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Towards an Efficient and Robust Foot Classification from 

Pedobarographic Images 

 

Abstract 

This paper presents a new computational framework for automatic foot classification from 

digital plantar pressure images. It classifies the foot as left or right and simultaneously 

calculates two well-known footprint indices: the Cavanagh's arch index and the modified arch 

index. The accuracy of the framework was evaluated using a set of plantar pressure images 

from two common pedobarographic devices. The results were outstanding, since all feet 

under analysis were correctly classified as left or right and no significant differences were 

observed between the footprint indices calculated using the computational solution and the 

traditional manual method. The robustness of the proposed framework to arbitrary foot 

orientations and to the acquisition device was also tested and confirmed. 

 
Keywords: biomechanics; computational methods; image analysis; image alignment; plantar 

pressure images; footprint indices. 



1. Introduction 

The functional mechanics of the human foot are greatly influenced by the structure of 

the foot, in particular, by the medial longitudinal arch height (McCrory et al., 1997). 

X-rays and ultrasonic devices can easily carry out this measurement; however, they 

are relatively expensive. Additionally, X-rays imply a potential health risk due to 

radiation exposure to subjects undergoing scientific or clinical studies. 

Footprint parameters have been widely used as a predictor of arch height and foot 

classification: low arched, normal, and high arched. The study of footprints has 

numerous applications such as the characterization of populations, the prevention of 

injuries or the designing of footwear (Cavanagh and Rodgers, 1987; Dowling and 

Steele, 2001; Forriol and Pascual, 1990; Hernandez et al., 2007; Jung et al., 2001; 

Staheli et al., 1987). Some of the most widely adopted footprint-based measurements 

include the arch index (AI) (Cavanagh and Rodgers, 1987), the modified arch index 

(MAI) (Chu et al., 1995), Staheli's index (Staheli et al., 1987) and Chippaux-Smirak's 

index (Forriol and Pascual, 1990). 

In the literature, studies reporting significant correlations between the AI or MAI and 

the plantar arch height can be found. For instance, considering digital plantar pressure 

images, Chu et al. (1995) found a significant correlation coefficient ( r ) equal to 

0.70−  for the AI and the arch height, and of 0.71−  for the MAI and the arch height. 

Also using digital plantar images, other authors (Shiang et al., 1998) found slightly 

stronger correlation coefficients for AI and MAI and the arch height: 73.0−  and 

0.74− , respectively. Using walking ink footprints, McCrory et al. (1997) found a 

similar correlation coefficient ( 0.67− ) between the arch height and AI, and a 



correlation coefficient between the normalized arch height and AI equal to 0.71−  was 

established. 

Most of the previous studies concerning the evaluation of footprint indices were based 

on conventional ink footprints or on a variation. However, the digital plantar pressure 

images used by Chu et al. (1995) were manually pre-processed, which is prune to 

errors and of low reproducibility. On the other hand, Shiang et al. (1998) used a 

fixation device to define the place where subjects should stand to facilitate the 

processing and analysis of the input images. This solution overcomes foot orientation 

and localization problems acceptably. However, there are other issues still to be 

addressed, like the shape and size of each particular foot. 

Manual or even semi-automatic procedures to evaluate and compare plantar pressure 

data in images are somewhat fastidious, very time consuming and can lead to errors 

associated to the user’s skill. Therefore, in recent years, techniques of digital image 

processing and analysis have been proposed for automated plantar pressure image 

analysis. Examples include techniques for image matching and analysis (Bastos and 

Tavares, 2004; Tavares et al., 2000; Tavares and Bastos, 2010), image simulation 

(Pinho and Tavares, 2004), image registration, i.e. image alignment, (Harrison and 

Hillard, 2000; Oliveira et al., 2010; Oliveira and Tavares, 2011; Oliveira et al., 2009; 

Pataky et al., 2008b), and statistical analysis (Pataky et al., 2008a; Pataky and 

Goulermas, 2008). 

