
ADDRESSING THE FACILITIES LAYOUT DESIGN PROBLEM 
THROUGH CONSTRAINT LOGIC PROGRAMMING 

 

José Tavares1, Carlos Ramos1 & José Neves2 

 

1Dept. of Computer Engineering – Polytechnic Institute of Porto (IPP)/Institute of Engineering 

Rua Dr. António Bernardino de Almeida, 4200-072 Porto – Portugal 

Phone: +351 2 8340500, Fax: +351 2 8321159, Email: {jtavares,csr}@dei.isep.ipp.pt 

 
2Dept. of Informatics – University of Minho 

Campus de Gualtar - 4709 Braga Codex – Portugal 

Phone +351 53 604466, Fax: +351 53 604471, Email: jneves@di.uminho.pt 

 

Abstract 

One of the most difficult problems that face researchers 

experimenting with complex systems in real world 

applications is the Facility Layout Design Problem. It relies 

with the design and location of production lines, machinery 

and equipment, inventory storage and shipping facilities. In 

this work it is intended to address this problem through the 

use of Constraint Logic Programming (CLP) technology. The 

use of Genetic Algorithms (GA) as optimisation technique in 

CLP environment is also an issue addressed. The approach 

aims the implementation of genetic algorithm operators 

following the CLP paradigm. 

Keywords: Plant Layout, Facilities Layout, Constraint 
Satisfaction, Constraint Logic Programming, Layout Design. 

1. Introduction 

1.1 The Problem 

The Facility Layout Design Problem (FLDP) is one of the 

most complex industrial problems. It looks for an efficient 

physical arrangement of machines, cells or departments, 

which are collectively named as facilities. Methods to solve 

these problems have to deal with a large set of factors, 

namely sales and production estimation, manufacturing 

process compatibilities, delivery dates, quality, spatial 

requirements, economics, management, human resources and 

environment. 

In a more general definition, the FLDP is the planning of 

the proper location of machines, employees, workstations, 

warehouses and client service areas. It also involves the 

design of the material and people flow pattern around, the 

movement inside, at the input and at the output of the 

productive plants. In a factory, the layout is a fundamental 

issue. From it, the equipment and human resources have a 

great influence on the real output, whatever is the 

manufacturing plant’s theoretical installed capacity. It is 

necessary to plan the operations scheduling among the 

available equipment for each operation type and the flow of 

the materials and people among them. The warehouses 

location, how they are supplied from outside, the areas and 

how the distribution transportation are loaded are also tasks 

of the planning process. Issues related with layout, like work 

conditions (noise levels, temperature and air quality), have to 

be considered. The correct design and the dynamic 

management of the manufacturing plant is a manager’s 

fundamental task in order to have an efficient manufacturing 

process using the available material and human resources. 

The FLDP was originally defined by /1/ and /2/. Given 

the complexity of the FLDP, a strong effort was given in the 
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research and development of techniques, which aims to help 

the specialist to solve it /3/, /4/, /5/, /6/, /7/. These techniques 

use procedures classified as optimal and sub optimal 

algorithms. For the first ones, the attainment of the optimal 

solution for problems with some dimension has shown 

problematic and, therefore, other ways were explored giving 

good solutions in useful time. These algorithms are in the 

group of the sub optimal algorithms. All these techniques are 

usually based on Operational Research (OR) models and are 

usually classified into two types, the single-row layout and 

multi-row layout problems. As the name indicates, in the 

single-row layout problem the facilities are arranged linearly 

in one row as opposed to multi-row layout problem, where 

the facilities are arranged in two or more rows. One classical 

example of the multi-row layout problem type is 

the Quadratic Assignment Problem (QAP), /3/, /5/, /7/ which 

assumes that the manufacturing plant is divided into n equal 

areas, where the facilities are located. The cost function 

usually considers the distance and the flow between facilities. 

Since FLDP is a complex problem (the simple QAP is 

NP-hard /3/, /7/), optimal algorithms were not good enough 

for large and real problems. Examples of those optimal 

algorithms are the Branch-and-Bound algorithm, the 

decomposition algorithm and the cutting plane algorithm /7/. 

In practice, heuristic based algorithms (sub optimal 

algorithms) are used to find one good solution /6/, which are 

classified as construction algorithms, improvement 

algorithms, hybrid algorithms and graph theoretic algorithms. 

The construction algorithms generate a facility layout from 

scratch, which means that a layout is built in a single iteration 

(the ALDEP and CORELAP are two examples of these 

algorithms /3/, /5/, /7/). The improvement algorithms require 

an initial layout, and then several operations are applied in 

order get solution improvements (an example of the 

improvement algorithms is the CRAFT algorithm /3/, /5/, 

/7/). Hybrid algorithms are the ones that use two or more 

types of techniques or the ones that use a combination of 

optimal algorithms with heuristics. Finally, the graph 

theoretic algorithms are based on the graph theory, namely 

planar graph and maximal planar graph concept /7/. 

Meta-heuristic algorithms like Simulating Annealing, 

Taboo Search and Evolutionary Algorithms have been used 

also to solve the FLDP. An approach found frequently in the 

literature is the optimisation with evolutionary computation 

techniques. A survey about the use of these techniques to 

solve the FDLP can be found in /8/. 

In the modern manufacturing systems, the traditional 

FDLP assumptions are more and more difficult to support. In 

first place, there is a tendency to consider a third dimension 

given, for example, lighter machines, higher prices of the 

available areas, among others. In second, it is evidenced that 

in the current industrial environment, there is a strong trend 

for an increasing level of volatility and uncertainty, where 

more and more companies are present in a global market. It is 

also evidenced, an increasing technological innovation and 

changes in the specifications of the products, these demanded 

by the consumers. All these factors contribute to reduce the 

life cycle of a manufacturing layout and, thus, an increasing 

need of better computational tools to help the layout designer 

to create new manufacturing layouts or the re-layout of the 

old ones. 

1.2 The Technology 

In the last decade a new technology has emerged to deal 

with complex combinatorial problems. This technology is 

known as Constraint Logic Programming (CLP) /9/ and 

matches the declarative aspects of the Logic Programming 

(LP) paradigm with the techniques for constraint satisfaction 

/10/, in a proper way for problem solving. This hybrid 

technique improves the search strategies used in logic 

programming, once it adds constraints and consistence 

verification techniques. With this scheme, the solution space 

can be largely reduced. 

The constraints and consistency verification techniques 

were initially developed to solve the Constraint Satisfaction 

Problems (CSP), which for a long time had been an Artificial 

Intelligence (AI) research field. Many combinatorial 

problems, characterized by a large number of constraints, are 

well suited for CLP, namely scheduling problems, 

timetabling, planning, placement, configuration, and routing. 

