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Analysis of ground reaction force and electromyographic activity of the 

gastrocnemius muscle during double support 

 

Abstract 

Purpose: Mechanisms associated with energy expenditure during gait have 

been extensively researched and studied. According to the double-inverted 

pendulum model energy expenditure is higher during double support, as lower 

limbs need to work to redirect the centre of mass velocity. This study looks into 

how the ground reaction force (GRF) of one limb affects the muscle activity 

required by the medial gastrocnemius (MG) of the contralateral limb during 

step-to-step transition. Methods: Thirty-five subjects were monitored as to the 

MG electromyographic activity (EMGa) of one limb and the GRF of the 

contralateral limb during double support. Results: After determination of the 

Pearson correlation coefficient (r), a moderate correlation was observed 

between the MG EMGa of the dominant leg and the vertical (Fz) and 

anteroposterior (Fy) components of GRF of the non-dominant leg (r=0.797, 

p<0.0001; r=-0.807, p<0.0001) and a weak and moderate correlation was 

observed between the MG EMGa of the non-dominant leg and the Fz and Fy of 

the dominant leg, respectively (r=0.442, p=0.018; r=-0.684 p<0.0001). 

Conclusions: The results obtained suggest that during double support, GRF is 
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associated with the EMGa of the contralateral MG and that there is an 

increased dependence between the GRF of the non-dominant leg and the 

EMGa of the dominant MG. 
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1. Introduction 

Several models have been suggested to describe human gait 

mechanisms [1-7]. Although neural and mechanical systems, including 

musculoskeletal dynamics, supra-spinal and afferent modulation, work together 

to minimise energy expenditure [8, 9], it is widely accepted that the recovery of 

mechanical energy during gait is incomplete, even though muscles work to 

compensate energy loss [6, 7, 10, 11]. Understanding how individual muscles 

contribute to specific tasks can provide important insights into neuromuscular 

control and walking mechanics. This understanding can also aid in developing 

improved prosthetic, orthotic and other assistive devices to mitigate 

neuromuscular impairments and designing more effective rehabilitation 

strategies. 

According to the double-inverted pendulum model [7, 12] a major energy 

loss in walking is due to step-to-step transitions [12], which occur mainly during 

double support as the two leg forces need to redirect the centre of mass (COM) 

velocity from a downward and forward direction to an upward and forward 

direction. The leading leg strikes the ground, performing negative work on the 

COM and the energy lost may be restored through positive work by the trailing 

leg. The double-inverted pendulum model predicts that restoring mechanical 

work is done by the trailing leg at the instant of heel strike through a powerful 
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plantar flexion [6, 13, 14]. Based on these assumptions, a relation between 

ankle plantar flexors muscle activity and heel strike force would be expected, as 

these muscles play a major role in propulsion in late stance during unimpaired 

walking [15, 16] and are important to provide body support [17-19], matching 

the second peak of the vertical ground reaction force [20]. Considering 

predictions of the double-inverted pendulum model, impact forces can 

demonstrate the role of the gastrocnemius muscle: it contributes to push-off and 

limits heel strike. According to Doets et al., 2009 [21], the larger the heel strike 

cost in the leading leg during heel strike, the higher the metabolic cost of 

walking, i.e., the energy dissipated during step-to-step transition explains 29% 

of the variance in the metabolic energy cost of walking. 

Neurophysiologically, the regulation of human walking requires a close 

coordination of muscle activation between the two legs which seems to be 

achieved by a flexible neuronal coupling at spinal level (for reviews, see, for 

example, [22, 23]). During gait, a perturbation of one leg evokes a purposeful 

bilateral response pattern, with a similar onset latency on both sides, which is 

thought to be mediated at spinal level under supraspinal control [22, 24-26]. 

Also, there is evidence of bilateral interlimb coordination in homonymous 

muscle groups in the human, as each limb affects the strength of muscle 

activation and the time-space behavior of the other [27]. 
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Many different groups of afferents from flexor and extensor muscles can 

influence the locomotor pattern. Most attention has focused on the action of 

group I afferents from ankle extensors, which contributes to 30-60% of ankle 

extensor activity [28]. Feedback-mediated reinforcement of ankle extensor 

muscle activity contributes, together with supraspinal drive and possibly spinal 

drive (i.e., central pattern generator), to propel the body forward. During the 

stance phase of the human step cycle, the ankle undergoes a natural 

dorsiflexion that stretches the soleus muscle [28]. In [29], it has been reported 