The main goal of the present work is to take advantage of those recent techniques of 

image processing and analysis to build a fully automated computational framework 

for foot classification and footprint index calculations. As such, the framework should 

be robust to arbitrary foot orientation, foot type and dimension, and completely 

independent of the plantar data acquisition device. In this way, the limitations of the 



accompanying software of the common pedobarographic devices could be overcome. 

Hence, it should be noted that the goal of this paper is not a discussion on footprint 

indices neither a comparison among them. Nevertheless, for further discussion on this 

topic see Chu et al. (1995) or Razeghi and Batt (2002). Particularly, an extended 

review on foot type classification is presented in the latter work; mainly, methods that 

use visual non-quantitative inspection, anthropometric values, footprint parameters 

and radiographic evaluation. 

 

2. Methods 
 

2.1 Left/right classification 
 
The first goal of the developed computational framework is to classify each input 

image as a left or a right foot. The step by step solution developed can be described as 

follows: 

(1) The algorithm starts by searching for the foot region in the input image, based on 

the pixel intensities. 

(2) Then, the foot is pre-scaled and centered in a square matrix to give it dimensions 

similar to those of the template images. This size normalization enables feet with 

different dimensions and defined using distinct pressure sensor arrays to be 

studied. 

(3) In this step, the pre-scaled and centered image is aligned with the template image 

for the left foot and also with the template image for the right foot. These two 

alignments are based on the maximization of cross-correlation (Oliveira et al., 

2010). (More about the templates images is described in section 2.3.) 



(4) Afterwards, the plantar pressure values of each of the two aligned images are 

normalized in order to have the same mean pressure as the corresponding 

template image. This normalization step eliminates the influence of the subject's 

weight on the image dissimilarity measure computed in the next step. 

(5) The sum of the absolute differences (SAD) between each of the two aligned and 

normalized images and the corresponding template images are computed. 

Finally, the input image is classified as a left or a right foot based on the minimal 

SAD value found. 

The flowchart of this classification algorithm is shown in Fig. 1. 

 

[Insert Figure 1 about here] 

 

2.2 Footprint indices 
 

2.2.1 Definitions 
 
The AI is defined as the ratio between the areas of contact of the different parts of the 

foot, excluding the toes. Thus, it is given by the ratio of the area of the middle one-

third of the footprint to the entire area, Fig. 2: 
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To divide the toeless foot into the three regions (A, B and C) in Eq. 1, the line from 

the tip of the second toe to the center of the heel, commonly known as "foot axis", 

needs to be defined (Fig. 2). Afterwards, the toeless length (L) can be measured, and 

the borders of the regions can be drawn perpendicularly to the foot axis, so as the 

width of each region is 3L  (Cavanagh and Rodgers, 1987). 



 

[Insert Figure 2 about here] 

 

The MAI is quite similar to AI. The foot is divided into the same regions (Fig. 2), but, 

instead of computing the ratio among the areas, the ratio of the sum of the pressures 

presented in the three regions is computed (Chu et al., 1995): 
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where if  is the pressure denoted by pixel i of image foot f. 
 

2.2.2 Computation of footprint indices 
 
To compute the footprint indices from an input image, the developed framework starts 

from the corresponding aligned and classified image and considers the original pixel 

intensities. Thus, the foot under analysis has a localization, orientation and size 

similar to the associated image template, but preserving the plantar pressure values. 

The footprint algorithm calculation can be divided into the following steps: 

(1) Image binarization: The pixels with an intensity higher than a threshold value are 

set to 1 (one) and the remainder to 0 (zero). This threshold value is defined in 

function of the minimum pressure value that the plantar pressure device used can 

measure. For example, in the experimental evaluation described in section 2.5 the 

threshold value was set to 10 kPa for the images acquired by the EMED system 

and equal to 0.7 N/cm2 for the ones acquired using the Footscan system. 

(2) Toe removal: First, using a rough mask previously built from the associated 

template image (see section 2.3), most of the input image pixels of the toes are 

removed, with only the ones nearest the toeless forefoot remaining (region A, 



Fig. 2). Then, in a fine mode, based on a local search in the region in which the 

toes possibly join the forefoot, the remaining pixels of the toes are removed by 

comparing the intensity of each pixel with the intensities of its neighbors. 

