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Abstract. This paper proposes a swarm intelligence long-term 
hedging tool to support electricity producers in competitive 
electricity markets. This tool investigates the long-term hedging 
opportunities available to electric power producers through the 
use of contracts with physical (spot and forward) and financial 
(options) settlement. To find the optimal portfolio the producer 
risk preference is stated by a utility function (U) expressing the 
trade-off between the expectation and the variance of the return. 
Variance estimation and the expected return are based on a 
forecasted scenario interval determined by a long-term price 
range forecast model, developed by the authors, whose 
explanation is outside the scope of this paper. The proposed tool 
makes use of Particle Swarm Optimization (PSO) and its 
performance has been evaluated by comparing it with a Genetic 
Algorithm (GA) based approach. To validate the risk 
management tool a case study, using real price historical data for 
mainland Spanish market, is presented to demonstrate the 
effectiveness of the proposed methodology.1 

1 INTRODUCTION 
Long-term contractual decisions are the basis of an efficient 

risk management. On a vertical integrated electricity market, 
price variations were often minimal and heavily controlled by 
regulators. In this structure, electricity price evolution is directly 
dependent on the government’s social and industrial policy, and 
price forecasting was mainly focused on the underlying costs 
(namely, fuel prices and technological innovation). Any price 
forecasting made on that basis was tended to be over the long-
term. With electricity markets re-regulation and liberalization 
process, this changed dramatically. Ownership on this activity 
sector become private rather than public or a mixture of both and 
competitive markets, like pools or power exchanges, has been 
introduced for wholesale trading. 

Due to the specific nature of the underlying asset, price 
forecast on liberalized electricity markets has been a hard task. 
Factors like charge characteristics (seasonality, mean-reversion 
and stochastic growth) and producer’s characteristics 
(technology, generation availability, fuel prices, technical 
restrictions and import/export) are at the origin of the high price 
volatility in electricity markets. Trying to overcome this issue, 
several techniques have been used for short-term price forecast 
in electricity markets. In [1], artificial intelligent tools are 
applied to forecast spot prices, namely, a combination of neural 
networks and fuzzy logic are used to predict prices. In fact, 
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besides the early scepticism, neural networks have now an 
extensive use in load [2] and in price [3, 4, 5] forecast. Fuzzy 
techniques together with neural networks are used to predict 
possible prices range [6, 7]. Stochastic processes are also used to 
analyze time series. In [8], ARIMA processes, a class of 
stochastic processes, were used to predict next-day electricity 
prices in mainland Spanish and in California markets. In [9], two 
forecasting tools based on dynamic regression and transfer 
function models are presented. 

However, for the agents who want to maximize their profits 
and simultaneously to practice the hedge against the market price 
volatility, the use of forward, futures and options contracts 
become a constant in developed electricity markets. Those types 
of contracts have a maturity that goes from one year to several 
years in the future, turning more difficult the decision process 
related to contracts establishment if they aren’t supported with a 
robust price forecast methodology. 

Due to long delivery periods of the contracts described above, 
makes more sense to forecast the market price mean value for 
each month and continuously review the agent position (say once 
a month) or each time the agent needs to consider his contractual 
positions already locked, than forecast the market price for 
periods on an hour or half-hour basis for so long periods. It is 
difficult to find in the literature scientific documents that deal 
with this problem, which is a very important subject in electricity 
markets risk management with high market price volatility. 
However, it is not a good practice in risk management to take 
contractual decisions based exclusively on a single forecasted 
value. In [10] is presented a different approach for long-term 
price forecast. Making use of regression models, [10] has as 
main goal to find a maximum and a minimum monthly Market 
Clearing Price (MCP) average for a programming period, with a 
desired confidence level α. This methodology makes use of 
statistical information extracted from historical data. Due to the 
problem complexity, the parameters are obtained using the meta-
heuristic Particle Swarm Optimization (PSO) [11, 12]. 

