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This paper studies musical opus from the point of view of three mathematical tools: entropy,
pseudo phase plane (PPP), and multidimensional scaling (MDS). The experiments analyze ten
sets of different musical styles. First, for each musical composition, the PPP is produced using
the time series lags captured by the average mutual information. Second, to unravel hidden
relationships between the musical styles the MDS technique is used. The MDS is calculated based
on two alternative metrics obtained from the PPP, namely, the average mutual information and the
fractal dimension. The results reveal significant differences in the musical styles, demonstrating
the feasibility of the proposed strategy and motivating further developments towards a dynamical
analysis of musical sounds.

1. Introduction

For many centuries, philosophers, music composers, andmathematicians worked intensively
to findmathematical formulae that could explain the process of music creation. As a matter of
fact, music and mathematics are intricately related: strings vibrate at certain frequencies and
sound waves can be described by mathematical equations. Although it seems not possible
to find an expression that models the musical works, it is recognized that there are certain
inherent mathematical structures in all types of music. Through the history of music, we
have been faced with the proposal of formal techniques for melody composition, claiming
that musical pieces can be created as a result of applying certain rules to some given initial
material [1–12]. More recently, the growth of computing power made it possible to generate
music automatically.
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The concept of entropy was introduced in the field of thermodynamics by Clausius
(1862) and Boltzmann (1896) and was later applied by Shannon (1948) and Jaynes (1957)
in information theory [13–15]. However, recently more general entropy measures were
proposed, allowing the relaxation of the additivity axiom for application in several types
of complex systems [16–24]. The novel ideas are presently under a large development and
open up promising perspectives.

The pseudo phase space (PPS) is used to analyze signals with nonlinear behavior. For
the two-dimensional case it is called pseudo phase plane (PPP) [25–27]. To reconstruct the
PPS it is necessary to find the adequate time lag between the signal and one delayed image of
the original signal. To determine the proper lag (or time delay) often the mutual information
concept is used.

The Multidimensional Scaling (MDS) has its origins in psychometrics and psy-
chophysics, where it is used as a tool for perceptual and cognitive modeling. From the
beginningMDS has been applied inmany fields, such as psychology, sociology, anthropology,
economy, and educational research. In the last decades this technique has been applied also in
others areas, including computational chemistry [28], machine learning [29], concept maps
[30], and wireless network sensors [31].

Bearing these facts in mind, the present study combines the referred concepts and is
organized as follows. Section 2 introduces a brief description of the fundamental concepts.
Section 3 formulates and develops the musical study through several entropy measures and
MDS analysis. Finally, Section 4 outlines the main conclusions.

2. Fundamental Concepts

This section presents the main tools adopted in this study, namely, the musical signals, the
PPP, the fractional dimension, and the MDS.

2.1. Musical Sounds

In the context of this study, a musical work is a set of one or more time-sequenced digital data
streams, representing a certain time sampling of the original musical source. For all musical
objects, the original data streams result from sampling at 44 kHz, subsequently converted to
a single (mono-) digital data series, each sample being a 32-bit signed floating value.

These sounds have a strong variability, making difficult their direct comparison in
the time domain. In this line of thought, several tests were developed to obtain methods
that establish a compromise between smoothing the high signal variability and handling
the rhythm and style time evolution that are the essence of each composition. The Shannon
entropy S of the signals is shown to be an appropriate method:

S = −
∑

x∈X
p(x) ln

[
p(x)

]
, (2.1)

where X is the set of all possible events and p(x) is the probability that event i occurs so that∑
x∈X p(x) = 1.

