
ADDRESSING THE FACILITIES LAYOUT DESIGN PROBLEM
THROUGH CONSTRAINT LOGIC PROGRAMMING

José Tavares1, Carlos Ramos1 & José Neves2

1Dept. of Computer Engineering – Polytechnic Institute of Porto (IPP)/Institute of Engineering

Rua Dr. António Bernardino de Almeida, 4200-072 Porto – Portugal

Phone: +351 2 8340500, Fax: +351 2 8321159, Email: {jtavares,csr}@dei.isep.ipp.pt

2Dept. of Informatics – University of Minho

Campus de Gualtar - 4709 Braga Codex – Portugal

Phone +351 53 604466, Fax: +351 53 604471, Email: jneves@di.uminho.pt

Abstract

One of the most difficult problems that face researchers

experimenting with complex systems in real world

applications is the Facility Layout Design Problem. It relies

with the design and location of production lines, machinery

and equipment, inventory storage and shipping facilities. In

this work it is intended to address this problem through the

use of Constraint Logic Programming (CLP) technology. The

use of Genetic Algorithms (GA) as optimisation technique in

CLP environment is also an issue addressed. The approach

aims the implementation of genetic algorithm operators

following the CLP paradigm.

Keywords: Plant Layout, Facilities Layout, Constraint
Satisfaction, Constraint Logic Programming, Layout Design.

1. Introduction

1.1 The Problem

The Facility Layout Design Problem (FLDP) is one of the

most complex industrial problems. It looks for an efficient

physical arrangement of machines, cells or departments,

which are collectively named as facilities. Methods to solve

these problems have to deal with a large set of factors,

namely sales and production estimation, manufacturing

process compatibilities, delivery dates, quality, spatial

requirements, economics, management, human resources and

environment.

In a more general definition, the FLDP is the planning of

the proper location of machines, employees, workstations,

warehouses and client service areas. It also involves the

design of the material and people flow pattern around, the

movement inside, at the input and at the output of the

productive plants. In a factory, the layout is a fundamental

issue. From it, the equipment and human resources have a

great influence on the real output, whatever is the

manufacturing plant’s theoretical installed capacity. It is

necessary to plan the operations scheduling among the

available equipment for each operation type and the flow of

the materials and people among them. The warehouses

location, how they are supplied from outside, the areas and

how the distribution transportation are loaded are also tasks

of the planning process. Issues related with layout, like work

conditions (noise levels, temperature and air quality), have to

be considered. The correct design and the dynamic

management of the manufacturing plant is a manager’s

fundamental task in order to have an efficient manufacturing

process using the available material and human resources.

The FLDP was originally defined by /1/ and /2/. Given

the complexity of the FLDP, a strong effort was given in the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47136483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

research and development of techniques, which aims to help

the specialist to solve it /3/, /4/, /5/, /6/, /7/. These techniques

use procedures classified as optimal and sub optimal

algorithms. For the first ones, the attainment of the optimal

solution for problems with some dimension has shown

problematic and, therefore, other ways were explored giving

good solutions in useful time. These algorithms are in the

group of the sub optimal algorithms. All these techniques are

usually based on Operational Research (OR) models and are

usually classified into two types, the single-row layout and

multi-row layout problems. As the name indicates, in the

single-row layout problem the facilities are arranged linearly

in one row as opposed to multi-row layout problem, where

the facilities are arranged in two or more rows. One classical

example of the multi-row layout problem type is

the Quadratic Assignment Problem (QAP), /3/, /5/, /7/ which

assumes that the manufacturing plant is divided into n equal

areas, where the facilities are located. The cost function

usually considers the distance and the flow between facilities.

Since FLDP is a complex problem (the simple QAP is

NP-hard /3/, /7/), optimal algorithms were not good enough

for large and real problems. Examples of those optimal

algorithms are the Branch-and-Bound algorithm, the

decomposition algorithm and the cutting plane algorithm /7/.

In practice, heuristic based algorithms (sub optimal

algorithms) are used to find one good solution /6/, which are

classified as construction algorithms, improvement

algorithms, hybrid algorithms and graph theoretic algorithms.

The construction algorithms generate a facility layout from

scratch, which means that a layout is built in a single iteration

(the ALDEP and CORELAP are two examples of these

algorithms /3/, /5/, /7/). The improvement algorithms require

an initial layout, and then several operations are applied in

order get solution improvements (an example of the

improvement algorithms is the CRAFT algorithm /3/, /5/,

/7/). Hybrid algorithms are the ones that use two or more

types of techniques or the ones that use a combination of

optimal algorithms with heuristics. Finally, the graph

theoretic algorithms are based on the graph theory, namely

planar graph and maximal planar graph concept /7/.

Meta-heuristic algorithms like Simulating Annealing,

Taboo Search and Evolutionary Algorithms have been used

also to solve the FLDP. An approach found frequently in the

literature is the optimisation with evolutionary computation

techniques. A survey about the use of these techniques to

solve the FDLP can be found in /8/.

In the modern manufacturing systems, the traditional

FDLP assumptions are more and more difficult to support. In

first place, there is a tendency to consider a third dimension

given, for example, lighter machines, higher prices of the

available areas, among others. In second, it is evidenced that

in the current industrial environment, there is a strong trend

for an increasing level of volatility and uncertainty, where

more and more companies are present in a global market. It is

also evidenced, an increasing technological innovation and

changes in the specifications of the products, these demanded

by the consumers. All these factors contribute to reduce the

life cycle of a manufacturing layout and, thus, an increasing

need of better computational tools to help the layout designer

to create new manufacturing layouts or the re-layout of the

old ones.

1.2 The Technology

In the last decade a new technology has emerged to deal

with complex combinatorial problems. This technology is

known as Constraint Logic Programming (CLP) /9/ and

matches the declarative aspects of the Logic Programming

(LP) paradigm with the techniques for constraint satisfaction

/10/, in a proper way for problem solving. This hybrid

technique improves the search strategies used in logic

programming, once it adds constraints and consistence

verification techniques. With this scheme, the solution space

can be largely reduced.

The constraints and consistency verification techniques

were initially developed to solve the Constraint Satisfaction

Problems (CSP), which for a long time had been an Artificial

Intelligence (AI) research field. Many combinatorial

problems, characterized by a large number of constraints, are

well suited for CLP, namely scheduling problems,

timetabling, planning, placement, configuration, and routing.

Others areas of application goes from the natural language

processing, to the circuit analysis and games theory. CSP

seeks assignments to a set of variables X = {x1, x2, ..., xm}

from a set of corresponding domains D={d1, d2, ..., dm}, one

per variable, satisfying a set of constraints C={c1, c2,..., cn}

over subsets of the cartesian space spanned by D. CSP is a

binary problem, in which a set of assignments to the variables

X satisfies or not all the constraints /9/, /10/, /11/. A solution

for a CSP is a domain value assignment for each variable, in

a way that all the constraints are satisfied. It has been verified

that CLP offers a more natural way to express real world

problems in a computer program, the development time is

shorter, the maintenance processes are simpler and the

efficiency is equivalent to that of the programs developed in

procedural languages according to the paradigm of constraint

satisfaction /11/.

Since the end of the eighties the CLP technology, and in

particular the Constraint Logic Programming with Finite

Domains (CLP(FD)) /9/, /11/, has been applied to solve

problems, with a great success, in several areas where other

technologies had lapsed. In relation with the industrial

applications, the production planning and scheduling have

been the elected areas. Many of these problems present

common features to the combinatorial problems and,

therefore, they are difficult to solve. As it was referred, the

FDLP are also complex problems and, therefore, solving

them is hard. Given the complexity of the FLDP and the

considerable amount of work that has been done in FLDP

area over the last three decades we intended to contribute

with a work which explores the CLP(FD) technology to solve

this kind of problems.

