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ABSTRACT 

The increasing use of distributed generation units based 

on renewable energy sources, the consideration of 

demand-side management as a distributed resource, and 

the operation in the scope of competitive electricity 

markets have caused important changes in the way that 

power systems are operated. The new distributed 

resources require an entity (player) capable to make 

them able to participate in electricity markets. This entity 

has been known as Virtual Power Player (VPP). VPPs 

need to consider all the business opportunities available 

to their resources, considering all the relevant players, 

the market and/or other VPPs to accomplish their goals. 

This paper presents a methodology that considers all 

these opportunities to minimize the operation costs of a 

VPP. The method is applied to a distribution network 

managed by four independent VPPs with intensive use of 

distributed resources. 

INTRODUCTION 

The development of the SmartGrid (SG) concept is 
extremely important for future Power Systems (PS), 
namely in the context of a sustainable society. Although 
the details involved in the SG are not consensual, it is 
widely accepted that PS require changes to improve 
power quality and to adequately integrate all the new 
players. In future PS each costumer can be a player with 
the ability to manage his consumption and, in many 
situations, to generate and storage energy. The 
advantages of using renewable resources is clear from the 
environment point of view, as most Renewable Energy 
Systems (RES) based electricity generation technologies 
have a null or low impact in what concerns greenhouse 
gas emissions [1-5]. This led to a significant increasing of 
electricity distributed generation (DG), most of it based 
on RES.  
To improve energy resource management in the SG 
context it is necessary to adopt new management systems 
with different hierarchy control levels. Each level can 
involve several players acting in medium and low voltage 
management levels [6]. Players operating in such a 
complex environment of dynamic and competitive nature 
must have a competitive strategy in order to gain 
advantages over their competitors so that they can 
accomplish their individual goals.  
SG requires means so that a wide range of diverse scale 
players can fairly act in the energy markets. In this 
context, producers from large to small and even micro 
scale should be able to operate in the competitive / 
collaborative environment. Diverse types of aggregators 
allowing putting together existing energy resources with 
common interests and aiming at maximizing their 

individual profits are likely to be very relevant players in 
the forthcoming scenarios [7]. 
The players acting in the SG have, on one hand, common 
goals, such as system security and reliability, for which 
accomplishment they cooperate. On the other hand, they 
also have antagonist goals as each player has specific 
individual goal, aiming namely at maximizing his profits 
what leads to a competitive behaviour. 
Virtual Power Players (VPPs) are a type of aggregator 

that manages the resources of producers and costumers. 
This paper deals with the intelligent management of 
distributed energy resources in the context of smart grids, 
and is proposed a methodology to undertake an intelligent 
management of distributed energy resources in the SG 
context, in which several players control different parts of 
distribution network.  
The relationships among players (Producers/Consumers/ 
VPPs and between VPPs) are supported by contractual 
agreements, so contracts gain a much more relevant role 
than in present power system operation.   
The second section addresses some important points 
concerning VPPs negotiation and the third section 
includes a case study. Finally, some conclusions are 
presented in the last section. 

PLAYERS NEGOTIATION 

The proposed approach considers a set of independent 
players acting in a competitive environment, cooperating 
to accomplish common goals and competing to attain 
their individual goals. Each VPP can control a part of 
consumption (contracted with consumers), and a set of 
DG and storage units. This methodology is based on 
realistic models, considering the network constraints (line 
thermal limits and bus voltage limits).  

 
 

Figure 1.  Energy Resources Scheduling Process 

The proposed methodology considers players operation 
scheduling in three distinct levels (Figure 1). The first 
level considers all the energy resources the player 
manages, giving place to an operation schedule that can 
correspond to an energy shortage or surplus situation. 
The second level corresponds to negotiation processes 
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that are undertaken among different players so they can 
agree on transactions that can fulfil their unsatisfied 
energy requirements, sell their surplus energy and/or 
reduce their operating costs. Finally, the third level 
corresponds to the participation of the players in the 
general electricity market mechanisms. The use of the 
proposed methodology in the scope of SG allows a more 
efficient resource management, which is especially 
important for the players with low installed capacity. 

Energy Resources Players Management 

In the developed methodology, each VPP can operate all 

the available resources in its network area. The 

management is based on an optimization tool able to 

consider the available resources (generation resources 

including DG, storage, demand response, and distribution 

network) and demand requirements in order to minimize 

operation costs. The presented tool considers all the 

relevant costs including losses costs, and uses AC power 

flow, providing, as a result, the energy resource 

scheduling along a multi-period time horizon defined by 

the user.  

However, in the SG context, the VPP has to respect the 

contracts established with the producers and consumers. 

For example, some technologies like photovoltaic units 

have a generation price higher than the other 

technologies. In spite of this, to respect the established 

contract, VPPs that aggregate photovoltaic producers 

may have to buy all their generated energy. The solution 

to the energy resources players’ management is obtained 

based on a mixed-integer non-linear programming 

problem [8]. The objective function represents the 

operation cost of each VPP and can be represented as in 

(1) in a simplified way. 
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(1) 

where G refers to the generation units, S to the storage 

systems, and L to the loads. PGen, PSt and PDR are the 

power of each generator, storage and load demand 

response program, respectively. cGen, cSt and cDR are the 

costs of each resource in period t. The problem was 

implemented in GAMS software [9]. 

VPPs Negotiation 

The negotiation between VPPs is an important task in the 

future power systems. The easiest way to trade energy is 

to negotiate with neighbour VPPs, avoiding the use of 

third party’s electric networks. 