Finding an optimal portfolio for a market agent and in 
particular for the producers, which allow hedging against market 
price volatility and simultaneously increase their profits, is 
difficult due to the complexity of the optimization problem. The 
scientific literature reports some studies about this matter. In 
[13], solutions for electricity producers in the field of financial 
risk management for electric energy contract evaluation using 
efficient frontier as a tool to identify the preferred contract 
portfolio are proposed. A decision support system based on 
stochastic simulation, optimization and multi-criteria analysis is 
applied to electricity retailer in [14]. A statistical study of direct 
and cross hedging strategies using futures contracts in an 
electricity market is presented in [15, 16]. A framework to obtain 
the optimal bidding strategy of a thermal price-taker producer on 
a pool-based electric energy market is presented in [17]. 
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This long-term risk management tool makes use of a long-
term price range forecast developed by the authors and presented 
in [10]. The proposed long-term risk management tool aims to 
find the “unknown optimal” portfolio in function of the risk 
aversion factor (λ) of the producer that maximizes the expected 
return and, simultaneously, allows the practice of the hedge 
against the market price volatility. To achieve this, the decision-
support system maximizes a mean variance utility function (U) 
of the total return (π). 

In this risk management tool was used a portfolio model 
based on utility functions instead of option pricing models [18, 
19] because financial markets on electricity markets are 
incomplete (hedging instruments unavailable). 

Uncertainties associated to generators availability, fuel prices, 
technical restrictions and weather conditions, turn difficult, if not 
impossible, to find a replicating portfolio that perfectly matches 
the future spot market payoffs. The power market exercise by 
some agents is also a source of uncertainty. In addition, several 
markets around the world are still on their child stage, with a 
small number of financial tools for an efficient risk management. 

Another issue in power markets is that energy cannot be 
stored for later use. As a consequence, the strategy of buying the 
asset today to offset part of future losses does not apply. The 
closest strategy is to buy a forward or futures contracts. Based on 
that, the delivery price of these mentioned contracts should be 
equal to the expected spot market price for the delivery period, 
which not always happens. Consequently, we conclude that 
electricity markets are not complete, and so risk attitudes and 
mean-variance frontiers are still relevant. 

Due to the complexity of the risk management tool, we make 
use of Particle Swarm Optimization (PSO) to find the optimal 
solution. 

PSO performance has been evaluated by comparing it with a 
Genetic Algorithm (GA) [20, 21] to show that PSO is a very 
successful meta-heuristic technique for this particular problem. 

The paper is organized as follows: in Section II, a short 
overview of PSO meta-heuristic is presented; in Section III 
contracts are presented and how their revenues are calculated; in 
Section IV the problem formulation of the risk management 
model is presented; in Section V a case study is presented and 
Section VI presents some relevant conclusions. 

2 PARTICLE SWARM OPTIMIZATION  
Particle swarm optimization [12, 15] is an evolutionary 

computational algorithm inspired on a natural system. On a 
given iteration, a set of solutions called “particles” move around 
the search space from one iteration to another accordingly to 
rules that depend on three factors: inertia (the particles tend to 
move in the direction they have previously moved), memory (the 
particles tend to move in the direction of the best solution found 
so far in their trajectory) and cooperation (the particles tend to 
move in the direction of the global best solution). 

The movement rule of each particle can be expressed by  
  Xi

new = Xi +Vi
new  

where, 
 

Xi
new  represents the new position of the particle i 

Xi  represents the current position of the particle i 

Vi
new  represents the new velocity of the particle i 

  

Vi
new = dec(t) ⋅Vi + randi,k ⋅α i,k ⋅( pbesti − Xi )+ randi, j ⋅α i, j ⋅

. pbest(gbest)− Xi⎡⎣ ⎤⎦
 

where, 
 

dec(t) represents an inertia weight that decreases with 
the number of iterations 

Vi  represents the previous velocity of the particle i 

randi,k
randi, j

 
represents random weights acceleration, from a 
uniform distribution in [0,1], for each time step 

αi,k represents a weight fixed at the beginning of the 
process designated by cognitive acceleration 
parameter 

αi,j represents a weight fixed at the beginning of the 
process designated by social acceleration 
parameter 

pbesti represents the particle i best position found so far 
pbest(gbest) represents the best global position of all particles 

found so far 
 
The inertia term controls the exploration and exploitation of 

the search space. If the velocity is too high, then the particles 
could move beyond a global solution. On the contrary, if 
velocity is too low, the particles could be trapped into a local 
optimum. To achieve faster convergence and avoiding the 
problems described above, we make the inertia term vary with 
the number of iterations and limit the maximum velocity of 
particles to Vmax. 

3 CONTRACTS 
Contractual diversification is the key issue for an efficient 

risk management. To achieve this, it is assumed that producers 
can make use of contracts with physical settlement (spot and 
forward contracts) and contracts with financial settlement 
(options contracts). 

