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Abstract— In recent years, power systems have experienced 

many changes in their paradigm. The introduction of new 
players in the management of distributed generation leads to the 
decentralization of control and decision-making, so that each 
player is able to play in the market environment. In the new 
context, it will be very relevant that aggregator players allow 
midsize, small and micro players to act in a competitive 
environment. 

In order to achieve their objectives, virtual power players and 
single players are required to optimize their energy resource 
management process. To achieve this, it is essential to have 
financial resources capable of providing access to appropriate 
decision support tools. As small players have difficulties in 
having access to such tools, it is necessary that these players can 
benefit from alternative methodologies to support their decisions. 

This paper presents a methodology, based on Artificial Neural 
Networks (ANN), and intended to support smaller players. In this 
case the present methodology uses a training set that is created 
using energy resource scheduling solutions obtained using a 
mixed-integer linear programming (MIP) approach as the 
reference optimization methodology. The trained network is used 
to obtain locational marginal prices in a distribution network. 
The main goal of the paper is to verify the accuracy of the ANN 
based approach. Moreover, the use of a single ANN is compared 
with the use of two or more ANN to forecast the locational 
marginal price. 
 

Index Terms — Artificial Neural Network (ANN), Distributed 
generation, Locational Marginal Price (LMP), Mixed Integer 
Linear Programming (MIP), Virtual Power Player (VPP) 

 

NOMENCLATURE 

( )DG gc  Distribution generation cost of unit g 

( )SP sc  Cost of supplier s 

EGPc  Excess generated power cost 

StorageChargec  Storage charge cost 

StorageDischargec  Storage discharge cost 
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NSPc  Non-supplied power cost 
g  Generator index 
ng  Total number of generator 

ns Total number of supplier 

( )DG gP  Distributed generation power  

( )DGMax gP  Maximum generation power of generation 
type g 

( )DGMin gP  Minimum generation power of generation 
type g 

EGPP  Excess generated power 

LoadP  Load power 

NSPP  Non-supplied power 

StorageChargeP  Storage charge power 

StorageDischargeP  Storage discharge power 

( )SP sP  Power of supplier s 

( )SPMax sP  Maximum power of supplier s 

s Supplier index 

( )DG gX Binary variable for generation type 

I.  INTRODUCTION 
OWER systems have to deal with an increasing quantity of 
distributed energy resources, according to the smart grid 

paradigm. This requires new management and new operation 
methods because the currently used methodologies are not 
able to deal with the challenges that result from the new 
paradigms. 

Virtual Power Players (VPP) that aggregate a set of 
resources in a given network zone, including distributed 
generation based on renewable sources, storage systems, 
demand response and electrical vehicles are very relevant 
players in the new context [1, 2]. One of the VPP main tasks is 
to determine the optimal resource scheduling able to minimize 
the costs or to maximize the profits. Achieving this optimal 
scheduling can require using forecasting tools for wind, 
insulation, load, and electricity prices. The VPP can, for 
example, use an Artificial Neural Network (ANN) [2] to 
forecast Locational Marginal Price (LMP) values. There are 
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several techniques that can be required for the forecasting 
processes but artificial neural networks have shown their 
effectiveness for a diversity of forecasting needs in the scope 
of power systems. 

This paper proposes an ANN based approach to forecast the 
LMP value in a distribution network. The forecast is based on 
the results of the optimal scheduling obtained using Mixed-
Integer Linear Programming applied to data obtained by a 
resource scheduling optimization tool. The proposed method 
is able to provide the VPP with good quality information that 
can be used to support decision making concerning resource 
scheduling, aiming at the lowest possible operation costs. 
Moreover, this information is obtained in short times and 
requires modest computational means.   

This paper is organized as follows: after the present section, 
Section II describes the general ANN concept. Section III 
presents the ANN based proposed methodology and addresses 
the optimization of energy resource scheduling. A case study 
is presented in Section IV. Finally, the main conclusions of the 
work are presented in Section V. 