For a bidimensional random variable the join entropy becomes

S = −
∑

x∈X

∑

y∈Y
p
(
x, y

)
ln
[
p
(
x, y

)]
. (2.2)
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2.2. Pseudo Phase Plane

The PPS is used to analyze signals with nonlinear behavior. The proper time lagTd, for the
delay measurements, and the adequate dimension d ∈ N of the space must be determined
in order to achieve the phase space. In the PPS the measurement s(t) forms the pseudo vector
y(t) according to

y(t) = [s(t), s(t + Td), . . . , s(t + (d − 1)Td)]. (2.3)

The vector y(t) can be plotted in a d-dimensional space forming a curve in the PPS. If d = 2
we have a two-dimensional space, and, therefore, the PPP is a particular case of the PPS
technique.

The procedure of choosing a sufficiently large d is formally known as embedding
and any dimension that works is called an embedding dimension dE. The number of
measurements dE should provide a phase space dimension, in which the geometrical
structure of the plotted PPS is completely unfold and where there are no hidden points in
the resulting plot.

Among others [26], the method of delays is the most common method for
reconstructing the phase space. Several techniques have been proposed to choose an
appropriate time delay [27]. One line of thought is to choose Td based on the correlation of
the time series with its delayed image. The difficulty of correlation to deal with nonlinear
relations leads to the use of the mutual information. This concept, from the information
theory [32], recognizes the nonlinear properties of the series and measures their dependence.
The average mutual information for the two series of variables t and t + Td is given by

I(t, t + Td) =
∫

t

∫

t+Td
F1{s(t), s(t + Td)}log2

F1{s(t), s(t + Td)}
F2{s(t)}F3{s(t + Td)}dtd(t + Td), (2.4)

where F1{s(t), s(t + Td)} is a bidimensional probability density function and F2{s(t)} and
F3{s(t + Td)} are the marginal probability distributions of the two series s(t) and s(t + Td),
respectively.

The index I allows us to obtain the time lag required to construct the pseudo phase
space. For finding the best value Td of the delay, I is computed for a range of delays and the
first minimum is chosen. Usually I is referred [25–27] as the preferred alternative to select the
proper time delay Td.

2.3. Fractal Dimension

The fractal dimension is a quantity that gives an indication of how completely a spatial
representation appears to fill space. There are many specific methods to compute the
fractal dimension [33, 34]. The most popular methods are the Hausdorff and box-counting
dimensions. Here the box-counting dimension method is used due to its simplicity of
implementation and is defined as

fd = lim
ε→ 0

ln[N(ε)]
ln(1/ε)

, (2.5)
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where N(ε) represents the minimal number of covering cells (e.g., boxes) of size ε required
to cover the set analyzed. The slope on a plot of ln[N(ε)] versus ln(1/ε) provides an estimate
of the fractal dimension.

2.4. Multidimensional Scaling

MDS is a generic name for a family of algorithms that construct a configuration of points
in a low-dimensional space from information about interpoint distances measured in high-
dimensional space. The new geometrical configuration of points, preserving the proximities
of the high dimensional space, facilitates the perception underlying structure of the data and
often makes it much easier to analyze. The problem addressed by MDS can be stated as
follows: given n items in anm-dimensional space and an n×nmatrixC of proximitymeasures
among the items, MDS produces a p-dimensional configuration Φ, p ≤ m, representing the
items such that the distances among the points in the new space reflect, with some degree
of fidelity, the proximities in the data. The proximity measures the closeness (in MDS terms
usually referred as similarities) among the items and, in general, it is a distance measure: the
more similar two items are, the smaller their distance is.

The Minkowski distance metric provides a general way to specify distance for
quantitative data in a multidimensional space:

dij =

(
m∑

k=1

wk

∣∣xik − xjk

∣∣r
)1/r

, (2.6)

where m is the number of dimensions, xik is the value of the kth component of object i, and
wk is a weight factor.

Forwk = 1, if r = 2 then (2.6) yields the Euclidean distance, and if r = 1 then it leads to
the city-block (or Manhattan) distance. In practice, the Euclidean distance is generally used,
but there are several other definitions that can be applied, including for binary data [35].