This paper proposes the use of Locational Marginal 

Prices (LMP) values in the interconnection buses to 

determine the price and quantity of energy to negotiate 

between neighbour VPPs.  

LMPs reflect the impact of power flows on specific lines 

and provide individual nodal pricing, whereas the zonal 

representation does not involve the monitoring of 

individual lines, and assumes that all prices are the same 

within the each zone [10, 11]. 

The energy balance, the losses and the network 

congestion and technical limits (bus voltage limits) are 

considered to determine the LMP value in each bus [12]. 

The energy balance takes into account distributed 

generation, storage units and demand response programs. 

Figure 2 shows the flowchart of the developed 

methodology. Each VPP indicates the LMP value in the 

interconnection buses. If the values of interconnection 

LMPs are very different, and if there are one or more 

VPPs with non-supplied energy, the method determines 

the price and the quantity of energy to be negotiated 

between VPPs. The method gives priority to the 

interconnection with the highest difference between 

interconnection LMPs. The quantity of negotiated energy 

is limited to a cap in each negotiation iteration in order to 

improve the competition between VPPs. Once this 

process is finished, the new values of LMPs considering 

the negotiated energy are evaluated. The stop criteria are 

the inexistence of non supplied energy or the inexistence 

of resources in all neighbour VPPs. 
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Figure 2.  VPPs  negotiation flowchart 

Electricity Market 

After the bilateral negotiation between the VPPs, it is 

possible to submit bids to the day-ahead market. The sell 
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or buy bids can be based on the LMP values and on the 

forecasted energy price for the day-ahead market. 

Depending on the contracts established between the VPPs 

and their aggregated producers/consumers it is possible to 

include the forecasted market price in the initial energy 

resources management algorithm. However, the price of 

energy in the electricity market should be lower than the 

DG generation prices. In off-peak hours, this may not 

happen meaning that DG units should be disconnected. 

CASE STUDY  

This section presents a case study that illustrates the use 

of the developed methodology. Let us consider a 

distribution network with 114 buses, adapted from [13]. 

Figure 3 shows the distribution network and the DG 

units. Figure 4 shows the VPPs network areas. This 

distribution network has 84 loads, 97 DG units and 9 

storage systems. 

 

Figure 3.  Distribution Network Test Case 

 
Figure 4.  Distribution Network VPP Management 

As can be seen in Figure 4, VPP1 and VPP3 have two 

points of interconnection with the AT network through 

substations S1 and S2 for VPP1 and substations S3 and 

S4 for VPP3. VPP4 is not connected to any substation 

acting normally in islanded mode. VPP2 is connected 

through AT network by substation S5. Table I shows a 

summary of the characteristics of each VPP. 

Table I – VPPs Characteristics 

 
 

No. 
Load 

No. 
DG 

No. 
Stor. 

No.
Bus 

Sub-
stations 

Inter- 
connections 

VPP 1 23 27 2 34 S1 e S2 VPP2; VPP4 

VPP 2 24 25 2 31 S5 
VPP1; VPP3; 

VPP4  

VPP 3 25 28 1 34 S3 e S4 VPP2; VPP4 

VPP 4 12 17 4 15 ---- 
VPP1; VPP2; 

VPP3 

 
The following figures show the obtained results for the 

VPPs generation from the initial energy resources 

management process (Figure 5) and after the VPPs 

negotiation process (Figure 6); load flows in the 

interconnections (Figure 7); and ΔLMP, after the energy 

initial resources management process (Figure 8) and after 

the VPPs negotiation process (Figure 9). 

 
Figure 5.  Initial VPPs generation resulting 

 
Figure 6.  VPPs generation after VPPs negociation 

 
Figure 7.  Interconnections load flows 
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Figure 8.  ΔLMP after energy resources management process 

 
Figure 9.  ΔLMP after VPPs negociation 

Analyzing Figures 5, 6, and 7 it is possible to see that 

VPP2 and VPP3 have the same generation schedule after 

the first and the second processes. VPP1 and VPP4 

increase their generation to export energy to VPP2 and to 

VPP3. VPP 4 sells energy to VPP 3 using 

interconnections 54-94 and 60-67. VPP2 buys energy 

from VPP1 and VPP4. In this case VPP1 and VPP4 

compete for selling energy to VPP2 and the purchased 

power is divided by both VPP as seen in Figures 6 and 7. 

In Figures 8 and 9 it is possible to see that there are 

significant differences between LMPs in the 

interconnections 39-66 and 18-35. These differences 

reflect the non-supplied energy in VPP2 and VPP3 areas. 

As the values of the penalties are high, the LMP value for 

VPPs with non-supplied energy is also high. After the 

negotiation process, the difference between LMPs is 

lower for the whole optimization period (T). Only the 

values for period 19 are relatively higher due to the VPP2 

and VPP3 necessity of using demand response programs. 

In this case, VPP2 and VPP3 can buy energy in the day-

ahead market. 

CONCLUSIONS 

The paper includes a case study with a 114 buses network 

adapted from IEEE 123 Node Test Feeder network with 4 

players having the control of different network areas. 

Each player has different generation resources and 

different operation strategies. The results of individual 

operation with and without players’ cooperation are 

presented and discussed. The obtained results are very 

interesting because they consider a complex and realistic 

environment of dynamic and competitive/collaborative 

nature. These results make new light on the ways in what 

the players can use the new opportunities in the context 

of future SG.   
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