Others areas of application goes from the natural language 



processing, to the circuit analysis and games theory. CSP 

seeks assignments to a set of variables X = {x1, x2, ..., xm} 

from a set of corresponding domains D={d1, d2, ..., dm}, one 

per variable, satisfying a set of constraints C={c1, c2,..., cn} 

over subsets of the cartesian space spanned by D. CSP is a 

binary problem, in which a set of assignments to the variables 

X satisfies or not all the constraints /9/, /10/, /11/. A solution 

for a CSP is a domain value assignment for each variable, in 

a way that all the constraints are satisfied. It has been verified 

that CLP offers a more natural way to express real world 

problems in a computer program, the development time is 

shorter, the maintenance processes are simpler and the 

efficiency is equivalent to that of the programs developed in 

procedural languages according to the paradigm of constraint 

satisfaction /11/. 

Since the end of the eighties the CLP technology, and in 

particular the Constraint Logic Programming with Finite 

Domains (CLP(FD)) /9/, /11/, has been applied to solve 

problems, with a great success, in several areas where other 

technologies had lapsed. In relation with the industrial 

applications, the production planning and scheduling have 

been the elected areas. Many of these problems present 

common features to the combinatorial problems and, 

therefore, they are difficult to solve. As it was referred, the 

FDLP are also complex problems and, therefore, solving 

them is hard. Given the complexity of the FLDP and the 

considerable amount of work that has been done in FLDP 

area over the last three decades we intended to contribute 

with a work which explores the CLP(FD) technology to solve 

this kind of problems. 

Solving the FDLP with the CLP(FD) technology 

requires, however, the development of new models or, at 

least, the adaptation of some models already used with other 

technologies. One fundamental component of this document 

is to describe a formal model to solve industrial FDLP, 

emphasising the aspects related with the use of the CLP(FD) 

technology to solve it. This model was inspired in models of 

space assignment problems /12/, /4/, /13/. Another 

fundamental component is related with the identification of 

the problem variables as well as with the definition of its 

domains and, basically, with the specification of the 

constraints, that obviously have a geometric nature. 

According to the results obtained by applying CLP 

technology to solve complex combinatorial problems, an 

early approach that uses CLP for solving the FLDP was 

developed /14/, /15/, /16/, /17/, /18/. However, it was verified 

with this approach that the optimisation task, which uses a 

Branch&Bound (B&B) algorithm offered by the main CLP 

development tools, requires a huge computational power to 

explore the entire search space for real problems of this kind. 

This scenario suggests that other optimisation techniques 

should be used in order to deal with such huge search space. 

The chosen technique was the Genetic Algorithms (GA) /23/, 

/24/, which are general-purpose search procedures based on 

natural selection and evolutionary principles /25/. The 

approach followed is a combination of CLP and GA, which is 

presented in this paper. We claim that this combination is in 

fact better than the use of CLP alone with the build-in B&B 

algorithm. 

2. Information Requirements for FDLP 

In this section we identify the required input data for the 

model we propose. This model was developed having in mind 

that we intended to solve problems using CLP(FD) solvers. 

However, we start by introducing some general concepts 

related with the FDLP. 

2.1 FDLP Models 

Globally, all the models used to solve this kind of 

problems are complex to handle. In geometric terms, we are 

dealing with facilities requiring a fraction of the available 

space in the manufacturing plant. We refer to the 

manufacturing plant as the available space to place facilities, 

usually a building or some part of it. In general, the space 

requirements of facilities to place in the plant can be grouped 

in: (i) equal area and fixed orientation; (ii) different areas and 

fixed orientation; (iii) different areas and variable orientation; 

(iv) different areas and variable shapes. In the approach (i) 

and (ii) it is necessary to choose the location for each facility. 

In (iii) a new dimension to the complexity of the problem is 



added since it is also necessary to choose the orientation for 

each facility in the plant. Finally, in (iv), the dimension 

related with the orientation is replaced with another that 

implies the selection of the facility shape. Selecting the 

facility shape is equivalent to chose the width and length 

values since we are dealing with rectangular shapes. 

This FDLP models classification based on space 

requirements assumes manufacturing plants with only one 

floor. However, it has been proposed variants of these models 

to deal with several floors, which, obviously, adds another 

dimension to the problem, increasing the complexity. 

However, in this work we are just considering manufacturing 

plants of one floor. 

Besides the geometric factors, it is still necessary to 

consider the factors related with the productive process. The 

productive process is chosen based on the products to 

manufacture and the productive capacity to install in order to 

satisfy the product demand. In general, the product demand is 

directly or indirectly estimated. The product demand volume 

is one parameter required to evaluate and choose the best 

solution for each instance of the problem. 

2.2 Manufacturing Plant 

The knowledge of the plant dimensions is not, in almost 

all situations, essential to find the best solution, when the 

available physical space in the plant is not a constraint. 

Moreover, this knowledge of the plant length and width may 

help finding the best solution. Also, given the plant shape, the 

available physical space may not be compatible with the best 

solution found. Therefore, it is desirable that the plant 

dimensions should be took into account. 

The problem solutions taking into account the plant 

dimensions undertake implicitly a manufacturing facility 

whose plant has a rectangular shape with length L and width 

W. It is obvious that not all the plants have a rectangular 

shape. In those cases the shape considered is a rectangle 

surrounding the real plant (Fig 1). This approach has a 

disadvantage to potentially give rise to solutions that locates 

some facilities in a way that crosses the real plant frontiers. 

To avoid this shortcoming, our solution places constraints 

that exclude the areas that do not belong to the real plant. 

This type of constraints will be presented with more detail 

below. Also, this approach can also exclude interior areas of 

the plant that are not available to place the facilities. Taking 

into account what was discussed about the plant shape, the 

representation has consider the following: 

W is the width of the rectangle surrounding the 

plant shape; 

L is the length of the rectangle surrounding the 

plant shape; 

NAP is the number of the forbidden areas; 

{APi} is the set of the forbidden areas. 

By convention the width W is measured in the x-axis 

while the length L is measured in the y-axis. 

 

Fig 1: An example of a rectangle surrounding the 
manufacturing plant. 

The forbidden areas are rectangular and are described in 

terms of the following parameters: 

Xi is the value of the x co-ordinate of the area i ; 

Yi is the value of the y co-ordinate of the area i ; 

Wi is the width of the rectangular area i ; 

Li is the length of the rectangular area i . 

2.3 Facilities 

Facilities in the FDLP context are plant spaces used for 

the most varied purposes, as for example, the ones for 

services, productive warehouses and/or processes. In this 

work we are interested with facilities related with the 

productive process. These facilities could be a simple 

workstation with a machine and, optionally, with a small area 

for temporary storage of materials, or a collection of 

workstations where the facility itself is a layout sub problem. 

In general, the facilities where the process operations 



occur are known. In the model that we are describing we also 

acknowledge that there is some alternative facilities to 

perform the same process operation. The set of facilities that 

are able carry out the same process operation we call a 

facility class. 