Typically MDS is used to transform the data into two or three dimensions for
visualizing the result to uncover the data hidden structure, but any p < m is possible. Some
authors use a rule of thumb to determine the maximum number of m, which is to ensure
that there are at least twice as many pairs of items than the number of parameters to be
estimated, resulting inm ≥ 4p + 1 [36]. The geometrical representation obtained with MDS is
indeterminate with respect to translation, rotation, and reflection [37].

There are two forms of MDS, namely, the metric MDS and the nonmetric MDS. The
metric MDS uses the actual values of dissimilarities, while nonmetric MDS effectively uses
only their ranks [38, 39]. Metric MDS assumes that the dissimilarities δij calculated in the
original m-dimensional data and distances dij in the p-dimensional space are related as
follows:

dij ≈ f
(
δij

)
, (2.7)

where f is a continuous monotonic function. Metric (scaling) refers to the type of
transformation f of the dissimilarities and its form determines the MDS model. If dij = δij (it
means f = 1) and a Euclidean distance is used then we obtain the classical (metric) MDS.
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Figure 1: Entropy S versus time t of four musical compositions using a sliding window of T = 1 second.
Musical compositions—The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night and Day,” Mozart: “KV527
Menuet Don Giovani,” and Stevie Wonder: “For Your Love.”

In metric MDS the dissimilarities between all objects are known numbers and they
are approximated by distances. Therefore, objects are mapped into a low-dimensional space,
distances are calculated and compared with the dissimilarities. Then objects are moved in
such way that the fit becomes better, until an objective function (called stress function in the
context of MDS) is minimized.

In nonmetric MDS, the metric properties of f are relaxed, but the rank order of the
dissimilarities must be preserved. The transformation function f obeys the monotonicity
constraint δij < δrs ⇒ f(δij) ≤ f(δrs) for all objects. The advantage of nonmetric MDS is that
no assumptions need to be made about the underlying transformation function f . Therefore,
it can be used in situations that only the rank order of dissimilarities is known (ordinal data).
Additionally, it can be used in cases which there are incomplete information. In such cases, the
configurationΦ is constructed from a subset of the distances, and, at the same time, the other
(missing) distances are estimated by monotonic regression. In nonmetric MDS it is assumed
that dij ≈ f(δij) and, therefore, f(δij) are often referred as the disparities [40–42] in contrast to
the original dissimilarities δij , on one hand, and the distances dij of the configuration space,
on the other hand. In this context, the disparity is a measure of how well the distance dij

matches the dissimilarity δij .
With further developments over the years, MDS techniques are commonly classified

according to the type of data to analyze. From this point of view, the techniques are embedded
into the following MDS categories [35, 42]: (i) one-way versus multiway: in K-way MDS
each pair of objects has K dissimilarity measures from different replications (e.g., repeated
measures); (ii) one-mode versus multimode: similar to (i) but the K dissimilarities are
qualitatively different (e.g., distinct experimental conditions).

There is no rigorous statistical method to evaluate the quality and the reliability of
the results obtained by an MDS analysis. However, there are two methods often used for
that purpose: the Shepard plot and the stress. The Shepard plot is a scatter plot of the
dissimilarities and disparities against the distances, usually overlaid with a line having
unitary slope. The plot provides a qualitative evaluation of the goodness of fit. On the other
hand, the stress value gives a quantitative evaluation. Additionally, the stress plotted as a
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Figure 2: Average mutual information I versus lag Td of four musical compositions—The Beatles: “Yellow
Submarine,” Ella Fitzgerald: “Night and Day,” Mozart: “KV527 Menuet Don Giovani,” and Stevie Wonder:
“For Your Love.”

function of dimensionality can be used to estimate the adequate p-dimension (known as scree
plot). When the curve ceases to decrease significantly the resulting “elbow” may correspond
to a substantial improvement in fit.

Beyond the aspects referred before, there are other developments of MDS that include
Procrustean methods, individual differences models (also known as three-way models), and
constrained config uration.