that the Hoffman reflex is relatively low at the time of heel contact, increases 

progressively during the stance phase, and reaches its maximum amplitude in 

the late stance phase. However, ankle extensor muscle velocity during normal 

walking is slow [30] suggesting that group Ia afferent pathways may not be 

effectively recruited during normal walking. In fact, there is a growing body of 

evidence suggesting that load information provided by group Ib afferents, 

arising from force-sensitive Golgi tendon organs, contributes substantially to 

ongoing muscle activity. In addition, it has been suggested that tendon organ 

feedback via an excitatory group Ib pathway contributes to the late stance 

enhancement of the soleus muscle activity [31]. In [32], it has been found that 

electrical stimulation of an extensor nerve at group I strength during walking in 
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the cat spinal substantially increased ongoing activity in other extensor muscles 

(medial and lateral gastrocnemius). 

Taking into account the above and that ground reaction force (GRF) is 

regarded as a representative measurement of gait, because it is the external 

force involved in walking and affects the acceleration of the body’s centre of 

mass [33], the main purpose of this study is to investigate how much a relatively 

simple measure such as the heel strike force can explain plantar flexor muscle 

activity during propulsion of the contralateral leg. Such knowledge can, for 

instance, be used to evaluate patients’ gait and the efficacy of prosthetic and 

orthotic devices. The results obtained will also contribute to understand the 

mechanisms involved in the double support phase of walking, specifically the 

function of plantar flexors. 

2. Methods 

2.1 Subjects 

Thirty-five healthy female subjects were tested (age = 19.7±1.3 years, 

height = 1.65±0.045 m, body weight = 56±5.4 kg, non-dominant Q angle = 

14.57±0.85 degrees; dominant Q angle = 14.7±0.96 degrees; mean±S.D.). 

Individuals not matching at least one of the following criteria were excluded: 

history of recent osteoarticular or musculotendon injury of the lower limb or 

signs of neurological dysfunction which could affect lower limb motor 
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performance; history of lower limb surgery; lower limb anatomical deformities, Q 

angle below 14º or above 17º [18]. Biomechanical changes resulting from 

abnormal alignment may influence joint loads, the mechanical efficiency of 

muscles, and proprioceptive orientation and feedback from the hip and knee, 

resulting in altered neuromuscular function and control of lower limbs [19]. All 

subjects were right-leg dominant. 

The study conformed to the ethical norms of the Institutions involved and 

to the Declaration of Helsinki, dated 1964. Informed consent was obtained from 

all participants. 

2.2 Instrumentation 

Vertical (Fz), anteroposterior (Fy) and mediolateral (Fx) GRF values were 

obtained from a force plate, model FP4060-10, from Bertec Corporation (USA), 

connected to a Bertec AM 6300 amplifier, with default gains and a 1000 Hz 

sampling rate. The amplifier was connected to a Biopac 16-bit analogical-digital 

converter, from BIOPAC Systems, Inc. (USA). The floor and the underlying 

structure were rigid and flat to minimise any vibrations. Also, the top of the force 

plate was at the floor level, which was obtained by having a raised walkway. To 

avoid measurement errors, a gap of 1-2 mm was left between the force plate 

and the surrounding floor. Reliability of measurements of GRF magnitude has 

an intraclass correlation coefficient (ICC) of 0.88 [34]. Medial gastrocnemius 
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(MG) electromyographic activity (EMGa) was monitored using Biopac Systems, 

Inc – MP 150 Workstation; TD150B steel electrodes were used with bipolar 

configuration, 20 mm between detection surfaces (centre to centre) and a 

reference electrode. At preferred walking speeds the total energy of the mean 

EMG value averaged across the gait cycle has been shown to be highly 

consistent [35]. Gait timing was measured by the Brower Timing system (IRD-

T175, Utah, USA), which presents a sensitivity of 0.01 seconds. For each 

subject, the time interval measured was used to calculate the mean speed of 

walking in each trial. Two pressure transducers (TSD111, BIOPAC Systems, 

Inc.) were used to access gait cycles of the trailing leg. Q angle measurement 

was performed with a Baseline universal goniometer. Intra-rater reliability for 

measuring Q-angle in the supine position presents ICC values of 0.94 [36]. Skin 

impedance was measured with an Electrode Impedance Checker (Noraxon 

USA, Inc.). Signals obtained from the force plate, the electromyography and the 

pressure transducer were processed with Acqknowledge, version 3.8, from 

BIOPAC Systems, Inc. 