II.  ANN CONCEPTS AND APPLICATIONS 
Artificial neural networks are a computational model inspired 
by the human brain with some specific characteristics such as 
the capacity to learn [3-5]. The basic concept of ANNs 
consists in the use of neurons that have memory and the 
capacity to process different types of information [3]. An 
ANN consists in several layers of three different types, the 
input layer, one or more hidden layers and the output layer. 
Moreover, the organized neurons can be modified according to 
the desired organization and thus can approximate the results 
of sample functions. The general structure of a neural network 
is illustrated in Fig. 1. 

 

Fig. 1. General structure of artificial neural network [3] 
 

According to Fig. 1, the hidden layers are connected with 
input and output layers by weighted synapses. ANNs do not 
require an explicit mathematical model of the addressed 
physical elements and/or systems to obtain results; these 
results depend on the ANN internal constitution which is 
obtained after a training phase [3, 6]. The learning process can 
be time expensive but, after that, ANN requires lower 

execution time than other techniques [4, 6-9]. In the training 
phase ANNs are able to learn the relationships between input 
and output for known cases [10], using for instance logistic 
regression [11]. 

ANN is a functional, robust and interesting structure to the 
engineering of electrical systems [7]. ANNs have been used 
with success in a wide range of power system applications 
with emphasis to forecasting problems. 

In the context of smart grids it is necessary to use 
optimization, monitoring, forecasting, decision-making and 
control methods that should be increasingly fast and dynamic. 
Computational intelligence has the capacity to provide 
solutions for algorithms that are able to learn and adapt 
themselves to different cases with specific features [9]. In 
many situations, the limitations of traditional techniques have 
been successfully overcome with the use of neural networks.  

An application example of a neural network for scheduling 
problems is described in [12] where it is proposed a network 
based on the Hopfield network yet with some important 
differences. The main difference lies in the existence of an 
additional external processor that can monitor and control the 
evolution of the network.  

III.  PROPOSED METHODOLOGY 
This paper proposes an ANN based methodology to provide 
VPPs with LMP forecasting, which can support decision-
making for energy resource scheduling. The method involves 
two steps. The first step corresponds to the ANN training, 
using the results of energy resource scheduling optimization. 
The second step is dedicated to forecast the LMP for situations 
envisaged in the study. 

  

A.  Problem Formulation 
The energy resource scheduling optimization uses a 

mathematical formulation based on Mixed Integer Linear 
Programming (MIP) which is implemented in General 
Algebraic Modeling System (GAMS) optimization software 
[13]. The objective function presented in (1) is formulated 
with the aim of finding the optimal energy resource scheduling 
that leads to the minimal operation cost of supplying the 
demand [14]. 
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Equations (2) to (5) refer to the constraints that are 
considered. Equation (2) refers to the first Kirchhoff Law or 
power balance constraint. 

( ) ( )
1 1

ngns

SP s DG g StorageDischarge NSP Load
s g
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P P P P P

P P
= =

+ + + =

+ +

∑ ∑
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Equations (3) to (5) represent the constraints concerning the 
maximum capacity considering the available resources, for 
generators (3, 4), for all the suppliers (5); for storage units the 
constraints applied are presented in [15]. 

 
{ }( ) ( ) ( ) ( ); 0,1DG g DGMax g DG g DG gP P X X≤ × ∈  (3) 

  

{ }( ) ( ) ( ) ( ); 0,1DG g DGMin g DG g DG gP P X X≥ × ∈  (4) 
  

( ) ( )SP s SPMax sP P≤  (5) 
 

B.  Proposed Method 
Fig. 2 presents the diagram of the proposed methodology to 

obtain the LMP forecasted values. In the first phase the 
methodology uses Mixed-Integer Linear Programming (MIP) 
to optimize the energy resource scheduling for the considered 
scenario set. The ANN is trained with these scenarios. 