(3) Toeless foot segmentation: After the toe removing process, the length of the 

toeless foot is determined and the foot is divided into the characteristic regions A, 

B and C (Fig. 2). It is important to notice that, as the template image was defined 

in such a way that its foot axis is parallel to the y-axis, then consequently the foot 

axis of the aligned image is also parallel to the y-axis. Thus, the lines that limit 

the three characteristic regions of the foot are parallel to the x-axis and, therefore 

facilitate any further assessment processes. 

(4) Calculation of indices: Since the image under evaluation is suitability binarized 

and segmented into the toes and the three characteristic regions (A, B and C), the 

computation of the AI and MAI is straightforward using Eq. (1) and (2). 

The flowchart of this foot segmentation and footprint index computation algorithm is 

presented in Fig. 3. 

 

[Insert Figure 3 about here] 

 

2.3 Image templates 
 
As previously indicated, two template images are used to align and normalize the 

plantar pressure image under analysis: one for the right foot and another one for the 

left foot. It should be noted that these template images only need to be defined once 

for the entire population under study; however, they should be appropriately 

representative of the expected pressure distribution. 



In this work, the template image for the right foot was selected from the experimental 

data set in order to address a normal plantar pressure distribution. Then, the selected 

image was rotated so that the axis orientation of the represented foot would be parallel 

to the y-axis image (Figure 4). Afterwards, the left foot template image was defined 

by mirroring the template image of the right foot. 

Simultaneously, to assist the toe removal process, a binary image mask was built from 

the template image for the right foot. Hence, this image mask was allotted the value 0 

(zero) in the regions that do not belong to the aligned toeless foot, and 1 (one) for the 

reminding regions, including the border region between the toes and the toeless foot, 

Figure 4. The image mask for the left foot was obtained by mirroring the image mask 

previously built. 

These four reference images were then integrated in the computational framework and 

were successfully used in all the experimental tests that were carried out. They are 

described and discussed in the following sections. 

 

[Insert Figure 4 about here] 

 

2.4 Implementation 
 
The proposed computational framework was fully implemented in C++, using 

Microsoft Visual Studio 8, and tested on a notebook PC with an AMD Turion 64 2.0 

GHz microprocessor, 1.0 GB of RAM and running Microsoft Windows XP. 

 

2.5 Data set 
 
The data set was made up of 122 plantar pressure images: 10 peak pressure images 

acquired using a 0.5 m Footscan system (RSscan, Olen, Belgium) and 112 plantar 



pressure images acquired using an EMED system (Novel GmbH, Germany). The data 

set contained plantar pressure images from low arched, normal, and high arched feet. 

The data from the Footscan system was from 10 subjects (4 females, 6 males; 

30.1±7.4 years). The original images were vertically stretched by a factor of 1.5 to 

correct for non-square sensor array spacing (5.08×7.62 mm/sensor). 

The data acquired by the EMED system included 56 peak pressure images and 56 

static pressure images from 7 men (18.4±0.5 years) and 21 women (20.4±2.3 years). 

The static images were randomly chosen from the plantar pressure image sequences 

acquired from the subjects when in a static position. The EMED system used has a 

spatial resolution of 2 sensors per cm2. 

 

2.6 Accuracy assessment 
 
To assess the accuracy of the left/right classification, the results obtained by the 

computational framework were compared to the traditional manual method results. 

Two kinds of experiments were carried out: 1) Visual evaluation of the obtained 

results; namely, analyzing the results of feet alignment and segmentation for each of 

the 122 plantar pressure images. 2) Comparison between the AI values obtained using 

the computational framework and the ones obtained by using the traditional manual 

method. In this comparison, 17 static plantar pressure images from right feet and 17 

static plantar pressure images from left feet of 17 subjects were randomly chosen 

from the data set used. The manual evaluation of the AI was carried out by two 

individuals trained for the task, after printing each foot image on a sheet in real size. 

To assess the robustness of the computational framework to arbitrary foot 

orientations, all the 122 plantar pressure images were successively rotated 90º, 180º 



and 270º, and then each rotated image was classified, in terms of representing a left or 

right foot, and the associated AI was calculated. 