Solving the FDLP with the CLP(FD) technology

requires, however, the development of new models or, at

least, the adaptation of some models already used with other

technologies. One fundamental component of this document

is to describe a formal model to solve industrial FDLP,

emphasising the aspects related with the use of the CLP(FD)

technology to solve it. This model was inspired in models of

space assignment problems /12/, /4/, /13/. Another

fundamental component is related with the identification of

the problem variables as well as with the definition of its

domains and, basically, with the specification of the

constraints, that obviously have a geometric nature.

According to the results obtained by applying CLP

technology to solve complex combinatorial problems, an

early approach that uses CLP for solving the FLDP was

developed /14/, /15/, /16/, /17/, /18/. However, it was verified

with this approach that the optimisation task, which uses a

Branch&Bound (B&B) algorithm offered by the main CLP

development tools, requires a huge computational power to

explore the entire search space for real problems of this kind.

This scenario suggests that other optimisation techniques

should be used in order to deal with such huge search space.

The chosen technique was the Genetic Algorithms (GA) /23/,

/24/, which are general-purpose search procedures based on

natural selection and evolutionary principles /25/. The

approach followed is a combination of CLP and GA, which is

presented in this paper. We claim that this combination is in

fact better than the use of CLP alone with the build-in B&B

algorithm.

2. Information Requirements for FDLP

In this section we identify the required input data for the

model we propose. This model was developed having in mind

that we intended to solve problems using CLP(FD) solvers.

However, we start by introducing some general concepts

related with the FDLP.

2.1 FDLP Models

Globally, all the models used to solve this kind of

problems are complex to handle. In geometric terms, we are

dealing with facilities requiring a fraction of the available

space in the manufacturing plant. We refer to the

manufacturing plant as the available space to place facilities,

usually a building or some part of it. In general, the space

requirements of facilities to place in the plant can be grouped

in: (i) equal area and fixed orientation; (ii) different areas and

fixed orientation; (iii) different areas and variable orientation;

(iv) different areas and variable shapes. In the approach (i)

and (ii) it is necessary to choose the location for each facility.

In (iii) a new dimension to the complexity of the problem is

added since it is also necessary to choose the orientation for

each facility in the plant. Finally, in (iv), the dimension

related with the orientation is replaced with another that

implies the selection of the facility shape. Selecting the

facility shape is equivalent to chose the width and length

values since we are dealing with rectangular shapes.

This FDLP models classification based on space

requirements assumes manufacturing plants with only one

floor. However, it has been proposed variants of these models

to deal with several floors, which, obviously, adds another

dimension to the problem, increasing the complexity.

However, in this work we are just considering manufacturing

plants of one floor.

Besides the geometric factors, it is still necessary to

consider the factors related with the productive process. The

productive process is chosen based on the products to

manufacture and the productive capacity to install in order to

satisfy the product demand. In general, the product demand is

directly or indirectly estimated. The product demand volume

is one parameter required to evaluate and choose the best

solution for each instance of the problem.

2.2 Manufacturing Plant

The knowledge of the plant dimensions is not, in almost

all situations, essential to find the best solution, when the

available physical space in the plant is not a constraint.

Moreover, this knowledge of the plant length and width may

help finding the best solution. Also, given the plant shape, the

available physical space may not be compatible with the best

solution found. Therefore, it is desirable that the plant

dimensions should be took into account.

The problem solutions taking into account the plant

dimensions undertake implicitly a manufacturing facility

whose plant has a rectangular shape with length L and width

W. It is obvious that not all the plants have a rectangular

shape. In those cases the shape considered is a rectangle

surrounding the real plant (Fig 1). This approach has a

disadvantage to potentially give rise to solutions that locates

some facilities in a way that crosses the real plant frontiers.

To avoid this shortcoming, our solution places constraints

that exclude the areas that do not belong to the real plant.

This type of constraints will be presented with more detail

below. Also, this approach can also exclude interior areas of

the plant that are not available to place the facilities. Taking

into account what was discussed about the plant shape, the

representation has consider the following:

W is the width of the rectangle surrounding the

plant shape;

L is the length of the rectangle surrounding the

plant shape;

NAP is the number of the forbidden areas;

{APi} is the set of the forbidden areas.

By convention the width W is measured in the x-axis

while the length L is measured in the y-axis.

Fig 1: An example of a rectangle surrounding the
manufacturing plant.

The forbidden areas are rectangular and are described in

terms of the following parameters:

Xi is the value of the x co-ordinate of the area i ;

Yi is the value of the y co-ordinate of the area i ;

Wi is the width of the rectangular area i ;

Li is the length of the rectangular area i .

2.3 Facilities

Facilities in the FDLP context are plant spaces used for

the most varied purposes, as for example, the ones for

services, productive warehouses and/or processes. In this

work we are interested with facilities related with the

productive process. These facilities could be a simple

workstation with a machine and, optionally, with a small area

for temporary storage of materials, or a collection of

workstations where the facility itself is a layout sub problem.

In general, the facilities where the process operations

occur are known. In the model that we are describing we also

acknowledge that there is some alternative facilities to

perform the same process operation. The set of facilities that

are able carry out the same process operation we call a

facility class.

Each facility is identified by a set of properties that are

related with its shape. There are also other properties, which

are related with the facilities capacity to accomplish the

operations. However, these are directly related with the

productive process. The description of a facility has,

therefore, to take into account that:

Ti is the facility class i ;

NIi is the number of facilities of class i ;

Iiu is the facility u of class i ;

Aiu represents the minimal area required by Iiu ;

{ARiu} is set of values that represents the possible aspect

ratios of Iiu;

Wiu is the width of Iiu ;

Liu is the length of Iiu ;

Giu is an optional gap value of Iiu and represents the

minimal distance that has to be respected in

relation to the others facilities (Fig 2).

i

j

Gap of the
Facility j

Gap of the
Facility i

Fig 2: The gap between two facilities.

The width and length as well as set of values of the

Aspect Ratio (AR) are equivalents, being therefore

redundant. Expressions (1) and (2) allows to relate these

values.

iuiuiu AARL ×= (1)

iuiuiu LWA ×= (2)

It is clear that if we have several possible values of AR

then there is also several values for W and L. On the other

hand, when a facility requires a fixed area, it is only enough

to know the values of C or L, once (2) relates each other. In

general the value of the required area and the set of the AR

values are enough to treat all the situations related with

facilities shape. Tab 1 shows the three major cases that may

occur.

Tab 1: The three major cases for the shape of a facility.

Facility Shape Possibilities AR

Fixed orientation 1 {v}

Variable
orientation

2
{v,

v
1

}

Variable shape N {v1, ..., vn}

2.4 Products

One company exists since there is a market wishing to

consume a large and diverse number of products, being the

company able to satisfy some or all the market needs in a

certain niche of products. In this section it is showed how a

company could see the demand of the market for products

manufactured in the layout point of view and how this

demand affects the process that occurs in the plant that

wishes to design.

The knowledge of the products to be produced in the new

plant is essential in the choice of the manufacturing process.

However, it is the foreseen volume of products to

manufacture that imposes the capacity of the plant,

conditioning the decisions that make the plant efficient in the

production, namely in the choice of the best disposal for the

facilities inside the plant. The choice of the best disposal for

facilities depends essentially on the flow of materials or on

the frequency of trips of the carrier equipment between the

facilities.

To compute the flow between facilities it is necessary to

decompose the products in their parts. It is obvious that this

decomposition is restricted to the parts that are processed in

the plant. This decomposition is done in accordance with the

Material Requirements Plan (MRP). For each part the

required amount must be computed (the demand value of the

part). Collectively, the parts and the final products are treated

simply as parts. The information that describes those parts is

given in the form:

NP is the number of parts in the manufactured plant;

Pk is the part k ;

Ck is the manufacturing capacity of the part k;

Oikl is the order number of the operation l that is done in

the facility class i, to the part k.