Each facility is identified by a set of properties that are 

related with its shape. There are also other properties, which 

are related with the facilities capacity to accomplish the 

operations. However, these are directly related with the 

productive process. The description of a facility has, 

therefore, to take into account that:   

Ti is the facility class i ; 

NIi is the number of facilities of class i ; 

Iiu is the facility u of class i ; 

Aiu represents the minimal area required by Iiu ; 

{ARiu} is set of values that represents the possible aspect 

ratios of Iiu; 

Wiu is the width of Iiu ; 

Liu is the length of Iiu ; 

Giu is an optional gap value of Iiu and represents the 

minimal distance that has to be respected in 

relation to the others facilities (Fig 2). 

 

i 

j 

Gap of the 
Facility j 

Gap of the 
Facility i 

 

Fig 2: The gap between two facilities. 

The width and length as well as set of values of the 

Aspect Ratio (AR) are equivalents, being therefore 

redundant. Expressions (1) and (2) allows to relate these 

values. 

iuiuiu AARL ×=  (1) 

iuiuiu LWA ×=  (2) 

It is clear that if we have several possible values of AR 

then there is also several values for W and L. On the other 

hand, when a facility requires a fixed area, it is only enough 

to know the values of C or L, once (2) relates each other. In 

general the value of the required area and the set of the AR 

values are enough to treat all the situations related with 

facilities shape. Tab 1 shows the three major cases that may 

occur. 

Tab 1: The three major cases for the shape of a facility. 

Facility Shape Possibilities AR 

Fixed orientation 1 {v} 

Variable 
orientation 

2 
{v, 

v
1

} 

Variable shape N {v1, ..., vn} 
 

2.4 Products 

One company exists since there is a market wishing to 

consume a large and diverse number of products, being the 

company able to satisfy some or all the market needs in a 

certain niche of products. In this section it is showed how a 

company could see the demand of the market for products 

manufactured in the layout point of view and how this 

demand affects the process that occurs in the plant that 

wishes to design. 

The knowledge of the products to be produced in the new 

plant is essential in the choice of the manufacturing process. 

However, it is the foreseen volume of products to 

manufacture that imposes the capacity of the plant, 

conditioning the decisions that make the plant efficient in the 

production, namely in the choice of the best disposal for the 

facilities inside the plant. The choice of the best disposal for 

facilities depends essentially on the flow of materials or on 

the frequency of trips of the carrier equipment between the 

facilities. 

To compute the flow between facilities it is necessary to 

decompose the products in their parts. It is obvious that this 

decomposition is restricted to the parts that are processed in 



the plant. This decomposition is done in accordance with the 

Material Requirements Plan (MRP). For each part the 

required amount must be computed (the demand value of the 

part). Collectively, the parts and the final products are treated 

simply as parts. The information that describes those parts is 

given in the form:   

NP is the number of parts in the manufactured plant; 

Pk is the part k ; 

Ck is the manufacturing capacity of the part k; 

Oikl is the order number of the operation l that is done in 

the facility class i, to the part k. 

2.5 Production Process 

Knowing what parts are going to be manufactured in the 

plant, and the amount of each part per unit of time, it is 

necessary to know the operations sequence to compute the 

flow of materials between the facilities. To do this, we firstly 

have to decompose all the products in their simpler parts. 

After this decomposition we know the sequence of operations 

of each part and, therefore, the routing between facilities. 

To specify the sequence of operations, taking into 

account the product, we have the following: 

NOk is the number of operations applied to part k ; 

NOik is the number of operations applied to part k in the 

facility class i ; 

Oikl is the order number of the operation l done in 

facility class i, to the part k, in the sequence of 

operations; 

{Ckiu} is a list containing values representing the number 

of parts k processed in the facility u, of the class i, 

for unit of time; 

Lk is the transportation lot size of the part k ; 

Tk is the transportation cost for each part k . 

With this data it is possible to compute the flow between 

all the facilities pairs. The expression (3) allows the 

computation of the flow of the part k between the facilities of 

class i and j. Notice that this flow value is not zero only when 

the two operations involved are consecutive. The total flow 

value between the facilities of class i and j, for all parts, is 

given by the expression (4). 

The flow value computed with (3) and (4) is the flow 

between facilities classes and not between instances of the 

facilities classes. In most cases it is not possible to know in 

advance, during the layout planning, the instance of each 

facility class that is used to perform the operations. In this 

way, it was stipulated that the flow that leaves and arrives to 

the facilities of the same class is proportional to the amount 

of processed parts for each facility and for a unit of time. 
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The flow between facility u of class i and facility v of 

class j, related with part k, is computed according to 

expression (5), Cik and Cjk are given by expression (6). The 

Cik and Cjk values represent the total number of parts k 

processed in all the facilities of class i and j, respectively. 

The total among of flow of all parts between facility u of 

class i and facility v of class j, is then computed by (7). 
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The flow values computed until the moment are only 

related with the transport of materials between facilities for 

operations performed to the same part. The transportation of 

subparts to a facility that performs an operation that groups 

subparts in a more complex part is not treated directly. When 

the cost associated with the transport to perform assembly 

operations is not negligible it is necessary to consider 

additional information that deals with the flow due to 

incorporation subparts in a more complex part. This 

additional information is given in the form: 



k is the complex part k incorporating several subparts; 

NSPk is the number of subparts that needed to the part k; 

{Pl} is the list of subparts needed to assembly the part k ; 

{qkl} is a list of values, being each one the quantity of 

subparts l needed to assembly the part k. 

With this information, the computation of flow resulted 

by the incorporation in a complex part of several subparts, is 

carried using the expression (8). The total flow, of the 

incorporation of all subparts in all the parts, can then be 

computed by the expression (9). The set of all the values of 

flow between all the pairs of facilities, allows us to build the 

flow array (10). 
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Taking into account the described method to compute the 

flow between all the facility pairs, the cost of a layout 

solution can be computed with the expression (11), where dij 

is in the distance between facilities i and j, being this usually 

given, by an euclidean or a rectilinear metric. This distance is 

dependent, obviously, of the position where the facilities are 

placed. 
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3. FDLP Modelling with CLP(FD) 

After establishing the information requirements to solve 

the FDLP and the way how the plant, the facilities and the 

processes are modelled, in this section we define how this 

modelling can be addressed using CLP(FD). 

3.1 Variables 

Solving a FDLP using CLP(FD) involves the selection of 

the best location to place the facilities inside the plant. It also 

involves the selection of the best shape for the facilities. It is 

assumed that facilities shape is considered as being 

rectangular. As consequence, solving an FDLP requires four 

decision variables for each facility, two for the facilities 

coordinates and two for their shape. In relation to the 

facilities coordinates, the associated variables points to their 

geometric centre. 

CLP(FD) solvers use decision variables that can take 

only values in a subset of integer numbers. However, the 

information requirements for solving FDLP suggest that 

decision variables should take real values. It is important, 

therefore, to have into account this aspect, since it is 

necessary to make conversions from real values to integers 

values, with the consequent loss of accuracy. Depending on 

the wanted accuracy, some times it will be necessary to scale 

the values, before doing the conversion. 