In the Procrustean methods the data is analyzed by scaling each replication separately
and then comparing or aggregating the different MDS solutions. The individual differences
models scale a set of K dissimilarity matrices into only one MDS solution. The procedure
of constraints on the configuration (which Borg and Groenen called “confirmatory MDS”
[43]) is used when the researcher has some substantive underlying theory regarding a
decomposition of the dissimilarities and, consequently, tries to restrain the configuration
space.

3. Study of Musical Sounds

This section develops the musical study using entropy applied to a large sample of repre-
sentative musical works. Once having the entropy measurements, the corresponding time
lags and the PPP are calculated. Finally, an MDS analysis is performed using two alternative
criteria, namely, based on mutual information and fractal dimension.

3.1. Entropy Analysis of Musical Compositions

For the calculation of the entropy S is considered a rectangular window of duration T that
slides over time t capturing a limited part of the signal evolution. Each newwindow overlaps
50% with the previous one. For the signal captured in the window a histogram of relative
frequency of amplitudes is obtained and S(t) calculated. Several experiments demonstrated
that a sampling window with width T = 1 represented a good compromise between
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Figure 3: PPP of four musical compositions: (a) The Beatles: “Yellow Submarine”; (b) Ella Fitzgerald: “Night
and Day”; (c) Mozart: “KV527 Menuet Don Giovani”; (d) Stevie Wonder: “For Your Love.”

the original signal’s frequency (tenths of microseconds) and the musical piece’s duration
(hundreds of seconds).

Figure 1 shows the evolution of several musical sounds viewed through the entropy
versus time for a sliding window of T = 1. The entropy curves represent four different
compositions, namely, The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night and Day,”
Mozart: “KV527 Minuet Don Giovanni,” and Stevie Wonder: “For Your Love.”

3.2. Pseudo Phase Plane of Entropy Curves from Musical Compositions

Having established the concept of time evolution of the entropy measure for musical com-
positions, the question of how the entropies of compositions with different “types” are inter-
related was investigated. Several music titles from different “types” were selected: “Classi-
cal” (49 titles), “Easy” (31), “Electro” (16), “Jazz” (50), “Brazilian Music” (18), “Portuguese
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Figure 4: MDS using cIij for (a) classic compositions; (b) all musical compositions tested; (c) Shepard plot
for 3D; (d) scree plot.

Music” (17), “Pop and Rock” (167), “Rhythm Blues” (44), “Reggae” (15), and “Slow Rock”
(19). These samples lead to a population of N = 426 music titles.

For each signal S(t) derived from the 426 compositions, the average mutual informa-
tion I was calculated. For example, Figure 2 shows the average mutual information I versus
lag Td of four musical compositions—The Beatles: “Yellow Submarine,” Ella Fitzgerald: “Night
and Day,” Mozart: “KV527 Menuet Don Giovani,” and Stevie Wonder: “For Your Love.” The
minimum of the average mutual information Imin and the corresponding delay yield
(Td, Imin) = {(14.3, 0.6), (43.6, 0.6), (9, 1), (12.2, 0.5)}, respectively. To reconstruct the PPP, the
first minimum of I was considered. The corresponding PPPs are represented in Figure 3.

Usually Td is just calculated for the PPP reconstruction. However, the time lag
represents a “memory” of previous parts of the time series and, therefore, this information
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Figure 5: 2D locus generated by MDS using cIij for: (a) Classic; (b) Pop-Rock; (c) Reggae; all musical
compositions tested.

is related with the fractional dynamics embedded in the music [44–46]. Consequently, the
value of Imin and the characteristics of the PPP chart obtained for Td are important details to
be included in the MDS maps to be formulated in the next subsection.