Fig. 3 contemplates the data treatment in each scenario. 
The variables considered in each scenario are the capacity 
limits, costs from DG, storage, load, suppliers and DR 
contracts, among other variables. For each variable, 
considering the amplitude of its values and its importance for 
the final solution, the number of discrete values (and, 
consequently, the increment to be used) to be considered is 
determined. These values should be representative of the 
variable. With the determined values, it is possible to define 
the number of simulations to be undertaken. 

 

 

 
Fig. 2. Diagram of the proposed methodology. 

 

 
Fig. 3. Methodology for scenarios development 
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The proposed ANN approach uses the solutions obtained 
by the optimization method presented in sub-Section A as 
input to the ANN training process. Fig. 4 illustrates the used 
ANN architecture.  

The considered input variables are: 
- Total wind resources by network zone; 
- Total photovoltaic resources by network zone; 
- Total forecasted load by network zone. 

The output layer has a single neuron that returns the LMP 
value. 

 
Fig. 4. Used ANN architecture 

 
The authors have experimented multiple ANN structures 

and data sets. In what concerns the input layer, other variables 
were tested, such as electricity market price, interconnection 
acquired power, and other distributed resources related 
variables. In the case of hidden layers, as well as the number 
of neurons in each layer, after testing several quantities of 
hidden layers, a single hidden layer with four neurons was 
adopted. 

In both input and hidden layers structure studies, the results 
shown that the increase in the ANN dimension and complexity 
is not benefic for the aimed target. 

The forecasting error evaluation is performed using the 
Mean Absolute Percentage Error (MAPE) presented in 
equation (6). 
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IV.  CASE STUDY 
This section presents a case study that illustrates the 

application of the proposed methodology to the distribution 
network presented in [16]. The case study includes three 
scenarios of data organization to be used by the used ANN. 

A.  Characterization of Distribution Network 
The used distribution network was initially presented in 

reference [17]. Reference [16] presents the used distribution 
network after applying several studies concerning the 
evolution of both load and DG to a 2040 scenario regarding an 
intensive use of DG. Fig. 5 shows the 2040 updated scenario. 
 

 
 

Fig. 5. Distribution network with the considered zones 
 
As seen in Fig. 5, the network has been divided in four 

zones. Table I shows some details about these zones. The 
color and patterns signalizing each zone according to Fig. 5, as 
well as the buses in each zone, are presented in this table.  

 
TABLE I 

NETWORK DIVISION BY ZONES 
Zone Color/Line Buses 

1 Black/Solid 1, 18, 19, 20, 21 

2 Blue/Long Dash 
Dot 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17 

3 Orange/Dashed 22, 23, 24 
4 Green/Dotted 25, 26, 27, 28, 29, 30, 31, 32 

 
The way that these zones were defined concerns the 

existing network breakers in the network nodes. Although a 
feeder can have a large extension, a reduced dimension branch 
beginning in one of the referred breakers can eventually 
connect to other substation. 

After distribution network division in the four indicated 
zones, it is important to consider the characteristics of each 
zone. The most important data for each zone are: the buses in 
the zone, the wind and photovoltaic generators, the demand in 
each bus. The considered values of demand are presented in 
Table II. These demand values regard a base scenario 
presented in [16]. In the present paper, the values of load 
demand result from variations in a daily load diagram.  
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TABLE II 
BASE ACTIVE POWER DEMAND   

Bus Demand 
(kW) Bus Demand 

(kW) Bus Demand 
(kW) 

1 169.1 12 91.3 23 674.8 
2 148.9 13 181.3 24 669.3 
3 147.1 14 91.1 25 93.8 
4 145.5 15 91.1 26 93.2 
5 94.2 16 91.9 27 92.2 
6 311.1 17 135.5 28 183.0 
7 308.7 18 152.4 29 295.3 
8 89.3 19 151.7 30 225.4 
9 90.6 20 151.6 31 315.1 

10 97.0 21 151.5 32 89.8 
11 91.1 22 147.3 Total 5831.3 

 

B.  Data characterization 
In the present case study, the network is connected to an 

upstream main network in bus number 0. The Suppliers 1, 2 
and 3 are connected in bus number 0, allowing electrical 
energy to be bought from the upstream main network. The 
production capacity and the price of each type of energy 
resource are presented in Table III. 

