds better solutions
(smaller mean fitness value) and is more robust (smaller standard
deviation values). These simulations were on the same computer.

The monthly market price range forecast for the year 2007 in
mainland Spanish market with confidence level ˛= 95%, using the
PSO and GA are presented in Figs. 4 and 5, respectively.

In these figures we verify results PSO are better for this partic-
ular problem when compared with GA results, because the sum of
the MAPE for the maximum and minimum monthly market price
average forecast is lower for PSO. Also from the same figures it is
possible to verify the monthly market price average range forecast
include in 91.67% the real monthly market price average.

Comparing Figs. 4 and 5, we verify that for the December the
monthly market price average range forecast does not include the
real monthly market price average. This occur because from Fig. 3,
with the exception of the year 2002, the monthly market price aver-
age variation between November and December was not so high
when compared with the same period of the year 2007. Indeed, we
use a regression model, with objective to minimize absolute error
for the historical data. This is not possible to capture such pattern.

Table 12
PSO and GA fitness function comparison.

Algorithm Mean Std. Dev. Mean time (s)

PSO (max) 16.0977 0.1138 79.2476
GA (max) 17.1949 0.2745 1939.5000
PSO (min) 7.5360 0.0928 72.5983
GA (min) 9.2295 0.3201 1005.9000
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Fig. 4. Monthly market price range forecast for the year 2007 in mainland Spanish
market, with confidence level ˛= 95%, using the PSO algorithm.

Fig. 5. Monthly market price range forecast for the year 2007 in mainland Spanish
market, with confidence level ˛= 95%, using the GA.

Maybe these results will be better than the obtained results, if we
have other type of information, like temperature for example.

4. Long-term risk management

Finding the optimal portfolio of contracts for a deregulated elec-
tricity market agent is a hard task due to the characteristics of the
“product” electricity and to the non-linear characteristics of the
available contracts.

This paper presents a new methodology for long-term risk man-
agement tool, taking into account, large period price forecast and
contractual diversification that are the key issue for an efficient
risk management. To achieve this, it is assumed that producers can
make use of contracts with physical settlement (spot and forward
contracts) and contracts with financial settlement (options con-
tracts). It has been solved by a combination of PSO and regression
algorithms.

4.1. Spot contracts

Electricity market design is mainly dependent of financial,
political and ideology reasons. Therefore, deregulated electricity
markets design varies from country to another. However, spot mar-
ket becomes the core of the main deregulated electricity markets
around the world. Producers make extensive use of this market to
sell their energy on an hour or half-hour basis. The revenue from
the short position (who sells has a short position and who buys

has a long position) obtained by the producer is dependent of the
period i and scenario j and is given by (17):

rssi,j = MCPi,j · essi (17)

4.2. Forward contracts

The strategy of buying the asset today to offset part of future
losses does not apply. The closer strategy is to buy a forward or
futures contracts. Forward contracts are bilateral agreements in
which two parts agree mutually on the characteristics (quantity,
price, point of delivery and date/time). The payment is made only
on a future date, eliminating the risk associated to price variation.

The producer revenue from a short forward position on forward
contracts is given by (18). In this risk management tool it was con-
sidered that the delivery period for forward contracts is the same
of all period in analysis:

rsf = ksf · esf (18)

The delivery price is fixed on forward contracts. So, its revenue
is only dependent on the delivery price and quantity established in
the contract.

To avoid producers take advantage of any arbitrage opportunity,
this long-term risk management tool does not allow long positions
on forward contracts.

4.3. Options contracts

On options contracts the buyer have the right, but not the obliga-
tion, to exercise the contract. Based on that, there are four positions
on options contracts: short call, long call, short put and long put.
However, risk management tool only allows the producers to estab-
lish short call and long put positions. These positions are similar to
the positions of the producer can establish to sell the produced
energy with physical settlement. If producer is allowed to estab-
lish four positions types, quantities to practice the hedge would be
almost infinite if a financial limit is not established.

It was assumed they are financial type and European-style
options (European-style options can only be exercised at the begin-
ning of the delivery date while American-style options can be
exercised at any time until the delivery date).

The payoff for the short call position is given by (19):

Psci,j = esc · [min(ksc −MCPi,j,0) + psc] (19)

From Eq. (19) it is clear that the buyer only exercises the call
option if the Market Clearing Price is higher than the delivery price.
Also we can see the seller (producer) payoff is positive only if the
Market Clearing Price at the expiration date is lower than the call
option exercise price plus the premium.

For the long put position, option buyer (producer) will exercise
it if the MCP is lower than the exercise price.