3.3. Multidimensional Scaling Analysis of Musical Compositions

In order to reveal hypothetical relationships between the musical compositions the MDS
technique is used. Two alternative metrics to compare objects i and j were adopted, namely,

cIij = e
−(Imini−Iminj )

2

, i, j = 1, . . . ,N, (3.1)

c
fd

ij = e−(fdi−fdj )
2
, i, j = 1, . . . ,N, (3.2)
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Figure 6: Shepard plot for 2D MDS using cIij .

where N is the total number of music, cIij defined in (3.1) is based on the minimal of the

average mutual information Imin, and c
fd

ij defined in (3.2) is based on the fractal dimension
fd of the reconstructed PPP.

For each of the two indices a 426 × 426 symmetrical matrix C with 1’s in the main
diagonal was calculated and the MDS maps obtained.

Figure 4(a) shows the locus of the classic compositions obtained by MDS using cIij for
the dimension p = 3. The locus obtained with this exponential type of metric forms a curve.
Due to space limitations we are only depicting the locus obtained for some individual types
of music. The tests developed show that each type of music occupies a certain segment in the
curve obtained for all the musical compositions (Figure 4(b)). Figures 4(c) and 4(d) depict
two tests computed to evaluate the consistency of the results obtained by MDS analysis.
The Shepard plot (Figure 4(c)) shows the fitting of the 3D configuration distances to the
dissimilarities. The value of the stress function versus the dimension is shown in Figure 4(d),
that allows the estimation of the adequate p-dimension. An “elbow” occurs at dimension two
for a low value of stress, which corresponds to a significant improvement in fit. From the scree
plot can be concluded that the improvement obtained for the increasing of the p-dimension
from p = 2 to p = 3 is very low. Therefore, the 2D MDS configuration is appropriate.

In this line of thought, Figures 5(a)–5(c) show the 2D locus for the Classic, Pop
and Rock, and Reggae types of music, respectively. The Classic music compositions
(Figure 5(a)) occupy a segment of approximately 80% of the curve obtained for all themusical
compositions tested (Figure 5(d)). This segment begins near one end of the curve. The Pop
and Rock music is located over a segment of approximately 80% of the curve beginning near
the other end (Figure 5(b)). Therefore, approximately 60% of the positions for these two types
of music are superimposed in the center of the curve. For the Pop and Rock most of the
positions are concentrated in the half of the segment positioned at the opposite side of the
classic music. The Reggae music compositions are located over a limited zone near the center
of the curve (Figure 5(c)). Figure 5(d) shows the curve obtained for the 426 musical titles
tested. The Jazz zone is centered approximately in the middle of the curve and corresponds
to the superimposed zone of the Classic and the Pop and Rock. The Rhythm Blues titles are
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Figure 7: 2D locus generated by MDS using c
fd

ij for (a) Classic; (b) Pop-Rock; (c) Reggae; (d) all musical
compositions tested.

located approximately in the same zone of that corresponding to the Reggae. The Slow Rock
and the Electro types occupy approximately the same segment that corresponds to the Classic
music, nevertheless in a scattered way near the end of the curve. The Easy type occupies a
shorter segment than the one occupied by the Slow Rock and the Electro. Finally, the Brazilian
and the Portuguese compositions occupy a segment that corresponds approximately to the
Reggae one, but with a slightly shift to the side of the Classic music. The shift is more
pronounced for the case of the Portuguese music.

Figure 6 depicts the Shepard plot that confirms the good fitting of the 2D configuration
distances to the dissimilarities.

Figure 7 shows the locus of the musical compositions obtained by MDS using the
metric cfdij . Figures 7(a)–7(c) show the locus for the Classic, Pop and Rock, and Reggae types
of music, respectively. The Classic music compositions form a segment located in one end of
the curve (Figure 7(a)). The Pop and Rock musical opus occupies the most part of the curve
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Figure 8: Evaluation of MDS results using c
fd

ij : scree plot (a); Shepard plot for 2D (b).

in a scattered way, but with a slightly superimposition over the Classic (Figure 7(b)). The
Reggae music compositions are located on a limited zone superimposed over the Classic and
the Pop and Rock compositions (Figure 7(c)).