2.3 Procedures 

Subjects were asked to perform two series of three trials of walking at 

self-selected speed, as three strides of EMG data per subject provide reliable 

information [35]. The EMGa of the MG muscle of one leg (the trailing leg) and 
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the GRF of the contralateral leg (the leading leg) were collected. In the first 

series, the EMGa of the dominant limb during propulsion and the GRF of the 

non-dominant limb at heel strike were monitored. In the second series, we 

collected the EMG signal of the non-dominant limb during propulsion and the 

GRF of the dominant limb at heel strike. Measurements were randomised to 

prevent possible influence from order or learning effects. The lateral 

gastrocnemius was not measured as it has been documented that EMG 

patterns of both heads of the gastrocnemius are similar in terms of the timing of  

activation during walking [20, 37]. In addition, it appears that the MG plays an 

important role in forward propulsion, whereas the soleus does not [38]. 

a) Skin and instrument preparation 

Skin surface of the subjects’ lower limbs was prepared to reduce electrical 

resistance to less than 5000 Ω [39]: shaving of the MG area; removal of dead 

skin cells with alcohol; removal of non-conductor elements with abrasive pad 

[40]. Measurement electrodes were placed at the MG centre, according to [41], 

and fixed with adhesive tape, to prevent displacement and to guarantee 

homogeneous and constant pressure. The reference electrode was placed on 

the patella. Between electrodes positioning and the beginning of measurements 

we set an interval not lower than 5 minutes [42]. Mean walking speed was 

verified using a photoelectric timing system, with sensors positioned 0.95 m 
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apart, at floor level, on both sides of the force plate. Pressure transducers were 

placed on default anatomic locations (calcaneal centre and first 

metatarsophalangeal joint), which helped to measure the gait cycle time of the 

leg which had no contact with the plate [43]. All subjects used the same shoe 

type, in their size. 

b) Measurement 

All subjects walked along a 10 m walkway, as 10-12 m is the preferable 

interval to measure gait of young people, since it permits fast walkers to ‘get 

into their stride’ before any measurements are made [44]. Subjects were 

instructed to step on a force plate located in the middle of the walkway and to 

keep walking past the reference point without stopping. In each measurement, 

only the limb on which the GRF was measured had full contact with the plate 

and there was no extra load on it. Subjects walked for a minimum of 8 steps 

[45, 46]. According to the concept of gait optimisation, it is hypothesised that the 

neuromuscular locomotor system is best stabilised at the usual walking speed, 

that is to say, gait variability is also minimised at the usual walking speed [47-

49]. Therefore, walking speed was freely chosen by each subject. Before the 

data acquisition session itself, subjects executed several trials to get used to the 

procedures. 
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EMGa data were collected by a one-channel unit at 1000 Hz. The signals 

were pre-amplified at the electrode site and then fed into a differential amplifier 

with an adjustable gain setting (12 - 500 Hz; CMRR: 95 dB at 60 Hz, input 

impedance of 100 MΩ and gain of 1000). Raw signals were digitised and stored 

on computer disks for subsequent analysis by the Acqknowledge software. After 

measurement, the EMG signal of MG during propulsion was processed and 

analised. Propulsion was defined as the time between the beginning of weight 

transfer from the calcaneous to the first metatarsophalangeal joint and the 

maximum peak of load of the first metatarsophalangeal joint. To guarantee valid 

results, we have previously taken measurements in each limb both with 

pressure (foot) switches and with the force plate. Comparing the signals 

obtained, we have concluded that by positioning pressure switches according to 

the indicated, we could use the defined time window to assess the EMG activity 

of the GM during propulsion. The EMG signal of MG during propulsion was 

filtered digitally with a zero-lag, second-order Butterworth filter with an effective 

band pass of 20–500 Hz and the root mean square (RMS) was calculated [40]. 

The signal was also normalised according to maximal voluntary contraction to 

reduce subject variability and to convert the EMG amplitude to an estimate of 

muscle activation [50]. Following a warm-up consisting of three submaximal 

isometric contractions, each subject was instructed to perform one series of 
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three trials of maximal isometric plantar flexion force. Subjects were standing 

with the hip at 90º, the knee extended and the ankle in neutral position. They 

were asked to execute maximal isometric force for plantar flexion, under 

resistance, during 5 seconds, with one-minute rest between trials, being 

conformed that there was no EMGa [51]. The signals collected within the first 

and last seconds of each 5 seconds of isometric contraction were not used for 

analysis because of the possible occurrence of ankle movement at the initiation 

and completion of the test. Therefore, a 3-second window of EMG signal was 

used for analysis. This window of raw EMGa was processed using the RMS 

procedure to assess the electrical activity of the MG muscle. 

