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a b s t r a c t

This paper addresses the DNA code analysis in the perspective of dynamics and fractional
calculus. Several mathematical tools are selected to establish a quantitative method with-
out distorting the alphabet represented by the sequence of DNA bases. The association of
Gray code, Fourier transform and fractional calculus leads to a categorical representation
of species and chromosomes.

1. Introduction

Phylogenetics is the study of the evolutionary relations between groups of organisms. With the advent of genome 
sequencing and genome databases [1,2], considerable new information is available for computational processing, allowing 
decoding and understanding the informational structure present on DNA sequences.

Fractional calculus (FC) goes back to the beginning of the theory of differential calculus and deals with the generalization of 
standard integrals and derivatives to a non-integer or even complex order [3–16]. FC was somehow considered an ‘‘exotic’’ 
mathematical tool, but during the last decade fractional dynamics was found to play a crucial role in many phenomena. In fact, 
a large range of potential application fields are possible by bringing to a broader paradigm the concepts of physics, chemistry 
and engineering. Consequently, fractional dynamics emerged as the concept of adopting FC in the study of dynam-ical systems 
by tacking advantage of the long memory properties of the fractional operators.

This paper studies the deoxyribonucleic acid (DNA) code [17,18] in the perspective of system dynamics and fractional cal-
culus (FC). A close observation of the DNA structure leads to the conclusion that ‘‘dynamic tools’’ may prove to be powerful 
allies in this endeavor. It is believed that, besides the information about the ‘‘structural construction’’ of a given species, DNA 
also includes the history of evolution towards the particular species and the instructions for the growth of each individual 
during its lifetime. These two different time scales show that we are in the presence of a complex system with a complicated 
dynamics, and that the systems analysis tools may be helpful. This observation motivated the association of logical and
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mathematical concepts namely, Gray coding, Fourier transform (FT) and fractional calculus for the analysis of the DNA data
of twenty species. The results reveal important relationships between chromosomes and species, pointing to the goodness of
the proposed methodology, and motivating further research with the usual formalisms of system dynamics.

Within this mindset, this paper is organized as follows. Section 2 briefly presents the main biological concepts and math-
ematical tools, and formulates their application in the framework of the DNA sequence decoding. Section 3 analyzes the rela-
tionship between chromosomes and species. Finally, Section 4 outlines the main conclusions.

2. Mathematical tools and DNA decoding

DNA is made up of two polymers connected by the bonding of hydrogen atoms, leading to a double helix structure [19].
Each polymer contains nucleotides that can be classified into three types: deoxyribose, a phosphate group, and a nitrogenous
base. There are four different nitrogenous bases: thymine, cytosine, adenine, and guanine, represented as ‘‘T’’, ‘‘C’’, ‘‘A’’, and
‘‘G’’. Each type of base on one strand forms a bond with just one type of base on the other strand. This arrangement is called
‘‘base pairing’’, with A bonding only to T, and C bonding only to G. For example, in a human being, each cell holds 23 pairs of
separate DNA–protein complexes (chromosomes), each containing, on average, 160 million nucleotide pairs. This massive
amount of information is being collected and decoded during the last years, as the result of a large collaborative effort among
many individuals and at research institutions around the world, and is available [20–27] for scientific research.

From the available DNA sequences a substantial part is organized into chromosomes and has been used in this study. For
converting the DNA code into a numerical value it is observed that we are handing an alphabet with symbols {T, C, A, G}. The
available data includes a fifth symbol, represented by ‘‘N’’, which has no practical meaning for the DNA coding and, therefore,
this symbol was considered as ‘‘zero’’ during the calculations.

We have different values when considering DNA sequences with length ranging from n = 1, representing a counting of
m = 41 states, up to n = 5, representing the dynamics of a system with m = 45 states. It must be noted that we are handling

Table 1
Main characteristics of species and their chromosomes.