In relation to the coordinates of the installations, its 

domain has to contemplate the dimensions of the plant. In 

this way, the domain of the coordinates is restricted by the 

constraints (1) and (2): 

Xiu ∈ 0 .. W-1 (1) 

Yiu ∈ 0 .. L-1 (2) 

where: 

Xiu and Yiu Represents the x and y coordinate of the 

facility u of class i position; 

W and L is the width and the length of the rectangle 

surrounding the plant shape; 

Since the facilities central point matches with their 

coordinates in plant, only half of their width and the half of 

their length have to be known. Taking into account the 

information requirements, three situations can be identified:   

1. the width and length of a facility is known and is 

enough to chose the best orientation; 

2. it is specified a minimum area and an interval of AR 

values to the facility; 

3. it is specified a minimum area and set of AR discrete 

values to the facility shape. 

In the first situation the facility orientation in the plant is 

treated implicitly. The domain size of the width and length 

variables is two if their value is not equal and is one, and 



therefore these variables get instantiated, if they are equal. In 

general the domain of these variables are specified with the 

constraints (3) and (4). 

Wiu ∈ [w iu , l iu] (3) 

Liu ∈ [w iu , l iu] (4) 

where 

Wiu and Liu is the domain variable related with the width 

and length of the facility u of class i ; 

wiu and liu is half of the width and half of the length 

values of the facility u of class i ; 

If ciu and liu values are not equal then the constraint (5) is 

added in order to avoid the facility shape is not going to be 

square. 

C iu ≠ L iu (5) 

In relation to the second situation, where we want to find 

which is the best shape to the facilities from a continuous 

interval of possible shapes, the constraints (6) and (7) are 

associated, respectively, to the decision variables related with 

the facilities width and length. 

iuiuiu wswiW ..∈  (6) 

iuiuiu ls..liL ∈  (7) 

where: 

wiiu  and  liiu is the minimum value of the domain to 

the variable that represents half of the 

width and length, respectively, of the 

facility u of class i ; 

wsiu and  lsiu is the maximum value of the domain to 

the variable that represents half of the 

width and length, respectively, of the 

facility u of class i ; 

Since the set of RAiu values is an continuous interval, 

these four values ciiu , liiu , csiu and lsiu , are given by the 

expressions (8), (9), (10) and (11), respectively. 
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After specifying the domains of the variables Liu and Ciu , 

it is also necessary take into account the following constraint: 

4 × Wiu × Liu = Aiu (12) 

which assures that the minimum area of the facility is 

maintained. Since in CLP(FD) it is only possible to 

instantiate variables with integer values, the number of 

possibilities for the shape of a facility is enumerable and is 

not infinite as given by AR continuous interval. This 

resulting number of possible shapes is not always enough. In 

the worst case it will be equivalent to first situation where we 

only are interested the facilities orientation. To get more 

shape possibilities we could affect all the geometric related 

variables by a scale factor before make rounding real values 

to integer values. Fig 3 shows four possible shapes as result 

from the domain specification of the width and length 

variables given an continuous interval of AR.  

 

Fig 3: Four possibilities for the shape of a facility given a 
shape defined by a continuous interval of AR. 

Finally, when the RAiu values are supplied by a set of 

discrete values, the specification of the domains of Wiu and 

Liu have to take into account each shape in the set. To do this, 

given the area and the set of AR for the facility shape, we 

build a set of possible widths ({wiu}) and a set of possible 

lengths ({liu}) respecting the order of values in the set of AR. 

With these two new sets, the constraints (13) e (14) can be 

placed. They allow the establishment of a functional 

dependence between the width values and the length values 

of a facility by using a domain variable Iiu, and as such, the 

order of the values in the set is important. 



element(Iiu, {wiu }, Wiu) (13) 

element(Iiu, {liu }, Liu) (14) 

Each pair of width-length values in {wiu} and {liu} are 

computed as follow: 

1. compute the values of the expressions (15), (16), (17) 

and (18) which denote the integer values (minimums and 

maximums) closer to the real values of the width and 

length of a facility; 

2. for each possible combination given in 1 (w × l), 

compute de area; 

3. select the combination that gives the smaller area yet 

bigger than the minimum area required by the facility. 
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The domain of the variables, that defines the facilities 

coordinates, specified by (1) and (2), is not enough to place 

the facilities completely inside the plant. The constraints (19) 

to (22) have to be specified in order to get valid solutions. 

Xiu ≥ Ciu (19) 

Xiu + Ciu ≤ C (20) 

Yiu ≥ Liu (21) 

Yiu + Liu ≤ L (22) 

3.2 Constraints 

When solving the one FDLP, the facilities are placed in 

the plant in way that all constraints are satisfied. Constraints 

to avoid the overlapping of the facilities in the plant are 

always present. There is a second group of constraints that 

are used to guarantee the satisfaction on the solutions of the 

specific requirements for each instance of the problem. These 

specific requirements, between others, are usually 

technological, geometric, strategic and environment 

constraints, and should be indicated by layout designer to the 

system. It could also be pointed out a third group of 

constraints used to guide search of good solutions. These 

constraints could translate particularities of the problem and 

the experience of the experts. To deal with all these situations 

a set of constraint types was identified. These are: 

1. No Overlap is the constraint that should always be 

present and which imposes that any facility must be 

placed in the plant in such way that is not going to 

overlap with the others; 

2. Neighbourhood is used to deal with situations where it 

is desirable to locate two facilities close to each other as, 

for example, when there is a large volume of material 

flow between them; 

3. Distance is constraint used to impose a given relation of 

distance between two facilities or between a point and a 

facility. One possible situation occurs when some 

production units have to operate in a temperature-

controlled environment not compatible with others, 

located in the neighbourhood; 

4. Absolute Position constraints are used to force facilities 

to be located, either inside or outside of a given area of 

the plant the “inside” and “outside”. With these 

constraints, it is possible to reserve space areas for 

different purposes like offices or warehouses. These 

constraints are also used to prevent the location of the 

facilities in areas that are not inside of the non 

rectangular plants; 

5. Relative Position constraints are the ones that make 

possible handling situations like, for example, "facility 

A is at right of facility B". There are four possible 

relative position constrains: ‘at right of’; ‘at left of’; at 

front of’ and ‘at back of’; 

6. Orientation constraints deals with situations like the 

ones that it is necessary to constraint the orientation of a 

facility or define that several facilities have some kind 

of relation in terms of its orientation. 



A more detailed analysis of these constraint types, 

especially with the relations that are established between the 

problem variables, is given in the following subsections. The 

notation followed to describe the constraints is a simplified 

form of the previously mentioned, which does not consider 

the facilities classes. 

Preventing the Overlap of the Facilities 

As it was mentioned before, the constraint that will be 

always present is one that inhibits the overlapping of 

facilities in the plant. Putting this constraint for all the 

possible pairs of facilities, assures the generation of solutions 

where facilities do not overlapped, with only a simple 

labelling procedure applied for all the problem variables. 