GRF components (Fx, Fy and Fz) were filtered with a Butterworth filter and 

normalised according to weight [49, 52]. The maximum value of the heel strike 

impulse peak in the Fz, Fy and Fx trace were used for analysis. To account for 

possible effects due to anthropometrics, gait speed was normalized to leg 

length [53, 54]. To reduce the within-individual variability and increase statistical 

power, the calculated variables for the three trials for each subject were 

averaged [55]. 

2.4 Statistics 

Data analysis was performed using the Statistical Package Social 

Science (SPSS), version 13.0, from SPSS Inc. (USA). Shapiro-Wilk test results 
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and Histogram analysis have shown that data were normally distributed; as a 

result, we have used parametric statistics. The Paired-Samples T Test was 

applied to assess possible significant differences between dominant and non-

dominant limbs in terms of EMGa during propulsion and GRF during heel strike. 

The Pearson Correlation Coefficient Test was used to assess the correlation 

between MG EMGa and GRF and between EMGa/GRF and speed. 

3. Results 

Figures 1-3 demonstrate the correlation between the EMGa of the non-

dominant leg during propulsion and the GRF of the dominant leg during heel 

strike and between the EMGa of the dominant leg during propulsion and the 

GRF of the non-dominant leg during heel strike. According to the Pearson 

Correlation Coefficient Test, there was moderate correlation between the MG 

EMGa of the dominant leg during propulsion and Fz and Fy of the contralateral 

leg during heel strike (r=0.797, p<0.0001; r=-0.807, p<0.0001) and weak and 

moderate correlation between the MG EMGa of the non-dominant leg during 

propulsion and Fz and Fy, respectively, of the dominant leg during heel strike 

(r=0.442, p=0.018; r=-0.684, p<0.0001). These correlations indicate that the 

amount of variability in MG EMGa of the dominant leg explained by Fz and Fy 

of the contralateral leg is 63.5% and 65.12%, and that the amount of variability 

in MG EMGa of the non-dominant leg explained by Fz and Fy of the 



16 

contralateral leg is 19.5% and 46.8%, respectively. Figure 4 shows how raw 

EMG signal and GRF profile vary for both limbs. No statistically significant 

correlations were observed between Fx of the dominant leg and EMGa of the 

contralateral leg (r=0.189, p=0.276) and between Fx of the non-dominant leg 

and EMGa of the contralateral leg (r=-0.184, p=0.291). 

Although subjects walked at their comfortable speed and values of 

standard deviation between subjects were low, it was important to analyse the 

influence of speed variation on EMGa and GRF. The Pearson Correlation 

Coefficient Test showed a non-significant correlation between speed and EMGa 

of dominant (r=0.104, p=0.551) and non-dominant limbs (r=-0.187, p=0.282) 

and between speed and Fz, Fy and Fx of dominant (r=-0.102, p=0.558; r=-

0.192, p=0.269; r=-0.284, p=0.099) and non-dominant limbs (r=0.055, p=0.792; 

r=-0.39, p=0.823; r=-0.017, p=0.923). 

Comparing EMGa and GRF values obtained in dominant and non-

dominant limbs (Table 1), there is not enough statistical evidence to conclude 

that there are significant differences in Fz and Fy at heel strike (p=0.18; 

p=0.358) and MG EMGa during propulsion (p=0.08). Differences were observed 

between Fx of dominant and non-dominant limbs at heel-strike (p<0.0001). 

4. Discussion and Conclusions 
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The importance of active work during propulsion [56-58] leads to the 

need of understanding the mechanisms involved in step-to-step transition, and 

more specifically to assess the influence of the contralateral leg heel strike on 

the degree of ankle plantar flexors’ muscle activity. 