 
A. Spot Contracts 

The spot market becomes the core of the main deregulated 
electricity markets around the world. Producers make extensive 
use of this market to sell their energy on an hour or half-hour 
basis. The revenue from the short position (who sells has a short 
position and who buys has a long position) obtained by the 
producer is dependent of the period i and scenario j and is given 
by: 

 
  
ri, j

ss = MCPi, j × ei
ss  

where, 
 

ri, j
ss  represents the revenue, in Eur, of the short position 

obtained by the producer in the spot market, for 
period i and scenario j 

MCPi, j  represents the Market Clearing Price, in Eur/MWh, 
for period i and scenario j 

ei
ss

 represents the energy amount, in MWh, that the 
producer decides to sell in the spot market for 
period i 

 



B. Forward Contracts 
One of the most common methods used to hedge against spot 

price volatility is to establish forward contracts. Forward 
contracts are bilateral agreements in which two parts agree 
mutually on the characteristics (quantity, price, point of delivery 
and date/time). The payment is made only on a future date, 
eliminating the risk associated to price variation. Most of 
forward contracts are traded in organized and over-the counter 
(OTC) markets. 

As stated previously, producers can make use of forward 
contracts to sell energy. So, the revenue from short forward 
positions obtained by the producer is given by: 

  r
sf = k sf × esf  

where, 
 

rsf  represents the revenue, in Eur, of the short position 
obtained by the producer in forward contracts 

ksf  represents the delivery price, in Eur/MWh, of the 
forward contract 

esf  represents the energy amount, in MWh, that the 
producer decides to sell in forward contracts. 

 
In our method, the delivery period in forward contracts is the 

same of all period in analysis. 
Because on forward contracts the delivery price is fixed, its 

revenue is only dependent on the delivery price and quantity 
established in the contract. 

In this study, producers are not allowed to take any advantage 
of arbitrage opportunities, so not to obtain long forward 
positions. 

 
C. Options Contracts 

Traditionally, options in electricity markets have financial 
settlement. There is four positions types on options contracts and 
they are: short call, long call, short put and long put. However, in 
the decision-support system it is assumed that producers could 
only establish short call and long put positions. These positions 
are similar to the positions that the producer can establish to sell 
the produced energy with physical settlement. If the producer 
were allowed to establish the four positions types, the quantities 
to practice the hedge would be almost infinite if a financial limit 
is not established. In some electricity markets, options are on 
futures with daily settlement. The settlement price could be 
equal to the simple average of all 24 hours for Base Load 
Futures Contracts or equal to the simple average of the prices for 
the hours between 8:00 AM and 20:00 PM for Peak Load 
Futures Contracts. It is also assumed that they are European style 
options (European-style options can only be exercised at the 
beginning of the delivery date while American-style options can 
be exercised at any time until the delivery date). 

The characteristics of electricity prices, such as mean 
reversion, high degree of skewness and non-constant volatility, 
exclude its modelling using commodity cost-of-carry models; 
Thus, Black & Sholes formula is not applicable to electricity 
option pricing. A procedure to evaluate the price of options in 
electricity markets, known as risk-neutral valuation, is presented 
in [16]. Binomial model could also be applied to evaluate 
electricity options price but it requires some adjustments. 

For the short call position, the buyer only exercises the option 
if the MCP is greater than the exercise price. In our method, the 

delivery period in call options is the same of all period in 
analysis. 

The payoff for the short call position is given by: 
 

  
Payoffi, j

sc = esc × min(k sc − MCPi, j ,0)+ psc⎡⎣ ⎤⎦  

where, 
 

  
Payoffi, j

sc  represents the payoff, in Eur, of the short call 
position, for the period i and scenario j 

psc  represents the premium, in Eur/MWh, of the 
call option 

ksc  represents the delivery price, in Eur/MWh, of 
the call option 

MCPi, j  represents the Market Clearing Price, in 
Eur/MWh, for the period i and scenario j 

esc  represents the energy, in MWh, associated to 
the short call position obtained by the producer. 

 
Because the call option exercise is dependent on the system 

marginal price scenario, the short call position payoff is 
dependent on the scenario j considered for each period i. 

For the long put position, the option buyer (producer) will 
exercise it if the MCP is lower than the exercise price. 

The payoff for the long put position is given by: 
 

  
Payoffi, j

lp = elp × max(k lp − MCPi, j ,0)− plp⎡⎣ ⎤⎦  

where, 
 

  
Payoffi, j

lp  represents the payoff, in Eur, of the long 
put position, for period i and scenario j 

plp  represents the premium, in Eur/MWh, of 
the put option 

klp  represents the delivery price, in Eur/MWh, 
of the put option 

  
MCPi, j  represents the Market Clearing Price, in 

Eur/MWh, for period i and scenario j 
elp  represents the energy, in MWh, associated 

to the long put position obtained by the 
producer. 