Since the differences between the AI values obtained by the manual method and the 

ones obtained by the computational framework follow a normal distribution, a One 

Sample t-test was carried out to statistically evaluate the differences between the AI 

values. The null hypothesis was tested to verify if the mean difference (∆ ) between 

them is zero: 

0 0:H µ∆ = ∆ ,          (3) 

01 : ∆≠∆µH ,          (4) 

0

/
t

S N∆

∆ − ∆
= ,          (5) 

where 0 0∆ =  and 34N = . 

 

3. Results 
 

3.1 Accuracy of the left/right classification 
 
All 122 plantar pressure images were correctly classified, either using the original 

images or using the rotated images. 

 

3.2 Accuracy of the arch index computation 
 
Visual inspection confirmed that all plantar pressure images (both original and 

rotated) were properly segmented into the four regions: toes, forefoot, arch and heel. 

Figure 5 shows four examples representing different foot shapes and the 

corresponding segmentations. 

 



[Insert Figure 5 about here] 

 

The differences between the AI values manually and automatically calculated from 

the 34 static plantar pressure images under evaluation are given in Table 1. It should 

be noted that, in the case of the traditional manual method the AI values were 

obtained by averaging the corresponding values calculated by the two evaluators. 

For a significance of 0.05α = , the critical value for the statistical t-test used is 

( ) 69.105.033 =t . Since for all tests we had 1.69t <  (Table 2), we concluded that 0H  is 

accepted, i.e. there is no significant statistical difference between the AI values 

calculated manually and those given by the computational framework. Consequently, 

these results also prove the robustness of the framework to arbitrary foot orientations. 

 
[Insert Tables 1 and 2 about here] 

 

3.3 Processing time 
 
The average processing time required by the framework to classify and compute AI 

and MAI values of each of the 34 tested images was around 125 ms. All operational 

times from the initial reading of the images, the image processing and calculations to 

the saving of the results were taken into consideration. 

 

4. Discussion 
 
Concerning the left/right foot image classification, the results show that the 

computational framework is efficient, accurate and robust to arbitrary foot shapes and 

orientations. Additionally, the framework calculated the AI from the digital foot 



images very efficiently and the small differences compared with the manual 

evaluations (Tables 1 and 2) were not statistically significant. The differences 

between the AI values of the original and rotated images obtained by the proposed 

computational framework were also insignificant (Tables 1 and 2), which means that 

the framework is very robust to arbitrary foot orientations. 

A comparison between the MAI values manually calculated versus the ones computed 

by the computational framework was not carried out. However, since this index is 

computed from the same regions used for AI and the values of the pixels used are 

maintained by the image transformations applied, the conclusions for AI are also valid 

for MAI. 

At a first glance, based on the AI values in Table 1 it appears that the population in 

this study has predominantly low arch feet. However, the main reason for so small AI 

values is that these values were obtained from plantar pressure images of subjects in a 

static position and, consequently, the middle foot / plantar pressure device contact is 

weaker than when the subjects are walking over it. 

Alignment quality is important for the accuracy of footprint indices. Therefore, at the 

initial development stage, different alignment strategies were tried out. The input foot 

image was aligned with one image template for each foot type: low arched, normal 

and high arched. Then, the alignment that led to the lowest SAD value was chosen. 

However, the experimental tests showed that similar results could be achieved using 

just the template image of the normal foot. Thus, since the developed framework 

should be as fast as possible, the simpler approach was adopted. Also in order to 

increase the framework accuracy, we tried out a more accurate alignment algorithm 

(Oliveira and Tavares, 2011) than the cross-correlation based algorithm used in the 

tests here. Although the alignment quality was slightly improved, the AI values 



remained almost unaffected. Hence, also based on the requisite for high 

computational speed, we chose the cross-correlation based alignment algorithm 

(Oliveira et al., 2010). 

We chose the AI and MAI footprint indices because they are frequently adopted in 

foot classification. However, other footprint/pressure indices or statistical 

measurements can easily be assessed in an automated way from the aligned and 

segmented feet images. 