2.5 Production Process

Knowing what parts are going to be manufactured in the

plant, and the amount of each part per unit of time, it is

necessary to know the operations sequence to compute the

flow of materials between the facilities. To do this, we firstly

have to decompose all the products in their simpler parts.

After this decomposition we know the sequence of operations

of each part and, therefore, the routing between facilities.

To specify the sequence of operations, taking into

account the product, we have the following:

NOk is the number of operations applied to part k ;

NOik is the number of operations applied to part k in the

facility class i ;

Oikl is the order number of the operation l done in

facility class i, to the part k, in the sequence of

operations;

{Ckiu} is a list containing values representing the number

of parts k processed in the facility u, of the class i,

for unit of time;

Lk is the transportation lot size of the part k ;

Tk is the transportation cost for each part k .

With this data it is possible to compute the flow between

all the facilities pairs. The expression (3) allows the

computation of the flow of the part k between the facilities of

class i and j. Notice that this flow value is not zero only when

the two operations involved are consecutive. The total flow

value between the facilities of class i and j, for all parts, is

given by the expression (4).

The flow value computed with (3) and (4) is the flow

between facilities classes and not between instances of the

facilities classes. In most cases it is not possible to know in

advance, during the layout planning, the instance of each

facility class that is used to perform the operations. In this

way, it was stipulated that the flow that leaves and arrives to

the facilities of the same class is proportional to the amount

of processed parts for each facility and for a unit of time.

⎪
⎪
⎩

⎪⎪
⎨

⎧
=−

×

=

otherwise

OOif
L

CT

F
jkwikl

k

kk

k
ij

0

1
(3)

∑
=

=
NP

k

k
ijij Ff

1

1 (4)

The flow between facility u of class i and facility v of

class j, related with part k, is computed according to

expression (5), Cik and Cjk are given by expression (6). The

Cik and Cjk values represent the total number of parts k

processed in all the facilities of class i and j, respectively.

The total among of flow of all parts between facility u of

class i and facility v of class j, is then computed by (7).

jk

jvk

ik

iukk
ij

k
iujv C

C
C
CFF ××= (5)

∑
=

=
iNI

u
iukik CC

1

 (6)

∑
=

=
NP

k

k
iujviujv Ff

1

1 (7)

The flow values computed until the moment are only

related with the transport of materials between facilities for

operations performed to the same part. The transportation of

subparts to a facility that performs an operation that groups

subparts in a more complex part is not treated directly. When

the cost associated with the transport to perform assembly

operations is not negligible it is necessary to consider

additional information that deals with the flow due to

incorporation subparts in a more complex part. This

additional information is given in the form:

k is the complex part k incorporating several subparts;

NSPk is the number of subparts that needed to the part k;

{Pl} is the list of subparts needed to assembly the part k ;

{qkl} is a list of values, being each one the quantity of

subparts l needed to assembly the part k.

With this information, the computation of flow resulted

by the incorporation in a complex part of several subparts, is

carried using the expression (8). The total flow, of the

incorporation of all subparts in all the parts, can then be

computed by the expression (9). The set of all the values of

flow between all the pairs of facilities, allows us to build the

flow array (10).

⎪
⎪
⎩

⎪⎪
⎨

⎧
==××

××

=

otherwise

NOOeOif
C
C

C
C

L
qCT

F
ljkviku

jk

jvk

ik

iuk

l

lkl

kl
iujv

0

1 (8)

∑ ∑
= ∈

=
NP

k

NSP

}P{l

kl
iujviujv

k

l

Ff
1

2 (9)

21
iujviujv

M
iujv fff += (10)

Taking into account the described method to compute the

flow between all the facility pairs, the cost of a layout

solution can be computed with the expression (11), where dij

is in the distance between facilities i and j, being this usually

given, by an euclidean or a rectilinear metric. This distance is

dependent, obviously, of the position where the facilities are

placed.

∑ ∑ ∑∑
−

= += = =

×=
1

1 1 1 1

n

j

n

ji

NI

u

NI

v
iujv

M
iujv

i j

dfCusto (11)

3. FDLP Modelling with CLP(FD)

After establishing the information requirements to solve

the FDLP and the way how the plant, the facilities and the

processes are modelled, in this section we define how this

modelling can be addressed using CLP(FD).

3.1 Variables

Solving a FDLP using CLP(FD) involves the selection of

the best location to place the facilities inside the plant. It also

involves the selection of the best shape for the facilities. It is

assumed that facilities shape is considered as being

rectangular. As consequence, solving an FDLP requires four

decision variables for each facility, two for the facilities

coordinates and two for their shape. In relation to the

facilities coordinates, the associated variables points to their

geometric centre.

CLP(FD) solvers use decision variables that can take

only values in a subset of integer numbers. However, the

information requirements for solving FDLP suggest that

decision variables should take real values. It is important,

therefore, to have into account this aspect, since it is

necessary to make conversions from real values to integers

values, with the consequent loss of accuracy. Depending on

the wanted accuracy, some times it will be necessary to scale

the values, before doing the conversion.

In relation to the coordinates of the installations, its

domain has to contemplate the dimensions of the plant. In

this way, the domain of the coordinates is restricted by the

constraints (1) and (2):

Xiu ∈ 0 .. W-1 (1)

Yiu ∈ 0 .. L-1 (2)

where:

Xiu and Yiu Represents the x and y coordinate of the

facility u of class i position;

W and L is the width and the length of the rectangle

surrounding the plant shape;

Since the facilities central point matches with their

coordinates in plant, only half of their width and the half of

their length have to be known. Taking into account the

information requirements, three situations can be identified:

1. the width and length of a facility is known and is

enough to chose the best orientation;

2. it is specified a minimum area and an interval of AR

values to the facility;

3. it is specified a minimum area and set of AR discrete

values to the facility shape.

In the first situation the facility orientation in the plant is

treated implicitly. The domain size of the width and length

variables is two if their value is not equal and is one, and

therefore these variables get instantiated, if they are equal. In

general the domain of these variables are specified with the

constraints (3) and (4).

Wiu ∈ [w iu , l iu] (3)

Liu ∈ [w iu , l iu] (4)

where

Wiu and Liu is the domain variable related with the width

and length of the facility u of class i ;

wiu and liu is half of the width and half of the length

values of the facility u of class i ;

If ciu and liu values are not equal then the constraint (5) is

added in order to avoid the facility shape is not going to be

square.

C iu ≠ L iu (5)

In relation to the second situation, where we want to find

which is the best shape to the facilities from a continuous

interval of possible shapes, the constraints (6) and (7) are

associated, respectively, to the decision variables related with

the facilities width and length.

iuiuiu wswiW ..∈ (6)

iuiuiu ls..liL ∈ (7)

where:

wiiu and liiu is the minimum value of the domain to

the variable that represents half of the

width and length, respectively, of the

facility u of class i ;

wsiu and lsiu is the maximum value of the domain to

the variable that represents half of the

width and length, respectively, of the

facility u of class i ;

Since the set of RAiu values is an continuous interval,

these four values ciiu , liiu , csiu and lsiu , are given by the

expressions (8), (9), (10) and (11), respectively.

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ×
=

2
}min{ iuiu

iu

AAR
li (8)

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ×
=

2
}max{ iuiu

iu

AAR
ls (9)

⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣

⎢ ×
=

2
}max{

1
iu

iu

iu

ARA
wi

(10)

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ ×
=

2
}min{

1
iu

iu

iu

ARA
ws

(11)

After specifying the domains of the variables Liu and Ciu ,

it is also necessary take into account the following constraint:

4 × Wiu × Liu = Aiu (12)

which assures that the minimum area of the facility is

maintained. Since in CLP(FD) it is only possible to

instantiate variables with integer values, the number of

possibilities for the shape of a facility is enumerable and is

not infinite as given by AR continuous interval. This

resulting number of possible shapes is not always enough. In

the worst case it will be equivalent to first situation where we

only are interested the facilities orientation. To get more

shape possibilities we could affect all the geometric related

variables by a scale factor before make rounding real values

to integer values. Fig 3 shows four possible shapes as result

from the domain specification of the width and length

variables given an continuous interval of AR.