 
From the last equation it is clear that the long put position 

payoff is positive only if the MCP is higher than the exercise 
price. 

4 OPTIMIZATION PROBLEM  
To find optimal energy quantities establishing on each 

contract type, it was developed an optimization problem based 
on a mean-variance of the return. This formulation allows 
finding the optimal energy quantities that maximizes the profits 
and simultaneously practices the hedge against the MCP 
volatility in function of the producer risk aversion factor. 

The mathematical formulation is stated as follows: 
 
Maximize  U(π ) = E(π )− λ ×Var(π )  
Subj. to: 

  

emin ≤ ei
cs + ecf ≤ emax

ei
cs ,ecf ,ecc ,elp ≥ 0

 

 



where, 

 
E(π ) = E π máx( ) + E π min( )  

and, 

  
Var(π ) = covi, j π m á x ,π min( )

j=1

2

∑
i=1

2

∑  

with, 

  
π m á x = π1

m á x ,...,πT
m á x⎡⎣ ⎤⎦  

and, 

  
π min = π1

min ,...,πT
min⎡⎣ ⎤⎦  

where, 
 
π  represents the producer return, in Eur, for 

the entire period in analysis 

  E(π )  represents the expected value of the 
return, in Eur, based on the forecasted 
price interval for the entire period in 
analysis 

  Var(π )  represents the variance of the return, in 
Eur, based on the forecasted price interval 
for the entire period in analysis 

  
cov i, j π max ,π min( )
 

represents the element (i,j), in Eur, of the 
covariance matrix of the returns for all 
periods i based on maximum and 
minimum price forecast 

  π i
max  represents the period i return, in Eur, 

based on the maximum price forecast 

  π i
min  represents the period i return, in Eur, 

based on the minimum price forecast 
T represents the number of the considered 

periods for the entire period in analysis 
λ represents the producer risk aversion 

factor 
emin  represents the minimum energy, in MWh, 

that the producer can produce 
emax  represents the maximum energy, in 

MWh, that the producer can produce 
ei
ss

 represents the energy amount, in MWh, 
that the producer decides to sell on the 
spot market for period i 

 e
sf

 
represents the energy amount, in MWh, 
that the producer decides to sell in 
forward contracts 

 e
sc

 
represents the energy, in MWh, 
associated to the short call position 
obtained by the producer 

 e
lp

 
represents the energy, in MWh, 
associated to the long put position 
obtained by the producer. 

 
The mean-variance formulation resemble closely the Value-

at-Risk (VaR) formulation and have as main advantage to be 
computationally more efficient for a given risk aversion factor λ. 
Moreover, VaR formulation needs higher order of information 
about the joint probability distribution of the payoffs and is 
highly sensitive to the high impact of low probability events, 
which create “fat tails” in payoff distribution. In this formulation 
we assumed the risk aversion factor λ is equal for the whole 
period in analysis. 

The return π for each period i, expressed in Eur, is a function 
of the considered minimum or maximum price forecast scenario 
j for that period, and is equal to the sum of all revenues and 
options payoffs minus the costs of production. 

Mathematically, the return π is given by: 

  
π i, j = ri, j

ss + r sf + Pi, j
sc + Pi, j

lp −Ci, j  

with, 

  
Ci, j = C(ei

ss + esf )  

Options contracts have financial settlement; the total 
production cost is only dependent on the energy that the 
producer will sell on spot market, and on forward contracts, 
meaning that is only dependent of the energy established on 
contracts with physical settlement. 

 
A. Penalty functions 

Due to optimization problem complexity, PSO was used to 
find the optimal solution and results were compared with GA 
results. 

To satisfy constraint the first restriction of the optimization 
problem for each period i, was added the following penalty 
function: 

  

p f 1 =
0 if e ≥ emin and e ≤ emax

e100×d2

− 1 otherwise

⎧
⎨
⎪

⎩⎪
 

where, 

 
d = min e− emin , e− emax

⎡⎣ ⎤⎦  

To guaranty that all variables are positives, was added the 
following penalty function: 

  

p f 2 =
0 if ei

ss ,sf ,sc ,lp ≥ 0

e100×e2

−1 otherwise

⎧
⎨
⎪

⎩⎪
 

where, 

  
e = ei

ss,sf ,sc,lp  

B. PSO and GA Parameters 
The main parameters of PSO and GA, used finding the best 

solution are presented in table 1 and table 2, respectively. 
Besides these parameters being dependent on the fitness 

function, experimentations show that the number of evaluations 
used does not compromise the results. 