Given two facilities, i and j, this constraint is given by (23), 

being the gap value gij computed by the expression (24). 
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(23) 

( )jiij ggg ,max=  (24) 

An alternative to formulate this constraint is based on 

four boolean variables and removes disjunctions that usually 

gives rise to a bad constraint propagation. This formulation is 

done with the expressions from (25) to (29). 
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Although this last formulation seems initially more 

complex, it can, however, be more efficient in terms of 

constraint propagation because CLP(FD) solvers are 

incomplete and, therefore, different forms to specify the same 

constraint can lead to different level of performance when 

searching for solutions.  

Distance 

The constraint distance involves the computation of the 

distance between two facilities or the computation of the 

distance of a facility to a given point. This kind of constraints 

creates a new variable with a domain that is a set of possible 

values for the distance. An important factor that has to be 

taking into account is how to measure the distance. Here we 

use the use two alternatives: the rectilinear and the Euclidean 

metrics. 

Before we can formulate the distance constraint we have 

to formulate a constraint that gives the absolute values of the 

difference between the domain variables u and v. This is done 

with the expressions (30), (31) and (32). The variables b+ and 

b- are two auxiliary boolean variables. 

( ) ( ) ( ) ( )ubvbvbubvu ×−×+×−×=− −−++  (30) 

( ) ( )vubvub <⇔=∧≥⇔= ++ 01  (31) 

( ) ( )vubvub ≥⇔=∧<⇔= −− 01  (32) 

It is now possible to formulate the distance constraint. 

We start by formulating the distance constraint between two 

facilities, but before we do so, we have to define how to 

measure the distance. We deal with two situations. In the first 

one we measure the distance between the centre point of the 

two facilities and in the second one we measure the distance 

considering the facilities near edges. Fig 4 illustrates these 

two situations. 
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Fig 4: Distance between the centre and considering the edges 

of two facilities. 



Starting with the first situation, the formulation of the 

distance relation between the centres of two facilities is given 

by the expressions (33) and (34) in the x and in the y 

coordinates respectively. The expression (35) gives the actual 

distance using a rectilinear metric and (36) gives the 

euclidean distance. 
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ijijij dcdcdcdcdcdc ×+×=×  (36) 

In the second situation, the distance in relation to the near 

edges of the facilities is slightly more complex to formulate. 

In this case the distance takes into account the length and the 

width of the facilities. To better understand how the distance 

computation is done it is necessary to observe the three 

possible forms of disposal of two facilities shown in the Fig 

5. In the first one the facility i is completely above of the 

facility j, and in the second one the facility i is completely 

bellow the facility j, and therefore, the distance in y is 

different from zero. In the third situation the distance in y is 

zero because none of the facilities is completely above or 

completely below of the other. A similar analysis can be 

made for distances in x. 

 i 

j 
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j 

 

 

i
j 

 

(a) (b) (c) 

Fig 5: Three cases of relative positions for two facilities in 
order to compute the distance in relation to the near edges. 

The total distance is the (a) e (b) sum of the distances in x and 
y (c) distance in x. 

We can say that two facilities are separated in y if one is 

completely above or below of the other. In the same way we 

can say that two facilities are separated in x if one is 

completely at left or at right of the other. 

To establish this relation of distance it is computed, in 

first place, the distance in x and in y without taking into 

account the separation in x and in y of the two facilities. 

These distances are given, respectively, by the expressions 

(37) and (38). 
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Next we compute the separation in x and in y of the two 

facilities. For this, two boolean variables are required. The 

value of the first one defines the separation in x with the 

expression (39) and the second defines the separation in y 

with the expression (40). 
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Finally we are able to compute the real distance between 

two facilities. The expression (41) establishes the relation of 

the distance using a rectangular metric and (42) does the 

same but using the euclidean metric. 
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Having defined the distance constraints between two 

facilities it is ease to define the distance constraint between a 

facility and a point. This is done by assuming that a point is 

facility with a null width and a null length. 

Facilities Neighbourhood 

In some situations it is desirable to place two facilities 

side by side. An example of this arises when there is a large 

flow of materials between two facilities and therefore if they 

are neighbours the operation cost is smaller. The use of 

constraints to express this fact allows a significant reduction 

in the space of solutions. Also, the placing of two facilities 

side by side can be a requirement of the problem being 

solved. It may argue that a distance constraint can do the job, 

but providing a specific one can give a better performance in 

constraint propagation. The neighbourhood constraint we are 

formulating appears under two forms. The first one only 

imposes that two facilities must be placed side by side. The 



second is a more restricted form of the first one and is 

referred as adjacency constraint. 

In relation with the first form of the neighbourhood 

constraint, the formulation is given with expression (43). This 

formulation assumes that a non-overlapping constraint is 

always present. 
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(43) 

The adjacency constraint imposes a stronger degree of 

neighbourhood, which imposes that the two facilities 

involved are placed in a way that the distance between their 

geometric centres is minimised. The adjacency constraint can 

be formulated by the expression (44). Note that max(v) 

function gives the biggest value in the domain of v. 
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(44) 

Once again the use of boolean variables can be used to 

remove the disjunctions in a similar way done with the 

non-overlaping constraint. 

Facilities Position 

There  are two types of constraint related with the 

facilities position that can be defined. The first type, referred 

as absolute position constraint, imposes that the facilities 

should be located in specific areas of the plant. The other 

type, referred as relative position constraint, allows doing the 

placement of one facility with some relation to another 

facility. 

The absolute position constraints have two forms: one 

allows the placement of the facilities in some restricted areas 

of the plant, and the other excludes these areas of the plant 

for facilities placement. One situation, already referred, using 

this type of constraints, occurs when the plant shape is not a 

perfect rectangle. The areas that in the reality do not belong 

to the plant are excluded using these types of constraints. 

The simpler absolute position constraint is the one that 

imposes that the facility central point should be located at the 

point p(xp , yp). This fact is expressed by (45). 

pipi yyxx =∧=  (45) 

The formulation of (45) imposes the placement inside a 

given area a(xa , ya , wa , la ), where xa and ya represents the 

geometric centre of the area and wa e la , respectively, are half 

of its width and half of its length. This more general 

formulation are given by (46) and (47). 

( ) ( )aaiiaaii wxwxwxwx +≤+∧−≥−  (46) 

( ) ( )aaiiaaii lylylyly +≤+∧−≥−  (47) 
The other absolute position constraint is the one that 

excludes plant areas for the facilities placement. The 

formulation is done as a logical negation of (46) and (47) that 

will generate disjunctions. We choose here to present a 

formulation that removes these disjunctions by using boolean 

variables. The formulation of this constraint uses the 

expressions (48) to (52). 
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In relation with the relative position constraints we find 

four possibilities: ‘at front of’, ‘at right of’, ‘at back of’ and 

‘at left of’. The formulation of these constraints is very 

simple. However, it is necessary to distinguish partial relative 

positions from complete relative positions. In the first case 

only coordinate variables are involved while, in second case, 

also the facilities width and length variables are involved. 