Fig 3: Four possibilities for the shape of a facility given a
shape defined by a continuous interval of AR.

Finally, when the RAiu values are supplied by a set of

discrete values, the specification of the domains of Wiu and

Liu have to take into account each shape in the set. To do this,

given the area and the set of AR for the facility shape, we

build a set of possible widths ({wiu}) and a set of possible

lengths ({liu}) respecting the order of values in the set of AR.

With these two new sets, the constraints (13) e (14) can be

placed. They allow the establishment of a functional

dependence between the width values and the length values

of a facility by using a domain variable Iiu, and as such, the

order of the values in the set is important.

element(Iiu, {wiu }, Wiu) (13)

element(Iiu, {liu }, Liu) (14)

Each pair of width-length values in {wiu} and {liu} are

computed as follow:

1. compute the values of the expressions (15), (16), (17)

and (18) which denote the integer values (minimums and

maximums) closer to the real values of the width and

length of a facility;

2. for each possible combination given in 1 (w × l),

compute de area;

3. select the combination that gives the smaller area yet

bigger than the minimum area required by the facility.

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ×
=+

2
iuiu

iu

AAR
l (15)

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ×
=−

2
iuiu

iu

AAR
l (16)

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ ×
=+

2

1
iu

iu

iu

ARA
w

 (17)

⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣

⎢ ×
=−

2

1
iu

iu

iu

ARA
w

 (18)

The domain of the variables, that defines the facilities

coordinates, specified by (1) and (2), is not enough to place

the facilities completely inside the plant. The constraints (19)

to (22) have to be specified in order to get valid solutions.

Xiu ≥ Ciu (19)

Xiu + Ciu ≤ C (20)

Yiu ≥ Liu (21)

Yiu + Liu ≤ L (22)

3.2 Constraints

When solving the one FDLP, the facilities are placed in

the plant in way that all constraints are satisfied. Constraints

to avoid the overlapping of the facilities in the plant are

always present. There is a second group of constraints that

are used to guarantee the satisfaction on the solutions of the

specific requirements for each instance of the problem. These

specific requirements, between others, are usually

technological, geometric, strategic and environment

constraints, and should be indicated by layout designer to the

system. It could also be pointed out a third group of

constraints used to guide search of good solutions. These

constraints could translate particularities of the problem and

the experience of the experts. To deal with all these situations

a set of constraint types was identified. These are:

1. No Overlap is the constraint that should always be

present and which imposes that any facility must be

placed in the plant in such way that is not going to

overlap with the others;

2. Neighbourhood is used to deal with situations where it

is desirable to locate two facilities close to each other as,

for example, when there is a large volume of material

flow between them;

3. Distance is constraint used to impose a given relation of

distance between two facilities or between a point and a

facility. One possible situation occurs when some

production units have to operate in a temperature-

controlled environment not compatible with others,

located in the neighbourhood;

4. Absolute Position constraints are used to force facilities

to be located, either inside or outside of a given area of

the plant the “inside” and “outside”. With these

constraints, it is possible to reserve space areas for

different purposes like offices or warehouses. These

constraints are also used to prevent the location of the

facilities in areas that are not inside of the non

rectangular plants;

5. Relative Position constraints are the ones that make

possible handling situations like, for example, "facility

A is at right of facility B". There are four possible

relative position constrains: ‘at right of’; ‘at left of’; at

front of’ and ‘at back of’;

6. Orientation constraints deals with situations like the

ones that it is necessary to constraint the orientation of a

facility or define that several facilities have some kind

of relation in terms of its orientation.

A more detailed analysis of these constraint types,

especially with the relations that are established between the

problem variables, is given in the following subsections. The

notation followed to describe the constraints is a simplified

form of the previously mentioned, which does not consider

the facilities classes.

Preventing the Overlap of the Facilities

As it was mentioned before, the constraint that will be

always present is one that inhibits the overlapping of

facilities in the plant. Putting this constraint for all the

possible pairs of facilities, assures the generation of solutions

where facilities do not overlapped, with only a simple

labelling procedure applied for all the problem variables.

Given two facilities, i and j, this constraint is given by (23),

being the gap value gij computed by the expression (24).

()
()
()
()iiijjj

jjijii

iiijjj

jjijii

lygly

lygly

wxgwx

wxgwx

−≤++

∨−≤++

∨−≤++

∨−≤++

(23)

()jiij ggg ,max= (24)

An alternative to formulate this constraint is based on

four boolean variables and removes disjunctions that usually

gives rise to a bad constraint propagation. This formulation is

done with the expressions from (25) to (29).

()
()jjijii

x
ij

jjijii
x
ij

wxgwxb

wxgwxb

−>++⇔=

∧−≤++⇔=

0

1 (25)

()
()iijijj

x
ji

iijijj
x
ji

wxgwxb

wxgwxb

−>++⇔=

∧−≤++⇔=

0

1 (26)

()
()jjijii

y
ij

jjijii
y

ij

lyglyb

lyglyb

−>++⇔=

∧−≤++⇔=

0

1 (27)

()
()iijijj

y
ji

iijijj
y
ji

lyglyb

cyglyb

−>++⇔=

∧−≤++⇔=

0

1 (28)

21 ≤+++≤ y
ji

y
ij

x
ji

x
ij bbbb (29)

Although this last formulation seems initially more

complex, it can, however, be more efficient in terms of

constraint propagation because CLP(FD) solvers are

incomplete and, therefore, different forms to specify the same

constraint can lead to different level of performance when

searching for solutions.

Distance

The constraint distance involves the computation of the

distance between two facilities or the computation of the

distance of a facility to a given point. This kind of constraints

creates a new variable with a domain that is a set of possible

values for the distance. An important factor that has to be

taking into account is how to measure the distance. Here we

use the use two alternatives: the rectilinear and the Euclidean

metrics.

Before we can formulate the distance constraint we have

to formulate a constraint that gives the absolute values of the

difference between the domain variables u and v. This is done

with the expressions (30), (31) and (32). The variables b+ and

b- are two auxiliary boolean variables.

() () () ()ubvbvbubvu ×−×+×−×=− −−++ (30)

() ()vubvub <⇔=∧≥⇔= ++ 01 (31)

() ()vubvub ≥⇔=∧<⇔= −− 01 (32)

It is now possible to formulate the distance constraint.

We start by formulating the distance constraint between two

facilities, but before we do so, we have to define how to

measure the distance. We deal with two situations. In the first

one we measure the distance between the centre point of the

two facilities and in the second one we measure the distance

considering the facilities near edges. Fig 4 illustrates these

two situations.

j

i

dl x ij
dc x ij

dl y
ijdc y

ij

Fig 4: Distance between the centre and considering the edges

of two facilities.

Starting with the first situation, the formulation of the

distance relation between the centres of two facilities is given

by the expressions (33) and (34) in the x and in the y

coordinates respectively. The expression (35) gives the actual

distance using a rectilinear metric and (36) gives the

euclidean distance.

ji
x
ij xxdc −= (33)

ji
y

ij yydc −= (34)

y
ij

x
ijij dcdcdc += (35)

y
ij

y
ij

x
ij

x
ijijij dcdcdcdcdcdc ×+×=× (36)

In the second situation, the distance in relation to the near

edges of the facilities is slightly more complex to formulate.

In this case the distance takes into account the length and the

width of the facilities. To better understand how the distance

computation is done it is necessary to observe the three

possible forms of disposal of two facilities shown in the Fig

5. In the first one the facility i is completely above of the

facility j, and in the second one the facility i is completely

bellow the facility j, and therefore, the distance in y is

different from zero. In the third situation the distance in y is

zero because none of the facilities is completely above or

completely below of the other. A similar analysis can be

made for distances in x.

 i

j

i

j

i
j

(a) (b) (c)

Fig 5: Three cases of relative positions for two facilities in
order to compute the distance in relation to the near edges.