 
Nº. of particles 20 
Nº. of iterations 20000 
Nº. of evaluations 400000 
Cognitive acceleration 2 
Social acceleration 2 
Initial inertia weight 0.9 
Final inertia weight 0.2 
Maximum velocity (Vmax) 0.1 

Table 1. PSO Parameters 
 

Population size 50 
Nº. of generations 8000 
Nº. of evaluations 400000 
Crossover rate 0.8 
Mutation rate 0.2 

Table 2. GA Parameters 



 
C. Producer Characteristics 

It was assumed that producer cost function is equal for the 
entire period in analysis (one year) and is given by: 

  
C( Pg ) = 100+ 0.3× Pg + 0.02× Pg

2  

where. 
Pg in MW, C in Eur/h, Pg

max = 200 MW and Pg
min =5 MW. 

The cost of sales (like taxes, market commissions and others) 
is not addressed. Moreover, there is just as much risk in the cost 
of sales as there is in the generation of revenue. 

 
D. Contracts Characteristics 

Options contracts characteristics with delivery period for the 
year 2007 are presented in Table 3. 

 
 Exercise Price 

(Eur/MWh) 
Premium 

(Eur/MWh) 
Short Call 42.00 2.50 
Long Put 45.00 5.00 

Table 3. Options Contracts Characteristics 
 
It was assumed that forward contracts with delivery period for 

the year 2007 are traded at a price equal to 40 Eur/MWh. 

5 CASE STUDY  
In this case a producer aims (in December 2006) to find the 

optimal contracts portfolio for the entire year of 2007. However, 
although to be beyond the purpose of this work, the producer 
must adjust its contractual positions continuously (say once a 
month) and whenever he needs to reconsider his contractual 
positions already established in forward and other contracts, 
before adjusting the portfolio. 

Using the method presented in [10], that also makes use of 
PSO, the monthly price range average forecast for the year 2007 
is shown on figure 1. 

 

 
Figure 1. Monthly Market Price Range Forecast for the Year 
2007 in Mainland Spanish Market, with Confidence Level of 

α=95% 
 
An evaluation of PSO and GA performance for this particular 

problem has been carried out. The algorithms’ stopping criterion 
was the maximum number of evaluations (fixed in 400,000 

evaluations). With 20 particles in the PSO 20,000 iterations were 
performed. For GA a population size of 50 individuals and 8,000 
generations was used. Due to random initialization, the trajectory 
for each run is different; so, we used 10 runs to calculate the 
average and the standard deviation of the results. 

Due to the problem complexity, the entire period was divided 
in sub-periods of one month of duration allowing reducing the 
number of variables and, consequently, turning the optimization 
problem lighter. 

As results, table 4 and table 5 present the average quantities, 
in MWh, for each contractual position and risk aversion factor, 
using PSO and GA, respectively. 

 
Average Quantity (MWh) Position 

λ=0 λ=1 λ=2 λ=3 
Short Spot 2.1×106 1.2×106 9.9×105 7.7×105 
Short Forward 2.7×103 6.4×105 5.9×105 3.8×105 
Short Call 0.839 1.3×106 1.4×106 5.4×105 
Long Put 0.250 6.9×105 1.3×106 7.2×105 

Table 4. Average Quantities, in MWh, to Establish by 
Contractual Position and Risk Aversion Factor using PSO 

 
Average Quantity (MWh) Position 

λ=0 λ=1 λ=2 λ=3 
Short Spot 1.8×106 1.1×106 1.3×106 1.1×106 
Short Forward 2.4×105 5.4×105 4.4×105 4.8×105 
Short Call 145.017 8.7×105 1.4×106 1.0×107 
Long Put 444.929 9.8×105 7.8×105 4.1×105 

Table 5. Average Quantities, in MWh, to Establish by 
Contractual Position and Risk Aversion Factor using GA 

 
The results standard deviation using PSO and GA is presented 

in table 6 and table 7, respectively. 
 