 
TABLE III 

GENERATION RESOURCES AVAILABILITY AND COSTS   

Generation resource Capacity 
(kW) 

Price 
(m.u./kWh) 

Co-generation 1240 0.00015 
Waste-to-energy 800 0.03000 
Hydro (small) 70 0.03200 
Supplier 1 1500 0.04000 
Supplier 2 1500 0.05000 
Biomass 350 0.06000 
Wind 800 0.06200 
Fuel cell 210 0.10200 
Photovoltaic 1800 0.11000 
Supplier 3 2000 0.13000 

 
The input data of the neural network correspond to load 

values, wind and photovoltaic power generation of the 
considered distribution network. The training of the ANN used 
the data shown in Table IV which correspond to the above 
mentioned variables. The neural network was configured with 
one hidden layer and four nodes in hidden layer.  

 
TABLE IV 

ANN TRAINING SET CHARACTERIZATION 

 
Load range 

(MW) 

PW 
range 
(MW) 

PV 
range 
(MW) 

LMP range 
(m.u./MWh) 

Zone 1 0.11-1.05 0-0.1 0-0.06 0.02-0.13 
Zone 2 0.34-3.18 0-0.4 0-0.29 0.02-0.13 
Zone 3 0.19-1.95 0-0.1 0-0.03 0.02-0.13 
Zone 4 0.19-1.85 0-0.1 0-0.18 0.02-0.13 
Global 1.24-6.61 0-0.7 0-0.56 0.02-0.13 

 

This case study considers three different scenarios. In each 
scenario, the value of the average LMP is estimated by the 
ANN model presented in Fig. 4 of subsection III.B. The 

difference between the three scenarios regards the 
organization of the input data and the number of independent 
ANNs that are used for the LMP forecast.  

Fig. 6 presents the overall scenarios organization indicating 
the way that is used to divide the input data for each scenario. 
Scen1 uses one ANN that receives as input the values of wind 
and photovoltaic based generation and of the load for the 
whole considered network (i.e. the global values for the four 
zones shown in Fig. 5). The output is the estimated average 
value of the 32 LMPs in each one of the network buses.  

The Global input training matrix dimension corresponds to 
4 columns by 845 rows. The second scenario (Scen2) uses two 
ANNs with the structure shown in fig. 3. In this scenario, the 
data concerning zones 1 and 2 are fed to one ANN and the 
data concerning zones 3 and 4 are fed to the other ANN. The 
result of each ANN is the forecasted value of the average 
value of the 32 LMPs in each one of the network buses. The 
maximum of the two obtained values is used as the result for 
this scenario. The second scenario input training matrix 
dimension corresponds to 7 columns by 845 rows. 

Finally, Scen3 considers four ANNs, whose input data 
correspond to the input data of each zone. Similarly to Scen 2, 
the final result is determined as the maximum value of the four 
forecasted LMP values. This scenario input training matrix 
dimension corresponds to 13 columns by 845 rows. 

 

 
Fig. 6. Diagram of proposed methodology 
 

Table V summarizes the main characteristics of the test 
data set used for this case study. The wind and photovoltaic 
power are fixed and load is variable. The test case corresponds 
to a situation for which the wind based generation will be 
negligible, the photovoltaic generation is accurately forecasted 
(0.28 MW) and for which there is incertitude in the forecasted 
load (from 4.42 to 6.03 MW). For this case study, the total 
number of considered simulations is 86.  

The LMP limits of variation presented in table V are the 
same for all scenarios. The LMP value depends on the price of 
the DG resources used for each scheduling solution.  