Experiments in this study have shown a statistically significant correlation 

between the MG EMGa of the dominant leg during propulsion and Fz and Fy of 

the contralateral limb during heel strike and between the MG EMGa of the non-

dominant leg and Fz and Fy of the contralateral limb at heel strike. According to 

the double-inverted pendulum model, the activity of the leading leg in the double 

support phase can be designated by heel strike, as the force directed along the 

leg executes negative work. On propulsion of the trailing leg, an equal amount 

of positive work is performed, arousing the need to restore energy loss in the 

following heel strike. Transition between steps reaches an optimum level when 

propulsion and heel strike have the same magnitude and a short duration [7]. 

Looking at the step-to-step mechanism presented in [6, 7], the results of this 

study suggest that Fz and Fy are associated to the amount of activity required 

by the MG of the contralateral limb, which is consistent to the role of plantar 

flexors during propulsion, as they have been considered important contributors 

to vertical and horizontal acceleration [16, 17, 59, 60]. This finding corroborates 

the concept that the power activity of the trailing leg (propulsion) is related to 
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that of the leading leg (stabilisation), and that the interaction between muscle 

powers during gait can reflect specific propulsion and control strategies that are 

related to each limb [61]. 

In this study, ankle plantar flexor activation timing has not been analysed; 

however, it seems that the activity of medial gastrocnemius activity preceded 

the contralateral heel strike, which is not surprising since, when a muscle is 

activated, it takes time before the muscle force is fully developed. The time 

taken to reach maximum force depends on factors such as muscle fiber type, 

activation level and contraction dynamics, but for isometric contractions, it 

ranges between 23-73 ms [62-64]. The preactivation period occurred before 

heel strike, and muscle activity within this period, is the result of feedforward 

control mechanisms. This is consistent with the evidence that the spinal co-

ordination of bilateral leg muscle activation depends on a facilitation by 

supraspinal centres. Indeed, cerebellar contribution via reticulo-spinal neurons 

has been suggested in humans [65] and recent evidence was presented for a 

cortical (supplementary motor area) control of interlimb co-ordination [66]. 

Considering the information pointed above, it would be important in future 

studies to analyse plantar ankle flexors timing activity during double support. 

It is becoming more and more accepted that, in addition to neural 

mechanisms, the mechanical properties of the body play a primary role in the 
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dynamics and intrinsic frequencies with the complex nonlinear properties, to 

which the frequencies, phases and shapes of motoneuron signals must be 

adapted for efficient locomotion and motor control [67]. The results of this study 

demonstrate that there is a relation between the mechanics of the leading leg 

and the muscle activity of the trailing leg during step-to-step transition. The 

importance of ankle muscle activity in step-to-step transition is expressed in 

studies dedicated to this mechanism in transtibial amputed subjects [68] and 

subjects with total ankle arthroplasty [21]. These studies indicate that ankle 

impairment leads to a decrease of positive work by the trailing leg and a 

consequent increase of negative work by the leading leg, which partially 

explains the increased metabolic cost of walking. The results of our study 

demonstrate a higher correlation between MG EMGa and Fy, which 

corroborates its major importance in forward propulsion [38]. On the other hand, 

no significant correlation was observed between Fx at heel strike and MG 

EMGa during propulsion, which can result not only from the fact that MG major 

role is related to trunk support and forward displacement [16, 17] but also from 

the fact that Fx is the highest variable component [60]. This higher variability 

can explain the differences observed between dominant and non-dominant 

limbs at heel strike. 
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As to the results obtained, there are two important questions that need 

discussion. First, different values of Pearson correlation have been noted 

between the EMGa of dominant and non-dominant limbs and the GRF of 

contralateral limbs (the first have presented a moderate correlation and the 

second only a weak correlation). Differences between dominant and non-

dominant limbs have been reported frequently, as lower limbs are not used 

equally during walking [69]. This asymmetry has been interpreted based on the 

support and mobility associated to each limb [70-72], as one leg contributes 

more to propulsion while the contralateral one is mainly responsible for support 

and body weight transfer during walking (dominant and non-dominant limbs, 

respectively) [73-75]. Therefore, it can be hypothesised that the higher 

correlation between the EMGa of the dominant limb and Fz and Fy of the 

contralateral limb results from the fact that the dominant limb contributes more 

to propulsion, and so it is more adapted to this function. On the other hand, 

evidence suggests that the dominant leg is stronger in plantar flexion [76] which 

allows accepting that during the double support phase, it is more related to Fz 

and Fy of the contralateral leg than the non-dominant limb. The second 

question is related to the growing evidence showing the compartmentalisation 

of the human gastrocnemius [77-80]. It has been demonstrated that portions of 

the same gastrocnemius muscle are activated differently, depending on the 
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direction of the ankle force [79], and that surface EMGs recorded from the 

pinnated MG muscles are extremely selective [80]. Taking this information into 

account, it would be important, in future studies, to analyse the different 

activation patterns from distinct parts of the triceps surae muscle, as the 

possibility of having specific, localised MG regions involved in limb propulsion  

could be related to the finding that Fz and Fy only explain part of the MG EMGa. 