Quantities Std. Deviation (MWh) Position 
λ=0 λ=1 λ=2 λ=3 

Short Spot 0.004 2.026 112.788 24.277 
Short Forward 1.7×10-4 1.028 6.233 0.979 
Short Call 6.1×10-6 26.243 7.797 30.443 
Long Put 8.6×10-6 45.682 75.483 5.041 
Table 6. Quantities Std. Deviation, in MWh, to Establish by 
Contractual Position and Risk Aversion Factor using PSO 

 
Quantities Std. Deviation (MWh) Position 
λ=0 λ=1 λ=2 λ=3 

Short Spot 213.693 6.267 227.004 321.845 
Short Forward 17.807 1.534 2.237 5.292 
Short Call 0.0079 68.864 29.499 159.678 
Long Put 0.0229 145.471 94.215 9.6719 
Table 7. Quantities Std. Deviation, in MWh, to Establish by 

Contractual Position and Risk Aversion Factor using GA 
 
Comparing the standard deviation for each solution (table 6 

and table 7), we conclude that PSO is more robust than the GA. 
The mean and the standard deviation of the fitness functions 

for the 10 runs and for each risk aversion factor are presented in 
table 8. Table 8 also includes the mean time necessary to reach 
the optimal solution for PSO and GA. 



It can be verified from table 8 that, for this particular 
problem, PSO is faster than GA (smaller mean time), finds better 
solutions (smaller mean fitness value) and is more robust 
(smaller standard deviation). These simulations were made on an 
ASUS L5GX laptop, P4 3.2 GHz processor and 1 GB of 
memory. 

 

Algorithm 
Mean 

Fitness 
Value 

Std. 
Fitness 
Value 

Mean 
Time 
(sec.) 

PSO (λ=0) 1.3639×107 10.9801 113.1464 
GA (λ=0) 1.3181×107 2.9971×105 858.5784 
PSO (λ=1) 9.5269×106 1.8706×105 107.2944 
GA (λ=1) 7.8527×106 7.4777×105 885.0692 
PSO (λ=2) 7.5300×106 2.6324×105 107.4961 
GA (λ=2) 1.8101×106 2.3825×106 880.0213 
PSO (λ=3) 6.3729×106 2.7286×105 106.3816 
GA (λ=3) 4.6687×106 4.5523×105 868.8086 

Table 8. PSO and GA Fitness Function Comparison 
 
Because PSO achieve better results in this particular problem, 

in figure 2 and figure 3 is presented its results for the expected 
return and the associated risk for each month, as function of the 
risk aversion factor λ, respectively. 

 

 
Figure 2. Producer Expected Return in Function of Risk 

Aversion Factor λ 
 

 
Figure 3. Risk in Function of the Risk Aversion Factor λ 

 
From figure 2 and figure 3 we conclude that, for the same risk 

aversion factor λ, the bigger the expected return the bigger the 
risk (standard deviation of the return) that the producer is 
exposed to. Analyzing figure 2 and figure 3 we verify that the 
risk (standard deviation of the return) is inversely proportional to 
the risk aversion factor λ, and so is the energy that the producer 
will sell in the spot market. This happens because the lower the 
risk aversion factor the most indifferent the producer will be to 
the risk and therefore he will have more risky attitudes and sell 
more energy on the spot market, as it can be seen in figure 4. 

 

 
Figure 4. Optimal Energy Quantities that Producer Should Sell 

in Spot Market in Function of Risk Aversion Factor λ 

6 CONCLUSIONS  
With electricity markets liberalization, long-term contractual 

decisions are more difficult on an efficient risk management. 
This paper proposed a new long-term risk management tool, 

which allows maximizing the producers expected return while 
practicing the hedge against spot price volatility based on the 
risk aversion factor. 

Due to the optimization problem complexity, a Particle 
Swarm Optimization (PSO) meta-heuristic technique has been 
used. Its performance has been evaluated by its comparison with 
a Genetic Algorithm (GA) based approach. Actually the authors 
work in the application of Ant Colony System (ACS) Algorithm 
to solve the optimization problem with the aim to compare its 
results with the PSO performance, and the comparison will be 
reported shortly. 

However, every risk management tools needs an efficient 
price forecast methodology. Trying to give an answer to that 
need a regressive model was used which enables the electricity 
market agents to forecast the monthly market price average 
range up to one year into the future. This model may find the 
price range value, with a certain confidence level, based on 
historical statistical data. The main advantage of this method is 
the fact that it does not make any statistical assumption relating 
to the market price distribution function. 

Based on the results, it was proven that Particle Swarm 
Optimization (PSO) has significant advantages compared with 
GA in terms of robustness and computation time based in 
simulation results. 
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