Specie Tag Group Chromosomes

Human Hu Mammal Hu1, Hu2, Hu3, Hu4, Hu5, Hu6, Hu7, Hu8, Hu9, Hu10, Hu11, Hu12, Hu13, Hu14, Hu15, Hu16, Hu17, Hu18,
Hu19, Hu20, Hu21, Hu22, HuX, HuY

Chimpanzee Ch Mammal Ch1, Ch2a, Ch2b, Ch3, Ch4, Ch5, Ch6, Ch7, Ch8, Ch9, Ch10, Ch11, Ch12, Ch1, Ch14, Ch15, Ch16, Ch17,
Ch18, Ch19, Ch20, Ch21, Ch22, ChX, ChY

Orangutan Or Mammal Or1, Or2a, Or2b, Or3, Or4, Or5, Or6, Or7, Or8, Or9, Or10, Or11, Or12, Or13, Or14, Or15, Or16, Or17, Or18,
Or19, Or20, Or21, Or22, OrX

Rhesus Rm Mammal Rm1, Rm2, Rm3, Rm4, Rm5, Rm6, Rm7, Rm8, Rm9, Rm10, Rm11, Rm12, Rm13, Rm14, Rm15, Rm16,
Rm17, Rm18, Rm19, Rm20, RmX

Pig Pi Mammal Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, Pi9, Pi10, Pi11, Pi12, Pi13, Pi14, Pi15, Pi16, Pi17, Pi18, PiX
Opossum Op Mammal Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, OpX
Mouse Mm Mammal Mm1, Mm2, Mm3, Mm4, Mm5, Mm6, Mm7, Mm8, Mm9, Mm10, Mm11, Mm12, Mm13, Mm14, Mm15,

Mm16, Mm17, Mm18, Mm19, MmX, MmY
Rat Rn Mammal Rn1, Rn2, Rn3, Rn4, Rn5, Rn6, Rn7, Rn8, Rn9, Rn10, Rn11, Rn12, Rn13, Rn14, Rn15, Rn16, Rn17, Rn18,

Rn19, Rn20, RnX
Dog Do Mammal Do1, Do2, Do3, Do4, Do5, Do6, Do7, Do8, Do9, Do10, Do11, Do12, Do13, Do14, Do15 Do16, Do17, Do18,

Do19, Do20, Do21, Do22, Do23, Do24, Do25, Do26, Do27, Do28, Do29, Do30, Do31, Do32, Do33, Do34,
Do35, Do36, Do37, Do38

Cow Co Mammal Co1, Co2, Co3, Co4, Co5, Co6, Co7, Co8, Co9, Co10, Co11, Co12, Co13, Co14, Co15, Co16, Co17, Co18, Co19,
Co20, Co21, Co22, Co23, Co24, Co25, Co26, Co27, Co28, Co29, CoX

Horse Eq Mammal Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, Eq7, Eq8, Eq9, Eq10, Eq11, Eq12, Eq13, Eq14, Eq15, Eq16, Eq17 Eq18, Eq19,
Eq20, Eq21, Eq22, Eq23, Eq24, Eq25, Eq26, Eq27, Eq28, Eq29, Eq30, Eq31, EqX

Chicken Ck Bird Ck1, Ck2, Ck3, Ck4, Ck5, Ck6,Ck7, Ck8, Ck9, Ck10, Ck11, Ck12, Ck13, Ck14, Ck15, Ck16, Ck17, Ck18, Ck19,
Ck20, Ck21, Ck22, Ck23, Ck24, Ck25, Ck26, Ck27, Ck28, CkW, CkZ

Zebra Finch Tg Bird Tg1a, Tg1b, Tg1, Tg2, Tg3, Tg4, Tg4a, Tg5, Tg6, Tg7, Tg8, Tg9, Tg10, Tg11, Tg12, Tg13, Tg14, Tg15, Tg17,
Tg18, Tg19, Tg20, Tg21, Tg22, Tg23, Tg24, Tg25, Tg26, Tg27, Tg28, TgZ

Zebrafish Zf Fish Zf1, Zf2, Zf3, Zf4, Zf5, Zf6, Zf7, Zf8, Zf9, Zf10, Zf11, Zf12, Zf13, Zf14, Zf15, Zf16, Zf17, Zf18, Zf19, Zf20, Zf21,
Zf22, Zf23, Zf24, Zf25

Tetraodon Tn Fish Tn1, Tn2, Tn3, Tn4, Tn5, Tn6, Tn7, Tn8, Tn9, Tn10, Tn11, Tn12, Tn13, Tn14, Tn15, Tn16, Tn17, Tn18, Tn19,
Tn20, Tn21

Mosquito (Anopheles
gambiae)

Ag Insect Ag2l, Ag2r, Ag3l, Ag3r, AgU, AgX

Honeybee (Apis
mellifera)