Finally, it should be pointed out that the robustness of the proposed computational 

framework to arbitrary foot orientations, shapes and dimensions, and its independence 

to the plantar pressure acquisition device carry significant advantages over the 

traditional methods and solutions. Hence, with the proposed computational 

framework, the study/characterization of the plantar pressure distribution of large 

populations can be easily, efficiently and robustly achieved, since no particular 

requirements are imposed in terms of foot orientation or characteristics of the devices. 
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TABLE CAPTIONS 

 

Table 1. Mean AI values and differences between the AI values obtained by the 

manual method and the proposed computational framework. 

 

Table 2. Statistical test values of the differences between AI values obtained by the 

manual method and the proposed computational framework, considering the null 

hypothesis 0 : 0H µ∆ =  and the One Sample t-Test 0
/ 34

t
S∆

∆ −
= . 

 

 



FIGURE CAPTIONS 
 
Figure 1. Diagram of the left/right foot classification algorithm. 

 
Figure 2. Original plantar pressure image (on the left), the corresponding aligned and 

normalized plantar pressure image (in the center) and the segmented three 

characteristic foot regions plus toes from the normalized image (on the right). 

 
Figure 3. Diagram of the foot segmentation and arch indices computation algorithm. 

 
Figure 4. Image template for right foot (on the left) and image mask used for rough 

toe removal (on the right). 

 
Figure 5. Four examples of foot normalization and segmentation: the original foot (on 

the left); the normalized foot in terms of orientation, localization and size (in the 

middle left); the toeless region with its contour (in the middle right); the segmented 

foot (on the right). The plantar pressure images of the first row were acquired using 

the Footscan system, and the images of the other rows were acquired using the EMED 

system. 

 



TABLES 

Table 1 

Arch index 
 Mean STD 
AI{manual}  0.059 0.081 
AI{framework (original images)} 0.060 0.080 
AI{framework (rotated images: 90º)} 0.060 0.080 
AI{framework (rotated images: 180º)} 0.059 0.080 
AI{framework (rotated images: 270º)} 0.059 0.080 

Arch index differences 

 Mean ( )∆  
STD 
( )S∆  

AI{manual} − AI{framework (original images)} 0.0007 0.0073 
AI{manual} − AI{framework (rotated images: 90º)} 0.0007 0.0076 
AI{manual} − AI{framework (rotated images: 180º)} 0.0006 0.0072 
AI{manual} − AI{framework (rotated images: 270º)} 0.0007 0.0075 
 



Table 2 

 t  
AI{manual} vs AI{framework (original images)} 0.016 
AI{manual} vs AI{framework (rotated images: 90º)} 0.016 
AI{manual} vs AI{framework (rotated images: 180º)} 0.014 
AI{manual} vs AI{framework (rotated images: 270º)} 0.015 
 

 



FIGURES 

 

Figure 1 

Input: plantar 
pressure image 

Search for the minimal rectangle that contains the foot and rescale it to the 
same dimensions of the corresponding rectangle of the template images 

Align the rescaled image with the 
template image for left foot using 

the cross-correlation method 

Align the rescaled image with the 
template image for right foot using 

the cross-correlation method 

Normalize the pressure of 
the aligned image 

Compute the SAD between the 
pressure of the normalized image 

and the template image for left 
foot (SADleft) 

Normalize the pressure of 
the aligned image 

Compute the SAD between the 
pressure of the normalized image 
and the template image for right 
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Figure 3 

Input: aligned and 
left/right classified 

plantar pressure image 

Binarize the plantar pressure image 
based on the pressure sensitivity of 

the plantar pressure device used 

Carry out a rough removal of the 
toe region based on information 
from the associated image mask 

Refine toe removal by analysing 
the plantar pressure distribution 

over the toe-forefoot border 

Compute the foot length and divide 
the toeless foot in the three regions 

(A, B, and C) 

Compute the AI 

Divide the aligned foot into the 
characteristic regions A, B, and C 

Compute the MAI 

Output: AI and MAI 

Input: binary mask 
associated to the 

template foot 
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