Several studies agree that changes in walking speed are associated with 

increases in the intensity of muscle activation [70, 81-85]. The results of this 

study show that speed differences obtained between subjects were not related 

to MG EMGa and GRF. These findings can be explained by the fact that 

subjects walked at their own comfortable speed and mean values obtained 

were according to reference values [86]; in addition, standard deviation values 

were low, which is related to the high homogeneity of the sample. As to the 

influence of speed on GRF values, the results of this study are according to the 

ones obtained in [87], where the GRF increased linearly with gait speed only up 

to about 60% of the subjects’ maximum speed. It is important to note that this 

study only addressed the correlation of subject walking speed on MG EMGa 

and GRF to exclude a possible effect of speed, as subjects were asked to walk 

at a comfortable speed. However, as changes in walking speed are associated 

with increases in the intensity of muscle activation and GRF magnitude, it would 
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be important, in future studies, to analyse the influence of speed on the relation 

between MG EMGa of the trailing leg and GRF of the leading leg. 

Another aspect that is important to note is related to the repeatibility of 

GRF peak measurements and limitations of the instruments. As stated in the 

instruments section, we have taken into account several considerations as to 

force platform mounting to avoid measurement errors. In addition, the 

coefficient of variation of GRF peak values obtained in each subject was almost 

always below 12.5%. Moreover, like in the present study, several other 

researchers used the GRF first peak value not only in healthy subjects [49, 88, 

89] but also in subjects with pathology [90-93] and even as a measure to control 

the influence of an exercise program [94]. However, considering limitations in 

terms of repeteability of GRF peak measurements, it would be important in 

future studies to analyse the relation between muscle activity of one limb and 

the slope of the transient of GRF of the contralateral limb during double support. 

Considering that the EMGa of the trailing leg was correlated with the 

magnitude of Fz and Fy of the leading leg, it would be important, in future 

studies, to assess how much of the negative work produced during heel strike 

might be compensated by this muscle. 
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FIGURE CAPTIONS 

Figure 1 – Correlation between MG EMGa of the non-dominant limb during 

propulsion and Fx of the dominant limb during heel strike (right), and between 

MG EMGa of the dominant limb during propulsion and Fx of the non-dominant 

limb during heel strike (left). 

Figure 2 – Correlation between MG EMGa of the non-dominant limb during 

propulsion and Fy of the dominant limb during heel strike (right), and between 

MG EMGa of the dominant limb during propulsion and Fy of the non-dominant 

limb during heel strike (left). 

Figure 3 – Correlation between MG EMGa of the non-dominant limb during 

propulsion and Fz of the dominant limb during heel strike (right), and between 

MG EMGa of the dominant limb during propulsion and Fz of the non-dominant 

limb during heel strike (left). 

Figure 4 – Representation of one subject depicting how the raw EMGa of MG 

and the GRF profile vary for both limbs during double-support phase. At the left, 

one can see the absolute values of raw EMG signal of MG of the dominant leg 

(black) and the Fz (magenta), Fy (cyan) and Fx (green) of the non-dominant 

leg. At the right, the absolute values of raw EMG signal of MG of the non-

dominant leg and the Fz, Fy and Fx of the dominant leg are shown. 
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TABLE CAPTION 

Table 1 – Mean and standard deviation values of EMGa during propulsion and 

GRF at heel strike in dominant and non-dominant members and speed. 
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TABLES 

 

Table 1 

Trial Component N Mean Standard deviation 

1 

Dominant 
EMG 

35 

0.3110 0.0689 

Non-dominant:   

Fz 1.0240 0.10960 

Fy 0.0917 0.01677 

Fx 0.0691 0.02771 

Speed 0.3010 0.04930 

2 

Non-dominant 
EMG 

0.3330 0.06090 

Dominant:   

Fz 1.0120 0.10570 

Fy 0.0941 0.01421 

Fx 0.0811 0.02329 

Speed 0.4490 0.06060 

 