Am Insect Am1, Am2, Am3, Am4, Am5, Am6, Am7, Am8, Am9, Am10, Am11, Am12, Am13, Am14, Am15, Am16

Caenorhabditis
elegans

Ce Nematode Ce1, Ce2, Ce3, Ce4, Ce5, CeX

Caenorhabditis
briggsae

Cb Nematode Cb1, Cb2, Cb3, Cb4, Cb5, CbX

Yeast (Saccharomyces
cerevisiae)

Sc Fungus Sc1, Sc2, Sc3, Sc4, Sc5, Sc6, Sc7, Sc8, Sc9, Sc10, Sc11, Sc12, Sc13, Sc14, Sc15, Sc16



non-numerical quantities. Therefore, in order to prevent inserting a numerical order, it was decided to adopt numerical val-
ues according to the binary Gray encoding [28] applied to the DNA alphabet. Since the standard Gray binary code changes
only one symbol between adjacent states, in our case we implemented a novel encoding scheme, corresponding to a gener-
alization to base four, keeping one base change per state. For example, we get the sequences {A} {C} {G} {T}, and {AA} {AC}
{AG} {AT} {CT} {CG} {CC} {CA} {GA} {GC} {GG} {GT} {TT} {TG} {TC} {TA} for n = 1 and n = 2, respectively. Furthermore, for the
Gray code sequence conversion windows were adopted with an overlapping of n � 1 consecutive bases. Once performed the
code to state translation, it is considered a circular function, leading to a numerical value capable of being processed by a
dynamic tool such as the FT. In other words, the numerical output of the DNA encoding is given by y = sin (2px/m) where
x = 0,1, . . . ,m � 1 for the consecutive sequences of n symbols in the Gray encoding.

Once defined the mathematical tool for studying the DNA dynamics, we decided to analyze eleven mammals, two birds,
two fishes, two insects, two nematodes and one fungus, namely, Human (Hu), Common Chimpanzee (Ch), Orangutan (Or),
Rhesus monkey (Rm), Pig (Pi), Opossum (Op), Mouse (Mm), Rat (Rn), Dog (Do), Cow (Co), Horse (Eq), Chicken (Ck), Zebra
Finch (Tg), Zebrafish (Zf), Tetraodon (Tn), Gambiae mosquito (Ag), Honeybee (Am), Caenorhabditis elegans (Ce), Caenorhabditis
briggsae (Cb), and Yeast {Sc}. The chromosomes characteristics of each DNA species are presented in Table 1.

3. Fourier analysis of DNA

The combination of Gray encoding and trigonometric circular function calculation was applied to the chromosomes of the
twenty species and its FT was calculated. It was observed that the real and imaginary components depict considerable noise
and that the FT amplitude can be considered more reliable for proceeding with the analysis. For all cases it was verified that
the amplitude (A) of FT versus the frequency (x) could be approximated by a power function A � a xb, with the parameters
(a,b) to be determined by a least square fit procedure. For example, Fig. 1 shows the amplitude and the power law trend line
for Human chromosome 1.

We now discuss more deeply the power law fitting (1) of data generated by the Fourier Transform. In fact, we can not
assert that this empirical dependence is single and unique for the ‘‘noisy’’ distribution of amplitudes represented in Fig. 1,
since other hypothesis may also be acceptable. It must be noted that a considerable research effort was devoted [29–39]
to the application of signal tools for DNA analysis, but it has been verified that considerable ‘‘noise’’ occurs. We can only spec-
ulate about the source of the ‘‘noise’’, a word that we are using in the absence of a more appropriate term. One possibility is,
simply, that the signal conversion of DNA alphabet is not the most adequate, leading to an intrinsic ‘‘numerical deformation’’

Fig. 1. Fourier transform of the signal for the Human chromosome 1 when n = 3: amplitude versus x and power law approximation A � a xb.



responsible for the ‘‘noise’’. The authors experimented several previously proposed schemes for yielding numerical values,
but the proposed method showed to generate lower ‘‘noise’’ levels. Therefore, the adoption of the power law fitting (1)
may also be considered as a filter that compensates errors introduced by the so called ‘‘numerical deformation’’.