The total distance is the (a) e (b) sum of the distances in x and
y (c) distance in x.

We can say that two facilities are separated in y if one is

completely above or below of the other. In the same way we

can say that two facilities are separated in x if one is

completely at left or at right of the other.

To establish this relation of distance it is computed, in

first place, the distance in x and in y without taking into

account the separation in x and in y of the two facilities.

These distances are given, respectively, by the expressions

(37) and (38).

jiji
x
ij wwxxde −−−= (37)

jiji
y
ij llyyde −−−= (38)

Next we compute the separation in x and in y of the two

facilities. For this, two boolean variables are required. The

value of the first one defines the separation in x with the

expression (39) and the second defines the separation in y

with the expression (40).

() ()()
() ()()jjiijjii

x
ij

jjiijjii
x
ij

wxwxwxwxb

wxwxwxwxb

+≤−∧−≥+⇔=

∧+>−∨−<+⇔=

0

1 (39)

() ()()
() ()()jjiijjii

y
ij

jjiijjii
y

ij

lylylylyb

lylylylyb

+≤−∧−≥+⇔=

∧+>−∨−<+⇔=

0

1 (40)

Finally we are able to compute the real distance between

two facilities. The expression (41) establishes the relation of

the distance using a rectangular metric and (42) does the

same but using the euclidean metric.

() ()y
ij

y
ij

x
ij

x
ijij debdebde ×+×= (41)

() ()y
ij

y
ij

y
ij

x
ij

x
ij

x
ijijij dedebdedebdede ××+××=× (42)

Having defined the distance constraints between two

facilities it is ease to define the distance constraint between a

facility and a point. This is done by assuming that a point is

facility with a null width and a null length.

Facilities Neighbourhood

In some situations it is desirable to place two facilities

side by side. An example of this arises when there is a large

flow of materials between two facilities and therefore if they

are neighbours the operation cost is smaller. The use of

constraints to express this fact allows a significant reduction

in the space of solutions. Also, the placing of two facilities

side by side can be a requirement of the problem being

solved. It may argue that a distance constraint can do the job,

but providing a specific one can give a better performance in

constraint propagation. The neighbourhood constraint we are

formulating appears under two forms. The first one only

imposes that two facilities must be placed side by side. The

second is a more restricted form of the first one and is

referred as adjacency constraint.

In relation with the first form of the neighbourhood

constraint, the formulation is given with expression (43). This

formulation assumes that a non-overlapping constraint is

always present.

()
()
()
()iiijjj

jjijii

iiijjj

jjijii

lygly

lygly

wxgwx

wxgwx

−≥++

∧−≥++

∧−≥++

∧−≥++

(43)

The adjacency constraint imposes a stronger degree of

neighbourhood, which imposes that the two facilities

involved are placed in a way that the distance between their

geometric centres is minimised. The adjacency constraint can

be formulated by the expression (44). Note that max(v)

function gives the biggest value in the domain of v.

() ()

() ()

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−=++

∨−=++

∧=∧=∧=

∨
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−=++

∨−=++

∧=∧=∧=

iiijjj

jjijii

jjiiji

iiijjj

jjijii

jjiiji

wxgwx
wxgwx

llllyy

lygly
lygly

wwwcxx

maxmax

maxmax

(44)

Once again the use of boolean variables can be used to

remove the disjunctions in a similar way done with the

non-overlaping constraint.

Facilities Position

There are two types of constraint related with the

facilities position that can be defined. The first type, referred

as absolute position constraint, imposes that the facilities

should be located in specific areas of the plant. The other

type, referred as relative position constraint, allows doing the

placement of one facility with some relation to another

facility.

The absolute position constraints have two forms: one

allows the placement of the facilities in some restricted areas

of the plant, and the other excludes these areas of the plant

for facilities placement. One situation, already referred, using

this type of constraints, occurs when the plant shape is not a

perfect rectangle. The areas that in the reality do not belong

to the plant are excluded using these types of constraints.

The simpler absolute position constraint is the one that

imposes that the facility central point should be located at the

point p(xp , yp). This fact is expressed by (45).

pipi yyxx =∧= (45)

The formulation of (45) imposes the placement inside a

given area a(xa , ya , wa , la), where xa and ya represents the

geometric centre of the area and wa e la , respectively, are half

of its width and half of its length. This more general

formulation are given by (46) and (47).

() ()aaiiaaii wxwxwxwx +≤+∧−≥− (46)

() ()aaiiaaii lylylyly +≤+∧−≥− (47)
The other absolute position constraint is the one that

excludes plant areas for the facilities placement. The

formulation is done as a logical negation of (46) and (47) that

will generate disjunctions. We choose here to present a

formulation that removes these disjunctions by using boolean

variables. The formulation of this constraint uses the

expressions (48) to (52).

()
()aaii

x
ia

aaii
x
ia

wxwxb

wxwxb

−≥+⇔=

∧−<+⇔=

0

1 (48)

()
()aaii

x
ai

aaii
x
ai

wxwxb

wxwxb

+≤−⇔=

∧+>−⇔=

0

1 (49)

()
()aaii

y
ia

aaii
y

ia

lylyb

lylyb

−≥+⇔=

∧−<+⇔=

0

1 (50)

()
()aaii

y
ai

aaii
y
ai

lylyb

lylyb

+≤−⇔=

∧+≥−⇔=

0

1 (51)

21 ≤+++≤ y
ai

y
ia

x
ai

x
ia bbbb (52)

In relation with the relative position constraints we find

four possibilities: ‘at front of’, ‘at right of’, ‘at back of’ and

‘at left of’. The formulation of these constraints is very

simple. However, it is necessary to distinguish partial relative

positions from complete relative positions. In the first case

only coordinate variables are involved while, in second case,

also the facilities width and length variables are involved.

The formulation for the first case is done with one of the

expressions (53), (54), (55) or (56). The formulation for

complete relative position constrains uses one of the

expressions (57), (58), (59) or (60).

ji xx > (53)

ji xx < (54)

ji yy > (55)

ji yy < (56)

jjii wxwx +>− (57)

jjii wxwx −<+ (58)

jjii lyly +>− (59)

jjii lyly −<+ (60)

Facilities Orientation

The orientation of the facilities in the plant is controlled

with the orientation constrains. Like with position constrains,

we have absolute and relative orientation constraints. The

first ones usually involve only one facility while the second

ones involve at least two facilities. It is defined that a facility

is orientated in x if the larger edge is parallel to x-axis and the

formulation correspondent constraint is done with the

expression (61). In the same way a facility is orientated in y if

the larger edge is parallel to y-axis and the expression (62)

specifies this.

() ()ii
x
iii

x
i lcblcb ≤⇔=∧>⇔= 01 (61)

() ()ii
y

iii
y

i lcblcb ≥⇔=∧<⇔= 01 (62)

The given formulation of the absolute orientation

constraints makes ease to formulate the relative orientation

constraints. Their formulation uses the boolean variables

created by the absolute orientation constraints. So, the

formulation of the constraint that imposes the facility i to

have the same orientation of the facility j is given by the

expression (63). On the other hand, the formulation to impose

a different orientation is given by the expression (64).

() ()y
j

y
i

x
j

x
i bbbb =∨= (63)

() ()x
j

y
i

y
j

x
i bbbb =∨= (64)

4. Problem Solving

Solving a problem, with the CLP(FD) paradigm, usually

involves at least three steps: the definition of the problem

decision variables and their domain; the assertion of the

problem constraints; and finally the enumeration of the

solution, which instantiates the variables, one by one, with a

value from their domain. If the solving task is to find the best

solution, or at least a good one, a cost function should also be

defined and an optimisation method should be selected.