The payoff for long put position is given by (20):

Plp
i,j

= elp · [max(klp −MCPi,j,0) − plp] (20)

From Eq. (20) it can be seem the long put position payoff is
positive only if the MCP is higher than the exercise price.

4.4. Mathematical optimization problem

To find optimal energy quantities establishing on each contract
type, it was developed an optimization problem based on a mean-
variance of the return. This formulation allows finding the optimal
energy quantities that maximizes the profits and simultaneously
practices the hedge against the MCP volatility in function of the
producer risk aversion factor.
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The mathematical formulation is stated as following:

Maximize U(�) = E(�) − � · Var(�) (21)

Subjected to:

emin ≤ ecsi + ecf ≤ emax (22)

ecsi , e
cf , ecc, elp ≥ 0 (23)

where

E(�) = E(�max) + E(�min) (24)

and

Var(�) =
2∑
i=1

2∑
j=1

covi,j(�max,�min) (25)

with

�max = [�max1 , . . . , �maxT ] (26)

and

�min = [�min1 , . . . , �minT ] (27)

The mean-variance formulation resemble closely the Value-
at-Risk (VaR) formulation and have as main advantage to be
computationally more efficient for a given risk aversion factor
�. Moreover, VaR formulation needs higher order of information
about the joint probability distribution of the payoffs and is highly
sensitive to the high impact of low probability events, which create
“fat tails” in payoff distribution. In this formulation we assumed the
risk aversion factor � is equal for the whole period in analysis.

The return � for each period i, expressed in Eur, is a function
of the considered minimum or maximum price forecast scenario j
for that period, and is equal to the sum of all revenues and options
payoffs minus the costs of production.

Mathematically, the return � is

�i,j = rssi,j + rsf + Psci,j + P
lp
i,j

− Ci,j (28)

with

Ci,j = C(essi + esf ) (29)

Options contracts have financial settlement; the total produc-
tion cost is only dependent on the energy that the producer will
sell on spot market, and on forward contracts, meaning that is only
dependent of the energy established on contracts with physical
settlement.

4.5. Penalty functions

Due to optimization problem complexity, PSO was used to find
the optimal solution and results were compared with GA results.

To satisfy constraint (22) for each period i, penalty function (30)
and (31) is added to (21):

pf1 =
{

0 if e ≥ emin and e ≤ emax
e100×d2 − 1 otherwise

(30)

where

d = min[|e− emin|, |e− emax|] (31)

To satisfy constraint (23) for each period i, penalty function (32)
and (33) is added to (21):

pf2 =
{

0 if ess,sf,sc,lp
i

≥ 0
e100×e2 − 1 otherwise

(32)

where

e = |ess,sf,sc,lp
i

| (33)

4.6. PSO and GA parameters

The parameters of PSO and GA, used finding the best solution are
presented in Tables 13 and 14, respectively. Besides these param-
eters being dependent on the fitness function, experimentations
show that the number of evaluations used does not compromise
the results and allow achieving the optimal solution.

4.7. Producer characteristics

It was assumed that producer cost function is equal for the entire
period in analysis (1 year) and is given by Eq. (34):

C(Pg) = 100 + 0.3 · Pg + 0.02 · P2
g (34)

where Pg is in MW, C in Eur/h, Pmaxg = 200 MW and Pming = 5 MW.
The cost of sales (like taxes, market commissions and others) is

not addressed. Moreover, there is just as much risk in the cost of
sales as there is in the generation of revenue.

4.8. Contracts characteristics

Options contracts characteristics with delivery period for the
year 2007 are presented in Table 15.

It was assumed that forward contracts with delivery period for
the year 2007 are traded at a price equal to 40 Eur/MWh.

4.9. Case study

In this case a producer aims (in December 2006) to find the
optimal contracts portfolio for the entire year of 2007. However,
although to be beyond the purpose of this work, the producer must
adjust its contractual positions continuously (say once a month)
and whenever, he needs to reconsider his contractual positions
already established in forward and other contracts, before adjusting
the portfolio.

Although PSO achieve better results on monthly price range
average forecast, Fig. 4 present the results for the year 2007.

An evaluation of PSO and GA performance for this partic-
ular problem has been carried out. The algorithms’ stopping
criterion was the maximum number of evaluations (fixed in
400,000 evaluations). With 20 particles in the PSO 20,000 itera-
tions were performed. For GA a population size of 50 individuals
and 8000 generations was used. Due to random initialization,
the trajectory for each run is different; so, we used 10 runs
to calculate the average and the standard deviation of the
results.