The first test to consider in the FT of DNA code consists in evaluating the effect of the value of n upon the amplitude.
Therefore, FTs were evaluated for all species with n = {1,2,3,4,5} and the corresponding power law trend lines were ob-
tained. Fig. 2 depicts the locus of the parameters (a,b) for the Human 24 chromosomes. It can be observed that the results
‘‘converge’’ and that for n P 3 there is almost no significant variation. In general each trace moves from bottom to top and
from left to right when varying from n = 1 up to n = 3, while for n = {4,5} there the trace remains essentially in the same loca-
tion. Due to this ‘‘property’’, and in order to limit the computational load, in the sequel was considered solely the n = 3
encoding.

Again, some further discussion about the quality of the curve fitting is needed. In fact, these channels of uncertainty can
considerably distort the process of information processing and, consequently, change the basic conclusions. The amplitude of
the Fourier Transform reveals a considerable randomness in all cases and, consequently, the description of the dynamical
properties through the power law fitting (1) can be interpreted as a filtering in the perspective of FC, but does not preclude
the adoption of other descriptors. For example, Table 2 presents the parameters (a,b) and the correlation coefficient R2 (also

Fig. 2. Locus of the parameters (a,b) for the Human 24 chromosomes when n = {1,2,3,4,5}.

Table 2
Parameters (a,b) of the power law trend line correlation coefficient R2 for the case of
Human chromosome 1.

n a b R2

1 5154.7 �0.2241 0.4502
2 5523.6 �0.1695 0.3048
3 5651.4 �0.1616 0.2682
4 5593.2 �0.1628 0.2633
5 5583.3 �0.1629 0.2627



known as R-squared value of correlation coefficient) when n = {1,2,3,4,5} for the case of Human chromosome 1. We verify
the stabilization of the numerical values for n P 3 and, on the other hand, the low values R2 corresponding to higher noise
and smaller slope. A more complex curve fitting could hardly lead to significantly better values of R2, an observation that
supports the speculation on the ‘‘filtering action’’ of (1) for the ‘‘numerical deformation’’ within the numerical conversion
of DNA code.

In all cases the power law trend line reveals the fractional dynamics of the code and the intrinsic long memory depen-
dence of the ‘‘signal’’ [40–42].

Having established the conceptual and numerical framework for the study, the final phase consists in performing the FT
calculation and power law approximation for all chromosomes of the twenty species. Fig. 3 shows the locus of (a,b) param-
eters for all 415 chromosomes. The parameter a is related to the ‘‘energy of the signal’’ which reflects partially the size of the
chromosome. Therefore, we observe a tendency for smaller/larger values of the point labels in the right/left of the locus of
(a,b). The parameter b is related with the information content, being more close/apart to/from zero as the DNA ‘‘signal’’ is
more random/correlated along the sequence. We verify that mammals have more negative values of b.

We note also a separation both in the perspective of species and chromosomes. In terms of species, we observe at the top
left side a cluster constituted by the Sc, followed by the group Rm, Tn, Am, Ce, and Cb. Somewhat lower to the right we have
the main part of the mammals namely the Hu, Ch, Or, Pi, Mm, Rn, Do, Co, and Eq. Somewhat peculiar is the place of Op sep-
arated to the right from the rest of the mammals. The birds Ck and Tg are in the middle of the two groups covering all range
from left to right. The Zf and the Ag superimpose partially in the mammals.

In terms of chromosomes, we observe particularly in mammals that, in general, chromosomes with the same numbering
are relatively close. For example chromosomes 1 and 3 are very similar for Human, Chimpanzee and Orangutan. Neverthe-
less, chromosomes 2, X and Y (when it exists) reveal a remarkable difference. Obviously, much more can be extracted from
the locus of (a,b) with 415 points and a more detailed analysis will be developed in the future.

4. Conclusions

After verifying that chromosomes have a code based on a four symbol alphabet, in this paper it was adopted a Gray-like
encoding and a sinusoidal numerical conversion of the DNA code. This information can be analyzed as a ‘‘signal’’ represen-
tative of a system dynamics. For that purpose it was adopted the Fourier transform, with the resulting amplitude versus

Fig. 3. Locus of the parameters (a,b) for all 415 chromosomes of the twenty species when n = 3.



frequency charts approximated by power law trend lines. The locus of power law parameters reveals species’ representative
clusters. Furthermore, it is also observed a second level of grouping according to the type of chromosome. The results are in
agreement with what is currently known in phylogenetics and this research opens new research directions to pursuit.
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