Two systems were developed which follows these steps

as represented in the diagram of the Fig 6. They are the

LaRLo /14/, /15/, /18/ and LayGeRL /16/, /17/, /18/ systems.

Problem
description

Defining the
decision
variables

Place the
problem

constraints

Optimization

Best soluction
found

Cost function
definition

Fig 6: An CLP application typical architecture.

LaRLo system was developed first and uses a Branch &

Bound (B&B) algorithm. LayGeRL system is based on

Genetic Algorithms (GA) and was developed in order

overcome the inability of B&B to find optimal solutions in a

practical time period for complex problems.

4.1 LaRLo System

The implementation of the B&B algorithm used in the

LaRLo system takes two arguments: a label procedure and

the cost function as a Logic Programming (LP) term. The

label procedure is used to generate solutions and the cost

function is used to place a new constraint when the label

procedure finds a solution satisfying all the constraints. This

new constraint assures that the next solution being explored is

discarded as soon as the cost of the partial solution being

explored is already equal or greater than the best valid and

complete found solution.

Five label procedures where developed. Fig 7 shows one

of the simplest label procedures (LabelProc1) written in a

logic programming like language. The others four are

presented in appendix. It takes a list {Φ} of all problem

decision variables grouped by the respective facility and a

value λ that specifies the order in which the values in the

domain of the variables are instantiated. Each element in {Φ}

represents a facility k of class c and is in the form of

() ()()ckckckckck gLWYXrkci ,,,,,, .

label({Φ}, λ) ←
 label_wl({Φ}, λ),
 label_xy({Φ}, λ).

label_cl([], _).
label_cl([(_, r(_, _, W, L, _)) | T], λ) ←
 indomain(W, λ), indomain (L, λ),
 label_cl(T, λ).

label_xy([], _).
label_xy([(_, r(X, Y, _, _, _)) | T], λ) ←
 indomain(X, λ), indomain(Y, λ),
 label_xy(T, λ).

Fig 7: A simple labelling procedure.

The system supports four possible values for the λ

parameter (min, middle, max and partition).

This approach showed that the exploration of all solution

space is most of the times prohibitive, however it is possible

to stop the used B&B at the end of a specified time period in

order to use the best solution found.

Tab 2: Four different value ordering heuristics.

Domain 1 .. 10

min {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
middle {6, 5, 7, 4, 8, 3, 9, 2, 10, 1}

max {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
partition {6, 3, 2, 1, 5, 4, 9, 8, 7, 10}

4.2 LayGeRL System

As referred, the LayGeRL system differs from LaRLo in

the optimisation technique used. It uses a GA in combination

with the CLP paradigm. This approach was inspired in the

work done in order to hybridise the B&B algorithm with GA

/22/ by following three main principles: use current problem

encoding; hybridise if and where possible; and adapt the

genetic operators /23/. In this work the GA operators are

implemented in CLP as illustrated in Fig 8. The main process

is on the GA side. This process can be viewed as the client

and the CLP engine can be viewed as the server, which deals

with logic and constraint reasoning. The main process needs

to start the CLP engine to be able to use its services as shown

in Fig 9. When the CLP starts, it begins by creating the

problem variables with their finite domain, and then places

the constraints according to the problem specifications. This

is the start up state (Π) of the CLP engine.

Create the initial
population

Evaluate individuals
in the population

Select individuals in
the population

Replace individuals in
population

Recombination and
mutation operations

CLP engine Main process

Creates a new
individual

Initialise the CLP
engine Create initial state

Individual fitness
computation

Fig 8: Outline of the CLP and GA combination.

procedure MainApp
begin
 <initialisation stuff>
 Π ← clp_startup
 Min ← GA_Optimise(Π, Parameters)
 <exit stuff>
end

Fig 9: The main process source code skeleton.

The main process uses the Π returned by the CLP engine

to be able to create its initial population, perform the

recombination and mutation operations, and finally, evaluate

the individuals, which is required to the optimisation task.

The individuals produced by the CLP engine represent

solutions that must be consistent with the problem constraints

placed during the CLP engine start up.

Once the CLP engine is started, the optimisation task

begins. This task is a GA like the source code skeleton

showed in Fig 10. The operations in italic, with the name

starting with clp_, are implemented in the CLP paradigm.

Although the main process and CLP engine are presented as

two separated entities, usually the implementation could be a

unique program.

procedure GA_Optimise (Π, Parameters)
begin
 t ← 0
 P0 ← clp_create_initial_population
 clp_evaluate (Π, Parameters, P0)
 while not Final Condition do
 Pt’ ← select_from Pt
 Pt’’ ← clp_crossover (Π, Parameters, Pt’)
 Pt’’’ ← clp_mutate (Π, Parameters, Pt’’)
 clp_evaluate (Π, Parameters, Pt’’’)
 Pt+1 ← replace (Pt, Pt’’’)
 t ← t + 1
 end
end

Fig 10: The GA skeleton with operators implemented using
the CLP paradigm.

The Genotype Representation

Once the CLP engine executes all the GA operators, the

representation of the solutions is done directly using the LP

data structure syntax. Each individual in the GA population is

only a reference to its respective LP representation. The

genotype of each individual is a list of genes, where each one

contains information about the respective facility. It is

assumed that the genes are always in the same list order.

This data structure with finite domain variables is used as

a template to build the individuals during the GA evolution

and is created when the CLP engine is started.

Recombination

As seen above, the CLP engine executes the

recombination of individuals. In a certain way the developed

recombination operator performs a slightly form of mutation

to ensure that the result of this operator will be consistent

with the problem constraints.

The recombination starts by breaking the parent genotype

in two random halves. The length of the two halves and the

genes in each half are also random. After breaking the parents

in two halves, the recombination operation is carried out. As

referred above, this operation has to guarantee that the

generated offsprings are consistent with the problem

constraints. However, it may happen that the recombination

operation fails to generate an offspring. This happens when

the operator cannot locate the facilities (genes) of the second

half in the available space of the manufacturing plant, given

the location of the facility of the first half and the problem

constraints. A null fitness value is assigned to those failed

offsprings and they die before the next generation.

The crossover operation is performed in two stages for

each offspring:

1. Locate all the facilities (the correspondent gene) from

the larger half in the same location as in a parent. Once

the parent is consistent, the partial solution represented

by these genes is also consistent;

2. Locate the remaining facilities included in the shorter

half from the other parent in the available spaces. It is

desirable to place the facilities as close as possible in

relation to the locations of the same facilities of the

second parent. This is done like a typical CLP labelling

method, until a complete solution is found.

The width and length values of all the facilities will

remain unchanged. Fig 11 illustrates an example of this

recombination operator.

1 2 3

4

5 6 7

8

1

2

3

4

5

6

7

8

First Parent Second Parent

1 2 3

4

5

6 7

8

1

2

3

4

5

6 7

8

First Child Second Child

Fig 11: The recombination operation.

Mutation

The effect of the mutation operator is to modify one or

more genes of an individual representing a solution. As it was

referred in the previous section the recombination operator

has a side effect, which consists in one kind of mutation. This

kind of mutation modifies slightly the position of some

facilities. However, it is desirable that, from time to time, the

orientation or the shape of the objects gets also modified.

Among different possible mutation operators, we selected the

one that operates as follows:

1. Collect a set of n (n is a random value) facilities, with n

less than the cardinality of the genotypes;

2. Modify the width (length) value of the facilities in this

set;

3. Place the selected facilities in same position as it was

before;

4. If is not possible to place in the same position place in

anther available position.

Fig 12 shows an example of two random selected genes

for mutation. The shape of the respective facilities is

modified by the mutate operator.

1 2 3

4

5 6 7

8

1 2

3

4

5
6 7

8

Individual Mutated Individual

Fig 12: The result of a mutation operation.