Due to the problem complexity, the entire period was divided
in sub-periods of one month of duration allowing to reduce the
number of variables and, consequently, turning the optimization
problem lighter.

In Tables 16 and 17 results are presented for the average quanti-
ties, in MWh, for each contractual position and risk aversion factor
using PSO and GA, respectively.

The standard deviation of the results using PSO and GA is pre-
sented in Tables 18 and 19, respectively.

Comparing the standard deviation for each solution
(Tables 18 and 19), we conclude that PSO is more robust than the
GA.

The mean and the standard deviation of the fitness functions
for the 10 runs and for each risk aversion factor are presented in
Table 20. Table 20 also includes the mean time necessary to reach
the optimal solution for PSO and GA.

It can be verified from Table 20 that, for this particular problem,
PSO is faster than GA (smaller mean time), finds better solutions
(smaller mean fitness value) and is more robust (smaller standard

dx.doi.org/10.1016/j.epsr.2009.10.002


Table 13
PSO parameters.

Number of
particles

Number of
iterations

Number of
evaluations

Cognitive
acceleration

Social
acceleration

Initial inertia
weight

Final inertia
weight

Maximum
velocity (Vmax)

20 20,000 400,000 2 2 0.9 0.4 10

Table 14
GA parameters.

Population size Number of generations Number of evaluations Crossover rate Mutation rate

50 8000 400,000 0.8 0.2

deviation). These simulations were made on an ASUS L5GX laptop,
P4 3.2 GHz processor and 1 GB of memory.

Because PSO achieve better results in this particular problem,
in Figs. 6 and 7 is presented its results for the expected return and
the associated risk for each month, as function of the risk aversion
factor �, respectively.

From Figs. 6 and 7 we conclude that, for the same risk aver-
sion factor �, the bigger the expected return the bigger the risk
(standard deviation of the return) that the producer is exposed to.
Analyzing Figs. 7 and 8 we verify that the risk (standard deviation
of the return) is inversely proportional to the risk aversion factor �,
and so is the energy that the producer will sell in the spot market.

Fig. 6. Producer expected return in function of risk aversion factor �.

Fig. 7. Risk in function of risk aversion factor �.

Fig. 8. Optimal energy quantities that producer should sell in spot market in func-
tion of risk aversion factor �.

This happens because the lower the risk aversion factor the most
indifferent the producer will be to the risk and therefore he will
have more risky attitudes and sell more energy on the spot market,
as it can be seen in Fig. 8.

Table 15
Options contracts characteristics.

Exercise price (Eur/MWh) Premium (Eur/MWh)

Short call 42.00 2.50
Long put 45.00 5.00

Table 16
Average quantity, in MWh, to establish by contractual position and risk aversion
factor using PSO.

Positions Average quantity (MWh)

�= 0 �= 1 �= 2 �= 3

Short spot 2.1 × 106 1.2 × 106 9.9 × 105 7.7 × 105

Short forward 2.7 × 103 6.4 × 105 5.9 × 105 3.8 × 105

Short call 0.839 1.3 × 106 1.4 × 106 5.4 × 105

Long put 0.250 6.9 × 105 1.3 × 106 7.2 × 105

Table 17
Average quantity, in MWh, to establish by contractual position and risk aversion
factor using GA.

Positions Average quantity (MWh)

�= 0 �= 1 �= 2 �= 3

Short spot 1.8 × 106 1.1 × 106 1.3 × 106 1.1 × 106

Short forward 2.4 × 105 5.4 × 105 4.4 × 105 4.8 × 105

Short call 145.017 8.7 × 105 1.4 × 106 1.0 × 107

Long put 444.929 9.8 × 105 7.8 × 105 4.1 × 105
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Table 18
Standard deviation quantity, in MWh, to establish by contractual position and risk
aversion factor using PSO.

Positions Std. Dev. (MWh)

�= 0 �= 1 �= 2 �= 3

Short spot 0.004 2.026 112.788 24.277
Short forward 1.7 × 10−4 1.028 6.233 0.979
Short call 6.1 × 10−6 26.243 7.797 30.443
Long put 8.6 × 10−6 45.682 75.483 5.041

Table 19
Standard deviation quantity, in MWh, to establish by contractual position and risk
aversion factor using GA.

Positions Std. Dev. (MWh)

�= 0 �= 1 �= 2 �= 3

Short spot 213.693 6.267 227.004 321.845
Short forward 17.807 1.534 2.237 5.292
Short call 0.0079 68.864 29.499 159.678
Long put 0.0229 145.471 94.215 9.6719

Table 20
PSO and GA fitness function comparison.