The formulation for the first case is done with one of the 

expressions (53), (54), (55) or (56). The formulation for 

complete relative position constrains uses one of the 

expressions (57), (58), (59) or (60). 



ji xx > (53) 
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jjii lyly +>−  (59) 
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Facilities Orientation 

The orientation of the facilities in the plant is controlled 

with the orientation constrains. Like with position constrains, 

we have absolute and relative orientation constraints. The 

first ones usually involve only one facility while the second 

ones involve at least two facilities. It is defined that a facility 

is orientated in x if the larger edge is parallel to x-axis and the 

formulation correspondent constraint is done with the 

expression (61). In the same way a facility is orientated in y if 

the larger edge is parallel to y-axis and the expression (62) 

specifies this. 
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The given formulation of the absolute orientation 

constraints makes ease to formulate the relative orientation 

constraints. Their formulation uses the boolean variables 

created by the absolute orientation constraints. So, the 

formulation of the constraint that imposes the facility i to 

have the same orientation of the facility j is given by the 

expression (63). On the other hand, the formulation to impose 

a different orientation is given by the expression (64). 
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4. Problem Solving 

Solving a problem, with the CLP(FD) paradigm, usually 

involves at least three steps: the definition of the problem 

decision variables and their domain; the assertion of the 

problem constraints; and finally the enumeration of the 

solution, which instantiates the variables, one by one, with a 

value from their domain. If the solving task is to find the best 

solution, or at least a good one, a cost function should also be 

defined and an optimisation method should be selected.  

Two systems were developed which follows these steps 

as represented in the diagram of the Fig 6. They are the 

LaRLo /14/, /15/, /18/ and LayGeRL /16/, /17/, /18/ systems. 
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Best soluction 
found 

Cost function 
definition 

 
Fig 6: An CLP application typical architecture. 

LaRLo system was developed first and uses a Branch & 

Bound (B&B) algorithm. LayGeRL system is based on 

Genetic Algorithms (GA) and was developed in order 

overcome the inability of B&B to find optimal solutions in a 

practical time period for complex problems. 

4.1 LaRLo System 

The implementation of the B&B algorithm used in the 

LaRLo system takes two arguments: a label procedure and 

the cost function as a Logic Programming (LP) term. The 

label procedure is used to generate solutions and the cost 

function is used to place a new constraint when the label 

procedure finds a solution satisfying all the constraints. This 

new constraint assures that the next solution being explored is 

discarded as soon as the cost of the partial solution being 

explored is already equal or greater than the best valid and 

complete found solution. 

Five label procedures where developed. Fig 7 shows one 

of the simplest label procedures (LabelProc1) written in a 

logic programming like language. The others four are 

presented in appendix. It takes a list {Φ} of all problem 

decision variables grouped by the respective facility and a 

value λ that specifies the order in which the values in the 

domain of the variables are instantiated. Each element in {Φ} 



represents a facility k of class c and is in the form of 

( ) ( )( )ckckckckck gLWYXrkci ,,,,,, . 

label( {Φ}, λ ) ← 
    label_wl( {Φ}, λ ), 
    label_xy( {Φ}, λ ). 
 
label_cl( [ ], _ ). 
label_cl( [ ( _, r( _, _, W, L, _ ) ) | T ], λ ) ← 
    indomain( W, λ ),    indomain ( L, λ ), 
    label_cl( T, λ ). 
 
label_xy( [ ], _ ). 
label_xy( [ ( _, r( X, Y, _, _, _ ) ) | T ], λ ) ← 
    indomain( X, λ ),    indomain( Y, λ ), 
    label_xy( T, λ  ). 
 

Fig 7: A simple labelling procedure. 

The system supports four possible values for the λ 

parameter (min, middle, max and partition). 

This approach showed that the exploration of all solution 

space is most of the times prohibitive, however it is possible 

to stop the used B&B at the end of a specified time period in 

order to use the best solution found. 

Tab 2: Four different value ordering heuristics. 

Domain 1 .. 10 

min {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
middle {6, 5, 7, 4, 8, 3, 9, 2, 10, 1} 

max {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} 
partition {6, 3, 2, 1, 5, 4, 9, 8, 7, 10} 

 

4.2 LayGeRL System 

As referred, the LayGeRL system differs from LaRLo in 

the optimisation technique used. It uses a GA in combination 

with the CLP paradigm. This approach was inspired in the 

work done in order to hybridise the B&B algorithm with GA 

/22/ by following three main principles: use current problem 

encoding; hybridise if and where possible; and adapt the 

genetic operators /23/. In this work the GA operators are 

implemented in CLP as illustrated in Fig 8. The main process 

is on the GA side. This process can be viewed as the client 

and the CLP engine can be viewed as the server, which deals 

with logic and constraint reasoning. The main process needs 

to start the CLP engine to be able to use its services as shown 

in Fig 9. When the CLP starts, it begins by creating the 

problem variables with their finite domain, and then places 

the constraints according to the problem specifications. This 

is the start up state (Π) of the CLP engine. 
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Fig 8: Outline of the CLP and GA combination. 

 

procedure MainApp 
begin 
 <initialisation stuff> 
 Π ← clp_startup  
 Min ← GA_Optimise(Π, Parameters) 
 <exit stuff> 
end 

Fig 9: The main process source code skeleton. 

The main process uses the Π returned by the CLP engine 

to be able to create its initial population, perform the 

recombination and mutation operations, and finally, evaluate 

the individuals, which is required to the optimisation task. 

The individuals produced by the CLP engine represent 

solutions that must be consistent with the problem constraints 

placed during the CLP engine start up. 

Once the CLP engine is started, the optimisation task 

begins. This task is a GA like the source code skeleton 

showed in Fig 10. The operations in italic, with the name 

starting with clp_, are implemented in the CLP paradigm. 

Although the main process and CLP engine are presented as 

two separated entities, usually the implementation could be a 

unique program. 



procedure GA_Optimise ( Π, Parameters ) 
begin  
 t ← 0 
 P0 ← clp_create_initial_population  
 clp_evaluate ( Π, Parameters, P0) 
 while not Final Condition do 
  Pt’ ← select_from Pt 
  Pt’’ ← clp_crossover ( Π, Parameters, Pt’) 
  Pt’’’ ← clp_mutate ( Π, Parameters, Pt’’) 
  clp_evaluate ( Π, Parameters, Pt’’’) 
  Pt+1 ← replace (Pt, Pt’’’) 
  t ← t + 1  
 end 
end 

Fig 10: The GA skeleton with operators implemented using 
the CLP paradigm. 

The Genotype Representation 

Once the CLP engine executes all the GA operators, the 

representation of the solutions is done directly using the LP 

data structure syntax. Each individual in the GA population is 

only a reference to its respective LP representation. The 

genotype of each individual is a list of genes, where each one 

contains information about the respective facility. It is 

assumed that the genes are always in the same list order. 

This data structure with finite domain variables is used as 

a template to build the individuals during the GA evolution 

and is created when the CLP engine is started. 