Genetic Operators and the other Constraint Types

The described genetic operators were developed having

mainly in mind the non-overlap constraints. When other

kinds of constraints are present, like the problem specific

constraints placed by the user, the generation of new

individuals is more problematic. These other kinds of

constraints are always unary constraints (involving only one

facility) and binary constraints (two facilities involved). The

strategy followed was to design the genetic operators in order

to keep the pairs of facilities related by binary constraints in

the same half, when breaking a genotype in two halves. Then

as a heuristic the placement of facilities is done by first place

the facilities participating in more constraints from those that

are not already placed in the same location as in their parents.

4.3 Test Problems and Results

The two developed systems were tested with some test

problems. Here we present the results obtained with five of

the test problems. Their main characteristics are presented in

the Tab 3.

Tab 3: Test problems main characteristics.

Problem pl8 Pl10 pl10c pl15 pl24
Number of
Facilities 8 10 10 15 24

Variable
Shape no yes yes yes some

Specific
Constraints no no yes no no

Rectangular
Plant Shape yes no no yes no

The systems implementation was done using the

ECLiPSe system /23/ mainly for the CLP stuff. In the case of

the LayGeRL system it was used also the GALib /24/ to write

the GA responsible by the optimisation task. The GA

implemented is a Steady State GA with overlapping

populations. It uses a linear scaling and roulette wheel

selection. The termination criterion makes the GA stop when

one of two conditions becomes true. One condition is related

with the maximum number of generations and the other is

true when the standard deviation of the population scores is

less than 0.01% of the best individual score in the population.

The first experiments were done with LaRLo system.

Each test problem was solved with all combination of

labelling procedures with the four different value ordering

heuristics. Each experiment ran about one hour. After that

time the best solution found was returned. The main goal of

these experiments was to try to come across with which

combination of labelling procedure and value ordering

heuristic tends to explore more promising regions of the

search space early and, thus, better solutions. This is

important when the B&B algorithm is stopped before the

complete search space has been explored.

With these first experiments it was verified that none of

the combinations of labelling procedures with the value

ordering heuristics showed to be significantly better than the

others. The right combination seems to depend on the

problem being solved. Each combination starts with the

exploration of the search space at different regions. This

makes LayGeRL, with the GA, more adequate as general

method to solve this kind of problems since it is capable to

explore promising regions without the need to explore the

complete search space. The drawback is that there is no

guarantee that the best solution is found. On the other hand,

the LaRLo system suffers of the same problem, since it stops

before the complete exploration of the search space.

The best solutions (low cost) found, by using both

systems, are presented in the Tab 4. In parenthesis below the

cost value is the processing time, in seconds, used to obtain

the respective solutions. Tab 4 shows that LayGeRL system

gives always better solutions than LaRLo system, when

considering similar processing times.

By analysing the best solutions obtained it was observed

that there is a trend to locate facilities close to each other if

they have a large material flow between them. This

observation suggested that the adjacency constraint should be

imposed for some facility pairs in order to improve the

performance and the solution quality. Some experiments

were made and for most cases it was showed that there was a

solution quality improvement. Moreover, the adjacent pairs

have to be selected with care since this arbitrary selection can

frequently transform the problem in an over-constrained one,

which has no solutions. In order to overcome this issue it was

developed a systematic method to select the adjacent pairs.

This method is based in the computation of the maximum

weight matching (MWM) /25/. The concept consists in

creating a graph with the production units as nodes. There is

an arc connecting two nodes if there is material flow between

the respective facility and the weight is the flow volume

between them. The maximum weight matching of the created

graph is a set of pairs obeying the following conditions:

1. One node participates in only one pair;

2. It is not possible to add a pair without breaking the

previous condition;

3. The pairs have a maximum weight sum.

The cost of the solutions obtained by solving the test

problems, using both LaRLo and LayGeRL, imposing

adjacency constraints between pairs of facilities computed by

MWM method is showed in the Tab 5. The labelling

procedure used in LaRLo system is similar to LabelProc4

presented in appendix, which differs only by first locating the

facilities involved in adjacency constraints. The use of

adjacency constraints gives better solutions in almost all

situations. But, once again, LayGeRL showed to be better to

similar processing times.

5. Conclusions

In this paper we proposed a method to address the

facilities layout design problem (FDLP) through the

technology of constraint logic programming (CLP). Two

prototype systems were developed: LaRLo and LayGeRL.

They differ only in the technique used in the optimisation

task. CLP is a new technology, with wide potential, based on

the logic programming and computational processes that

appeal to the imposed constraints on the problem variables.

In the LayGeRL system we also look for an hybrid approach

using CLP with genetic algorithms (GA). The developed

system looked for the advantages, on one hand, of a process

imminently abstract and declarative for the specification of

problems and, on the other hand, the potentialities that the

evolutionary computation offers in the attainment of

solutions, mainly when there is no specific methods to solve

the problem in a proper way. As it was showed in this paper,

the generation of industrial plant layout is indeed a complex

optimisation problem, where it has to focus to a set of several

constraints imposed on the problem variables.

Being the FDLP a complex problem, in particular the

model presented, it was also showed that the exploration of

all the search space is not practical for real problem and, thus,

the branch and bound algorithm is not the most adequate

optimisation technique. The use GA showed to be a

technique offering a good compromise between the amount

of the search space that is explored, the quality of solutions

and the performance.

Another important aspect that can be retained from this

work is that the combination of CLP and GA is not limited to

be applied to the FLDP. It can be applied to solve other

problems. To apply this framework it is only necessary to

define the genetic operators according to the problem

structure. This can be advantageous once the developer can

use the problem structure to get specific and well adapted

genetic operators. On the other hand, this approach has the

disadvantage of reducing the robustness of the GA, because

the genetic operators are more dependent of the problem

structure.

The developed system suffers from some limitations that

we hope in the future deal with. In general they can be

viewed in two research domains: the model of the problem in

order to deal with the new trend of the manufacturing

systems and the CLP technology used to solve the problems.

With the first research domain we can point, as example, the

facilities that cannot be always modelled as rectangular

shapes, the manufacturing plant has a third dimension

(several floors) and the constraint are not always mandatory

(they can have levels of priorities). The limitations of the

technology are almost all related with the performance. In

order improve this several paths can be followed. For

example, the development of global constraints in order to

get better quality in constraint propagation, more efficient

and intelligent label procedures – LaRLo – and genetic

operators – LayGeRL. Distributed GA and the cooperation

with both systems are also issues for further work.

Tab 4: The computational results of the two systems in presence of the test problems without adjacency constraints
(PS - population size, RR – replacement rate, RP – recombination probability, MP – mutation probability).

Problem pl8 pl10 pl10c pl15 pl24

LaRLo
Cost

31377
(3454)

25836
(3444)

25926
(2126)

29286
(3427)

109372
(2727)

λ Min Middle Min Min Middle
Label Procedure LabelProc5 LabelProc5 LabelProc5 LabelProc5 LabelProc1

LayGeRL
Cost

24239
(85)

21653
(611)

23161
(644)

25270
(3797)

96232
(1352)

PS/RR/RP/MP 100/0,4/1,0/0,2 100/0,4/1,0/0,2 100/0,5/1,0/0,15 100/0,4/1,0/0,25 80/0,1/0,8/0,05

Tab 5: The computational results of the two systems in presence of the test problems with adjacency constraints
(PS - population size, RR – replacement rate, RP – recombination probability, MP – mutation probability).

Problem pl8 pl10 pl10c pl15 pl24

LaRLo
Cost

22784
(825)

23422
(905)

22985
(1056)

29361
(499)

114401
(1688)

λ Partition Partition Min Middle Min

LayGeRL
Cost

22559
(45)

18734
(1070)

18925
(2576)

25745
(9033)

94911
(6465)

PS/RR/RP/MP 100/0,4/1,0/0,15 100/0,5/0,9/0,15 100/0,5/0,9/0,15 100/0,5/0,9/0,15 60/0,1/0,8/0,05

REFERENCES

1. Armour, G.C. and Buffa, E. S. 1963. “A heuristic
algorithm and simulation approach to relative location
of facilities”. Management Science, 9 pp 294-309.