Algorithm Mean Std. Dev. Mean time (s)

PSO (�= 0) 1.3639 × 107 10.9801 113.1464
GA (�= 0) 1.3181 × 107 2.9971 × 105 858.5784
PSO (�= 1) 9.5269 × 106 1.8706 × 105 107.2944
GA (�= 1) 7.8527 × 106 7.4777 × 105 885.0692
PSO (�= 2) 7.5300 × 106 2.6324 × 105 107.4961
GA (�= 2) 1.8101 × 106 2.3825 × 106 880.0213
PSO (�= 3) 6.3729 × 106 2.7286 × 105 106.3816
GA (�= 3) 4.6687 × 106 4.5523 × 105 868.8086

5. Conclusions

In this paper an effective long-term risk management tool has
been proposed that allows producers to maximize their expected
return while practicing the hedge against spot price volatility.
Moreover, to do this, three models have been elaborated in this
work. One is for risk management that depends on the price fore-
casting, which also depends on the load forecasting. The main
advantage of the price forecasting model is the fact that does not
make any statistical distribution function for market price assump-
tion.

For solving the model of load and price forecast, PSO technique
has been used to find the best regression parameters.

The methodology has been applied to a case study to carry out
load and price forecasting. Results demonstrate that this method-
ology can effectively support handle the decision-support for
long-term risk management in power systems.
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Ci,j real monthly load average for month i, year j

Ĉi,j monthly load average forecast for month i, year j

ω1,i parameter associated to the monthly load average of the
month i − 1

ω2,i parameter associated to the monthly load average of the
month i, year j − 1

ω3,i parameter associated to the monthly load average of the
month i, year j − 2

L window size to extract statistical information from his-
torical price data

˛ desired confidence level for the monthly price range fore-
cast

Pmax,˛
i,j

real maximum monthly market price average for month
i, year j with confidence level ˛

Pmin,˛
i,j

real minimum monthly market price average for month
i, year j with confidence level ˛

P̂max,˛
i,j

maximum monthly market price average forecast for
month i, year j with confidence level ˛

P̂min,˛
i,j

minimum monthly market price average forecast for
month i, year j with confidence level ˛

Pi−1,j monthly market price average of the month i − 1, year j
˛1,i parameter associated to the load average forecast for the

month i to forecast the maximum market price average
for the same month

˛2,i parameter associated to the monthly market price aver-
age of month i − 1 to forecast the maximum market price
for month i

ˇ1,i parameter associated to the load average forecast for the
month i to forecast the minimum market price average
for the same month

ˇ2,i parameter associated to the monthly market price aver-
age of month i − 1 to forecast the minimum market price
month i

N number of historical years used
ı represents a scale factor to be applied to the monthly load

average forecast
rss
i,j

revenue of the short position obtained by the producer in
the spot market for period i, scenario j (Eur)

MCPi,j Market Clearing Price for period i, scenario j (Eur/MWh)
ess
i

energy amount that the producer decides to sell in the
spot market for period i (MWh)

rsf revenue of the short position obtained by the producer in
forward contracts (Eur)

ksf delivery price of the forward contract (Eur/MWh)
esf energy amount that the producer decides to sell in for-

ward contracts (MWh)
Psc
i,j

payoff of the short call position, for the period i, scenario
j (Eur)

psc premium of the call option (Eur/MWh)
ksc delivery price of the call option (Eur/MWh)
esc energy associated to the short call position obtained by

the producer (MWh)
Plp
i,j

payoff of the long put position, for period i, scenario j (Eur)

plp premium of the put option (Eur/MWh)
klp delivery price of the put option (Eur/MWh)
elp energy associated to the long put position obtained by the

producer (MWh)
� producer return for the entire period in analysis (Eur)
E(�) expected value of the return based on the forecasted price

interval for the entire period in analysis (Eur)
Var(�) variance of the return based on the forecasted price inter-

val for the entire period in analysis (Eur)
covi,j(�max, �min) element (i, j) of the covariance matrix of the

returns for all periods i based on maximum and minimum
price forecast (Eur)

C(Pg) cost to produce Pg (Eur/h)
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Pg power energy of producer (MW)
Pmaxg maximum electrical power of producer (MW)
Pming minimum electrical power of producer (MW)
�max
i

period i return based on the maximum price forecast (Eur)
�min
i

period i return based on the minimum price forecast (Eur)
T number of the considered periods for the entire period in

analysis
� producer risk aversion factor
emin minimum energy that the producer can produce (MWh)
emax maximum energy that the producer can produce (MWh)
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