Recombination 

As seen above, the CLP engine executes the 

recombination of individuals. In a certain way the developed 

recombination operator performs a slightly form of mutation 

to ensure that the result of this operator will be consistent 

with the problem constraints. 

The recombination starts by breaking the parent genotype 

in two random halves. The length of the two halves and the 

genes in each half are also random. After breaking the parents 

in two halves, the recombination operation is carried out. As 

referred above, this operation has to guarantee that the 

generated offsprings are consistent with the problem 

constraints. However, it may happen that the recombination 

operation fails to generate an offspring. This happens when 

the operator cannot locate the facilities (genes) of the second 

half in the available space of the manufacturing plant, given 

the location of the facility of the first half and the problem 

constraints. A null fitness value is assigned to those failed 

offsprings and they die before the next generation. 

The crossover operation is performed in two stages for 

each offspring: 

1. Locate all the facilities (the correspondent gene) from 

the larger half in the same location as in a parent. Once 

the parent is consistent, the partial solution represented 

by these genes is also consistent; 

2. Locate the remaining facilities included in the shorter 

half from the other parent in the available spaces. It is 

desirable to place the facilities as close as possible in 

relation to the locations of the same facilities of the 

second parent. This is done like a typical CLP labelling 

method, until a complete solution is found. 

The width and length values of all the facilities will 

remain unchanged. Fig 11 illustrates an example of this 

recombination operator. 
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Fig 11: The recombination operation. 

Mutation 

The effect of the mutation operator is to modify one or 

more genes of an individual representing a solution. As it was 



referred in the previous section the recombination operator 

has a side effect, which consists in one kind of mutation. This 

kind of mutation modifies slightly the position of some 

facilities. However, it is desirable that, from time to time, the 

orientation or the shape of the objects gets also modified. 

Among different possible mutation operators, we selected the 

one that operates as follows: 

1. Collect a set of n (n is a random value) facilities, with n 

less than the cardinality of the genotypes; 

2. Modify the width (length) value of the facilities in this 

set; 

3. Place the selected facilities in same position as it was 

before; 

4. If is not possible to place in the same position place in 

anther available position. 

Fig 12 shows an example of two random selected genes 

for mutation. The shape of the respective facilities is 

modified by the mutate operator. 
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Fig 12: The result of a mutation operation. 

Genetic Operators and the other Constraint Types  

The described genetic operators were developed having 

mainly in mind the non-overlap constraints. When other 

kinds of constraints are present, like the problem specific 

constraints placed by the user, the generation of new 

individuals is more problematic. These other kinds of 

constraints are always unary constraints (involving only one 

facility) and binary constraints (two facilities involved). The 

strategy followed was to design the genetic operators in order 

to keep the pairs of facilities related by binary constraints in 

the same half, when breaking a genotype in two halves. Then 

as a heuristic the placement of facilities is done by first place 

the facilities participating in more constraints from those that 

are not already placed in the same location as in their parents. 

4.3 Test Problems and Results 

The two developed systems were tested with some test 

problems. Here we present the results obtained with five of 

the test problems. Their main characteristics are presented in 

the Tab 3. 

Tab 3: Test problems main characteristics. 

Problem pl8 Pl10 pl10c pl15 pl24 
Number of 
Facilities 8 10 10 15 24 

Variable 
Shape no yes yes yes some 

Specific 
Constraints no no yes no no 

Rectangular 
Plant Shape yes no no yes no 

 
The systems implementation was done using the 

ECLiPSe system /23/ mainly for the CLP stuff. In the case of 

the LayGeRL system it was used also the GALib /24/ to write 

the GA responsible by the optimisation task. The GA 

implemented is a Steady State GA with overlapping 

populations. It uses a linear scaling and roulette wheel 

selection. The termination criterion makes the GA stop when 

one of two conditions becomes true. One condition is related 

with the maximum number of generations and the other is 

true when the standard deviation of the population scores is 

less than 0.01% of the best individual score in the population. 

The first experiments were done with LaRLo system. 

Each test problem was solved with all combination of 

labelling procedures with the four different value ordering 

heuristics. Each experiment ran about one hour. After that 

time the best solution found was returned. The main goal of 

these experiments was to try to come across with which 

combination of labelling procedure and value ordering 

heuristic tends to explore more promising regions of the 

search space early and, thus, better solutions. This is 

important when the B&B algorithm is stopped before the 

complete search space has been explored. 

With these first experiments it was verified that none of 

the combinations of labelling procedures with the value 



ordering heuristics showed to be significantly better than the 

others. The right combination seems to depend on the 

problem being solved. Each combination starts with the 

exploration of the search space at different regions. This 

makes LayGeRL, with the GA, more adequate as general 

method to solve this kind of problems since it is capable to 

explore promising regions without the need to explore the 

complete search space. The drawback is that there is no 

guarantee that the best solution is found. On the other hand, 

the LaRLo system suffers of the same problem, since it stops 

before the complete exploration of the search space. 

The best solutions (low cost) found, by using both 

systems, are presented in the Tab 4. In parenthesis below the 

cost value is the processing time, in seconds, used to obtain 

the respective solutions. Tab 4 shows that LayGeRL system 

gives always better solutions than LaRLo system, when 

considering similar processing times. 

By analysing the best solutions obtained it was observed 

that there is a trend to locate facilities close to each other if 

they have a large material flow between them. This 

observation suggested that the adjacency constraint should be 

imposed for some facility pairs in order to improve the 

performance and the solution quality. Some experiments 

were made and for most cases it was showed that there was a 

solution quality improvement. Moreover, the adjacent pairs 

have to be selected with care since this arbitrary selection can 

frequently transform the problem in an over-constrained one, 

which has no solutions. In order to overcome this issue it was 

developed a systematic method to select the adjacent pairs. 

This method is based in the computation of the maximum 

weight matching (MWM) /25/. The concept consists in 

creating a graph with the production units as nodes. There is 

an arc connecting two nodes if there is material flow between 

the respective facility and the weight is the flow volume 

between them. The maximum weight matching of the created 

graph is a set of pairs obeying the following conditions: 

1. One node participates in only one pair; 

2. It is not possible to add a pair without breaking the 

previous condition; 

3. The pairs have a maximum weight sum. 

The cost of the solutions obtained by solving the test 

problems, using both LaRLo and LayGeRL, imposing 

adjacency constraints between pairs of facilities computed by 

MWM method is showed in the Tab 5. The labelling 

procedure used in LaRLo system is similar to LabelProc4 

presented in appendix, which differs only by first locating the 

facilities involved in adjacency constraints. The use of 

adjacency constraints gives better solutions in almost all 

situations. But, once again, LayGeRL showed to be better to 

similar processing times. 

5. Conclusions 

In this paper we proposed a method to address the 

facilities layout design problem (FDLP) through the 

technology of constraint logic programming (CLP). Two 

prototype systems were developed: LaRLo and LayGeRL. 