2. Vollman, T. E. and Buffa, E. S.: 1966. “Facilities
layout problem in perspective”. Management Science,
12 pp 450-468.

3. Riggs, J. L. 1987. Production Systems: planning,
analysis, and control. Fourth Edition, John Wiley &
Sons, Inc, ISBN 0-471-85888-9.

4. Heragu, S. S. and Kusiak, A., 1987. “The Facility
Layout Problem”, European Journal of Operational
Research, 53, pp 1-13.

5. Kusiak, A. 1990. Intelligent Manufacturing Systems,
Prentice Hall. Englewood Cliffs, NJ,
ISBN 0-13-468364-1.

6. Meller, R. D. and Gau, K.-Y. 1996. “The Facility
Layout Problem: Recent Trends and Perspectives”,
Journal of Manufacturing Systems, 15(5), pp 351-366.

7. Heragu, S. 1997. Facilities Design. PWS Publishing
Company, ISBN 0-534-95183-X.

8. Dimopoulos, Christos and Zalzala, Ali M. S., 2000.
“Recent Developments in Evolutionary Computation
for Manufacturing Optimization: Problems, Solutions
and Comparisons”. IEEE Transations on Evolutionary
Computation, 4(2), pp 93-113.

9. Jaffar, J., Lassez, Jean-Louis, A. 1987. “Constraint
logic programming”. In Proceedings of the 14th ACM
Symposium on Principles of Programming Languages,
Munich, Germany, ACM, January, pp 111-119.

10. Kumar, V. 1992. Algorithms for Constraint Satisfaction
Problems: A Survey. Department of Computer
Sciences, University of Minnesota.

11. Frühwirth, T., Herold, A., Küchenhoff, V., Provost, T.,
Lim, P., Monfroy E. and Wallace, M. 1993. Constraint
Logic Programming - An Informal Introduction.
European Computer-Industry Research Centre.

12. Koopmans, T. C., and Beckman, M. 1957. “Assignment
Problems and the Location of Economic Activities”.
Econometrica, 25, pp 53-76.

13. Montreuil, B. H., Venkatadri, U., e Ratliff, H. D. 1993.
“Generating a layout from a design skeleton”. IIE
Transactions, 25(1), pp 3-15.

14. Tavares, J., Ramos, C. and Neves, J. 1999, “Constraint
Programming Approach to Solve Facility Layout
Design Problems”, ISATP’99 – 1999 IEEE
International Symposium on assembly and Task
Planning, Porto, Portugal, pp 368-373.

15. Tavares, J., Ramos, C. and Neves, J. 1999, “A Model to
Solve the Facility Layout Problem Using Constraint
Logic Programming”. IMS’99 – Second International
Intelligent Manufacturing Systems 1999, Leuven,
Belgium, pp 429-438.

16. Tavares, J., Ramos, C. and Neves, J. 2000, “Using
Genetic Algorithms in a Constraint Programming
Framework to Optimise Facility Layout Design
Problems”. PACLP’2000 – The Practical Application
of Constraint Technologies and Logic Programming,
Manchester, UK, pp 41-58.

17. Tavares, J. Ramos, C. and Neves, J. 2000, “Addressing
the Layout Design Problem Through Genetic
Algorithms and Constraint Logic Programming”.
ASC'2000 – Third IASTED International Conference of
Artificial Intelligence and Soft Computing, Banff,
Alberta, Canada, pp 65-71.

18. Tavares, José. 2002. Generation of Industrial Systems
Configurations by Using the Constraint Technology
and Evolutionary Computation. PhD Thesis, Dept. of
Informatics, School of Engineering, University of
Minho, Portugal (in Portuguese).

19. Davis, L. 1991. A Genetic Algorithms Tutorial. In
Handbook of Genetic Algorithms, L. Davis (ed), New
York, USA: Van Nostrand Reinhold. pp. 1-101.

20. Michalewicz, Z. 1996. Genetic algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
New York, third edition.

21. Holland, J. H. 1975. Adaptation in Natural and
Artificial Systems. Univ. of Michigan Press, Ann Arbor,
MI.

22. Cotta, C., Aldana, J.F., Nebro, A.J., and Troya, J.M.
1995. Hybridizing Genetic Algorithms with Branch and
Bound Techniques for the Resolution of the TSP.
Artificial Neural Nets and Genetic Algorithms, D.W.
Pearson, N.C. Steele, R.F. Albrecht (eds.), Springer
Verlag Wien - New York, pp 277-280, ISBN
3-211-82692-0.

23. Schimpf, J., Brisset, P., Sakkout, H., Frühwirth, T.,
Gervet, C., Meier, M., Novello, S., Provost, T., Shen,
K., and Wallace, M. 1999. ECLiPSe 4.2 User Manual.
International Computers Limited and Imperial College
London. HTTP://www.icparc.ic.ac.uk/eclipse/

24. Wall, Matthew. 1996. Galib - A C++ Genetic
Algorithms Library Users Manual. Mechanical
Engeneering Department, Massachusetts Institute of
Technology.

25. Lengauer, T. 1990. Combinatorial Algorithms for
Integrated Circuit Layout. Chichester, UK: John Wiley
& Sons Ltd.

APPENDIX

label([], _).
label([(_, r(X, Y, W, L, _)) | T], λ) ←
 indomain(W, λ), indomain(L, λ),
 indomain(X, λ), indomain(Y, λ),
 label(T, λ).

Fig 13: Pseudo-Prolog code for LabelProc2.

label({Φ}, λ) ←
 label_wl({Φ}, λ), label_xy({Φ}, λ).

label_wl([], _).
label_wl([(_, r(_, _, W, L, _)) | T], λ) ←
 indomain(W, λ), indomain(L, λ),
 label_wl(T, λ).

label_xy([], _).
label_xy({Φ}, λ) ←
 remove_pf((_, r(X, Y, _, _, _)), {Φ}, T),
 indomain(X, λ), indomain(Y, λ),
 label_xy(T, λ).

Fig 14: Pseudo-Prolog code for LabelProc3.

label({Φ}, λ) ←
 collect_all_pairs(Pairs),
 sort_pairs(Pairs, Sort_Pairs),
 label({Φ}, Sort_Pairs, λ).

label(_, [], _).
label({Φ}, [ϕ(Ii , Ij , _)|Pairs],λ) ←
 Φ(Ii , r(Xi, Yi, Wi, Li, _)),
 Φ(Ij , r(Xj, Yj, Wj, Lj, _)),
 domain_size(Xi, TXi),
 domain_size(Yi, TYi),
 domain_size(Xj, TXj),
 domain_size(Yj, TYj),
 (
 TXi × TYi ≤ TXj × TYj ,
 !,
 label(Wi, Li, Xi, Yi, λ),
 label(Wj, Lj, Xj, Yj, λ),
 ;
 label(Wi, Li, Xi, Yi, λ),
 label(Wj, Lj, Xj, Yj, λ),
),
 label(T, Pairs, λ).

label(W, L, X, Y, λ) ←
 indomain(W, λ),
 indomain(L, λ),
 indomain(X, λ),
 indomain(Y, λ).

collect_all_pairs(Pairs) ←
 findall(ϕ(Ii , Ij , Fij), ϕ(Ii , Ij , Fij), Pairs).

Fig 15: Pseudo-Prolog code for LabelProc4.

label([], _).
label({Φ}, λ) ←
 delete((_, r(X, Y, C, L, _)), {Φ}, T),
 label(C, L, X, Y, λ),
 label(T, λ).

label(C, L, X, Y, λ) ←
 indomain(C, λ), indomain(L, λ),
 indomain(X, λ), indomain(Y, λ), !.

Fig 16: Pseudo-Prolog code for LabelProc5.