Figure 7(d) shows the locus of the 426 musical titles. In general the relative positions
for the others types of music are similar to those obtained for cIij . Nevertheless the positions

achieved with the metric cfdij are represented in a curve shorter than the one obtained with cIij
that occasionally can make the analysis difficult.

Figure 8 shows the scree and Shepard plots to evaluate the results obtained by MDS
using c

fd

ij . Again, an “elbow” occurs at dimension two for a low value of stress (Figure 8(a)),
which corresponds to a significant improvement in fit. Additionally, the Shepard plot
(Figure 8(b)) shows the fitting of the 2D configuration distances to the dissimilarities.

The results obtained with the proposed tools, namely, the MDS and the PPP, together
with the tested metrics proved to be assertive methods to analyze the musical compositions.

4. Conclusions

Through the history of music many authors tried to find mathematical formulae that could
explain the process of music creation. In this perspective, the study analyzes the musical
compositions from a mathematical view point. The representation in the time domain of the
music compositions presents characteristics which makes difficult their direct comparison. To
overcome this limitation the Shannon entropywas used together with other tools, namely, the
pseudo phase plane and multidimensional scaling. These tools were applied to an aggregate
of different type sets of music compositions. The proposed tools proved to be assertive
methods to analyze music. In future work, we plan to pursue several research directions
to help us understand the behavior of the musical signals. These include other techniques to
measure the similarities of the signals.
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[5] R. Kelley, The Relationship between Contrapuntal and Serial Composition Techniques As Seen in Works of

Webern and Stravinsky, Furman University, Greenville, SC, USA, 1999.
[6] A. Schoenberg, “Composition with twelve tones,” in Style and Idea, L. Stein and L. Black, Eds., Faber

& Faber, London, UK, 1984.
[7] S. Richards, John Cage As ..., Amber Lane Press, Oxford, UK, 1996.
[8] P. Griffiths,Modern Music and After—Directions Since 1945, Oxford University Press, 1995.
[9] J. Corbett, Extended Play—Sounding off from John Cage to Dr. Funkenstein, Duke University Press, 1994.
[10] J. Maurer, “A brief history of Algorithm Composition Stanford University Center for Computer

Research in Music and Acoustics,” 1999, https://ccrma.stanford.edu/∼blackrse/algorithm.html.
[11] E. Bowles, Musicke’s Handmaiden: Or Technology in the Service of the Arts, Cornell University Press,

Ithaca, NY, USA, 1970.
[12] C. Roads, The Computer Music Tutorial, The MIT Press, 1996.
[13] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27,

pp. 379–656, 1948.
[14] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, pp. 620–630,

1957.
[15] A. I. Khinchin,Mathematical Foundations of Information Theory, Dover, New York, NY, USA, 1957.
[16] A. Plastino and A. R. Plastino, “Tsallis Entropy and Jaynes’ information theory formalism,” Brazilian

Journal of Physics, vol. 29, no. 1, pp. 50–60, 1999.
[17] X. Li, C. Essex, M. Davison, K. H. Hoffmann, and C. Schulzky, “Fractional diffusion, irreversibility

and entropy,” Journal of Non-Equilibrium Thermodynamics, vol. 28, no. 3, pp. 279–291, 2003.
[18] H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Boltzmann-Gibbs entropy versus Tsallis entropy:

recent contributions to resolving the argument of Einstein concerning ”neither Herr Boltzmann nor
Herr Planck has given a definition ofW”?”Astrophysics and Space Science, vol. 290, no. 3-4, pp. 241–245,
2004.

[19] A. M. Mathai and H. J. Haubold, “Pathway model, superstatistics, Tsallis statistics, and a generalized
measure of entropy,” Physica A, vol. 375, no. 1, pp. 110–122, 2007.

[20] T. Carter, An Introduction to Information Theory and Entropy, Complex Systems Summer School, Santa
Fe, NM, USA, 2007.
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