 
TABLE V 

TEST DATA SET CHARACTERIZATION 

 
Load range 

(MW) 
PW 

(MW) 
PV 

(MW) 
LMP range 

(m.u./MWh) 
Global 4.41-6.03 0 0.28 0.03-0.13 

 

C.  Results 
The results of the case study for each scenario are presented 

in Fig. 7. 
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Fig. 7. Results of the LMP forecast in each scenario, for the analyzed load range (a), the lowest (b), medium (c), and highest (d) load values. 
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The results presented in Fig. 7 were obtained by using the 
MIP approach (obtained using GAMS) and the ANN 
approach. The ANN results in Fig. 7a) were obtained by 
training the network with the data set corresponding to each 
scenario of Table IV and by testing the network with the data 
set presented in Table V. This figure shows the variation of 
LMP with the variation of the load. Figures 7b), 7c) and 7d) 
show more detailed views of these results for the lowest, 
medium and highest load ranges, respectively. 

The ANN approach had an excellent performance for low 
variations of LMP. However, when the change of LMP is 
significant, the ANN has difficulty to follow the results of the 
MIP approach, as shown in Fig. 7. As expected, this difference 
is even more significant for the first scenario, since its training 
is considered for the data set of all zones. 

An evaluation of the results has been made by comparing 
the execution time (Table VI) and the Mean Absolute 
Percentage Error (MAPE) between the MIP and the three used 
scenarios for the ANN approach. The error results are 
presented in Table VII. MIP is therefore used as the reference 
method to validate the ANN approach results.  

By analyzing the values presented in Table VI, it can be 
easily concluded that the ANN approach achieves results 
much faster than the MIP approach. 
 

TABLE VI 
EXECUTATION TIME IN SECONDS 

TIME MIP Scen1 Scen2 Scen3 
1.6 0.034 0.032 0.036 

 
Using the results of the MIP approach as reference values, 

MAPE (Mean Absolute Percentage Error) has been calculated 
using (6). MAPE values are presented in Table VII.  

 
TABLE VII 

ERROR RESULTS (%) 
 

 Minimum Average 
(MAPE) Maximum 

Scen1  
b) 0.050 3.983 17.756 
c) 0.012 1.740 3.963 
d) 0.173 8.108 39.445 

Scen2 
b) 1.042 6.210 21.821 
c) 0.125 2.103 5.089 
d) 0.124 8.102 37.214 

Scen3 
b) 0.910 5.717 12.570 
c) 0.766 3.224 5.344 
d) 0.119 8.134 28.015 

 
In all scenarios the best result was in the first scenario, as 

seen in Fig. 7 c), because that scenario has a better individual 
MAPE value. For the lowest values of load demand, seen in 
Fig. 7 b), the best scenario is Scen1. In what concerns the 
minimum and maximum error values, the best results are 
obtained for the medium values of load, for Scen1. The worst 
results are the ones obtained for the highest values of load, for 
Scen1. 

V.  CONCLUSIONS 
Distributed generation impact on distribution networks has 

been increasing and will reach much higher values in the 
future. This requires an optimized management of distributed 
resources putting players in face of new technical and 
economic challenges. For smaller players it is difficult to 
obtain decision support tools and computational resources 
capable of solving the problem due to low financial resources. 
Therefore it is necessary that these players can have access to 
alternative methods to support their decisions. 

This paper presents a methodology based on ANN to 
forecast the value of locational marginal price for a 
distribution network with intensive use of distributed 
resources. This methodology allows obtaining the desired 
results with limited computational resources.  

The proposed method has been computationally 
implemented and its application is illustrated with a case study 
that considers a 32 bus network with intensive use of 
distributed generation.  

The results of the reference optimization methodology 
(mixed-integer linear programming) have been used to train 
the ANN used by the ANN approach. The ANN approach 
results have been compared with the results obtained with the 
reference method. The ANN approach has been used for three 
scenarios allowing comparing the accuracy of the results when 
using a single ANN or several ANNs to forecast the LMP 
value. 

The results show that the ANN approach can provide good 
results for calculating the LMP. In addition, the runtime of this 
approach is much lower when compared with the reference 
method. 
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