They differ only in the technique used in the optimisation 

task. CLP is a new technology, with wide potential, based on 

the logic programming and computational processes that 

appeal to the imposed constraints on the problem variables. 

In the LayGeRL system we also look for an hybrid approach 

using CLP with genetic algorithms (GA). The developed 

system looked for the advantages, on one hand, of a process 

imminently abstract and declarative for the specification of 

problems and, on the other hand, the potentialities that the 

evolutionary computation offers in the attainment of 

solutions, mainly when there is no specific methods to solve 

the problem in a proper way. As it was showed in this paper, 

the generation of industrial plant layout is indeed a complex 

optimisation problem, where it has to focus to a set of several 

constraints imposed on the problem variables.   

Being the FDLP a complex problem, in particular the 

model presented, it was also showed that the exploration of 

all the search space is not practical for real problem and, thus, 

the branch and bound algorithm is not the most adequate 

optimisation technique. The use GA showed to be a 

technique offering a good compromise between the amount 

of the search space that is explored, the quality of solutions 

and the performance. 



Another important aspect that can be retained from this 

work is that the combination of CLP and GA is not limited to 

be applied to the FLDP. It can be applied to solve other 

problems. To apply this framework it is only necessary to 

define the genetic operators according to the problem 

structure. This can be advantageous once the developer can 

use the problem structure to get specific and well adapted 

genetic operators. On the other hand, this approach has the 

disadvantage of reducing the robustness of the GA, because 

the genetic operators are more dependent of the problem 

structure. 

The developed system suffers from some limitations that 

we hope in the future deal with. In general they can be 

viewed in two research domains: the model of the problem in 

order to deal with the new trend of the manufacturing 

systems and the CLP technology used to solve the problems. 

With the first research domain we can point, as example, the 

facilities that cannot be always modelled as rectangular 

shapes, the manufacturing plant has a third dimension 

(several floors) and the constraint are not always mandatory 

(they can have levels of priorities). The limitations of the 

technology are almost all related with the performance. In 

order improve this several paths can be followed. For 

example, the development of global constraints in order to 

get better quality in constraint propagation, more efficient 

and intelligent label procedures – LaRLo – and genetic 

operators – LayGeRL. Distributed GA and the cooperation 

with both systems are also issues for further work. 

 

 

Tab 4: The computational results of the two systems in presence of the test problems without adjacency constraints 
(PS - population size, RR – replacement rate, RP – recombination probability, MP – mutation probability). 

Problem pl8 pl10 pl10c pl15 pl24 

LaRLo 
Cost 

31377 
(3454) 

25836 
(3444) 

25926 
(2126) 

29286 
(3427) 

109372 
(2727) 

λ Min Middle Min Min Middle 
Label Procedure LabelProc5 LabelProc5 LabelProc5 LabelProc5 LabelProc1 

LayGeRL 
Cost 

24239 
(85) 

21653 
(611) 

23161 
(644) 

25270 
(3797) 

96232 
(1352) 

PS/RR/RP/MP 100/0,4/1,0/0,2 100/0,4/1,0/0,2 100/0,5/1,0/0,15 100/0,4/1,0/0,25 80/0,1/0,8/0,05 

Tab 5: The computational results of the two systems in presence of the test problems with adjacency constraints 
(PS - population size, RR – replacement rate, RP – recombination probability, MP – mutation probability). 

Problem pl8 pl10 pl10c pl15 pl24 

LaRLo 
Cost 

22784 
(825) 

23422 
(905) 

22985 
(1056) 

29361 
(499) 

114401 
(1688) 

λ Partition Partition Min Middle Min 

LayGeRL 
Cost 

22559 
(45) 

18734 
(1070) 

18925 
(2576) 

25745 
(9033) 

94911 
(6465) 

PS/RR/RP/MP 100/0,4/1,0/0,15 100/0,5/0,9/0,15 100/0,5/0,9/0,15 100/0,5/0,9/0,15 60/0,1/0,8/0,05 
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APPENDIX 

label( [ ], _ ). 
label( [ ( _, r( X, Y, W, L, _ ) ) | T ], λ ) ← 
    indomain( W, λ ),    indomain( L, λ ), 
    indomain( X, λ ),     indomain( Y, λ ), 
    label( T, λ ). 
 
Fig 13:  Pseudo-Prolog code for LabelProc2. 

label( {Φ}, λ ) ← 
    label_wl( {Φ}, λ ),   label_xy( {Φ}, λ ). 
 
label_wl( [ ], _ ). 
label_wl( [ ( _, r( _, _, W, L, _ ) ) | T ], λ ) ← 
    indomain( W, λ ),    indomain( L, λ ), 
    label_wl( T, λ ). 
 
label_xy( [ ], _ ). 
label_xy( {Φ}, λ ) ← 
    remove_pf( ( _, r( X, Y, _, _, _ ) ), {Φ}, T ),     
    indomain( X, λ ),    indomain( Y, λ ), 
    label_xy( T, λ ). 
 
Fig 14: Pseudo-Prolog code for LabelProc3. 



label( {Φ}, λ ) ← 
    collect_all_pairs( Pairs ), 
    sort_pairs( Pairs, Sort_Pairs ), 
    label( {Φ}, Sort_Pairs, λ ). 
 
label( _, [ ], _ ). 
label( {Φ}, [ ϕ( Ii , Ij , _)|Pairs ],λ ) ← 
    Φ( Ii , r( Xi, Yi, Wi, Li, _ ) ), 
    Φ( Ij , r( Xj, Yj, Wj, Lj, _ ) ), 
    domain_size( Xi, TXi ), 
    domain_size( Yi, TYi ), 
    domain_size( Xj, TXj ), 
    domain_size( Yj, TYj ), 
    ( 
        TXi × TYi ≤ TXj × TYj , 
        !, 
        label( Wi, Li, Xi, Yi, λ ), 
        label( Wj, Lj, Xj, Yj, λ ), 
    ; 
        label( Wi, Li, Xi, Yi, λ ), 
        label( Wj, Lj, Xj, Yj, λ ), 
    ), 
    label( T, Pairs, λ ). 
 
label( W, L, X, Y, λ ) ← 
    indomain( W, λ ), 
    indomain( L, λ ), 
    indomain( X, λ ), 
    indomain( Y, λ ). 
 
collect_all_pairs( Pairs ) ← 
    findall( ϕ( Ii , Ij , Fij), ϕ( Ii , Ij , Fij), Pairs ). 
 
Fig 15: Pseudo-Prolog code for LabelProc4. 

label( [ ], _ ). 
label( {Φ}, λ ) ← 
    delete( (_, r( X, Y, C, L, _ ) ), {Φ}, T ), 
    label( C, L, X, Y, λ ), 
    label( T, λ ). 
 
label( C, L, X, Y, λ ) ← 
    indomain( C, λ ),    indomain( L, λ ), 
    indomain( X, λ ),    indomain( Y, λ ),    !. 
 
Fig 16: Pseudo-Prolog code for LabelProc5. 

 


