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ABSTRACT 

Introduction: Sit-to-stand (SitTS) and stand-to-sit (StandTS) are very important 

functional tasks that become compromised in stroke patients. As in other voluntary 

movements, they require an adequate postural control (PC) involving the generation of 

anticipatory postural adjustments (APAs). In order to give clues for more efficient and 

directed rehabilitation programs, a deeper knowledge about APAs during challenging 

and daily life movements is essential. Purpose: To analyze the activation timing of 

tibialis anterior (TA) and soleus (SOL) muscles during SitTS and StandTS in healthy 

subjects and in post-stroke patients. Methods: Two groups participated in this study: 

one composed by ten healthy subjects and the other by ten subjects with history of 

stroke and increased H-reflex. Electromyographic activity (EMGa) of SOL and TA was 

analyzed during SitTS and StandTS in the ipsilateral (IPSI) and the contralateral 

(CONTRA) limb to the side lesion in stroke subjects, and in one limb in the healthy 

subjects. A force plate was used to identify the movement onset. Results: In both 

sequences, in the stroke group SOL activation timing occurred prior to movement onset, 

contrary to the pattern observed in the healthy subjects. Statistical significant 

differences were found in SOL activation timings between each lower limbs of the 

stroke and healthy groups, but no significant differences were found between the IPSI 

and the CONTRA limb. The TA activation timing seems to be delayed in the CONTRA 
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limb when compared to the healthy subjects and showed also a better organization of 

TA timing activation in StandTS when compared to SitTS. Conclusion: Compared to 

healthy subjects, APAs seems to be altered in both limbs of the post-stroke subjects, 

with the SOL activation timing being anticipated in both SitTS and StandTS. 

 
 

1. INTRODUCTION 

 

An voluntary movement requires an adequate postural control (PC) to the desired 

action under a particular environment (Bigongiari et al., 2011; MacKinnon et al., 2007), 

being generally preceded and accompanied by postural adjustments, which have been 

previously described as anticipatory postural adjustments (APAs) (Aruin, 2002; Aruin 

& Shiratori, 2003; Ruget et al., 2008). Therefore, the muscles responsible for postural 

adjustments are activated before those acting as prime movers (Ruget et al., 2008). 

Some authors denote APAs when the activation timing occurs between the 100 ms 

preceding prime mover’s instant of activation and lasting until 50 ms (Aruin, 2002; 

Aruin et al., 1998; Schumway-Cook & Woollacott, 2007), whereas other authors denote 

APAs when a 250 ms activation timing preceding the movement and lasting until 50 ms 

(Shiratori & Latash, 2001). 

As previously described, some authors have focused their studies on the activation 

timing (onset) of muscles that represent APAs’ behaviors (Dehail et al., 2007; Khemlani 

et al., 1999). Thus, APAs can be assessed by the amplitude of the electromyographic 

signal of postural muscles, as well as by their activation timing (Aruin, 2002). 

There are references for the involvement of the supplementary motor area (SMA) 

(Jacobs et al., 2009; Yoshida et al.2008 ) and premotor cortex (PMC) (Chang et 

al.2010) as a potential locus of control in APAs’ generation. A decreased SMA activity 

induced an increase in the latencies of muscle’s activation (Jacobs et al., 2009), and a 

lesion in PMC affects the APAs of bilateral lower extremities in step initiation (Chang 

et al. 2010). The lesions in this cortical area, or their axons, may occur in stroke 

conditions, more specifically when the middle cerebral artery (MCA) is compromised, 

which happens in most of the cases. Therefore, the study of possible adjustments in 

APAs’ response, as a PC indicator, is extremely important as it is a critical component 

to achieving independence in the activities of daily living (Lundy-Ekman, 2008). 



There is some evidence that suggests that APAs are strongly dependent on the 

afferent input from the initial biomechanical conditions (Aruin & Shiratori, 2003). A 

study performed by Galli et al. (2008), which aimed to test this hypothesis, found that 

the APAs in the frontal plane when producing a step are under proprioception-based 

online control. In fact, the activation time reflects the activity of underlying pattern 

generators as well as both central and proprioceptive modulation (Ivanenko et al., 

2006). It has been described a premature and excessive activation of the SOL muscle in 

stroke patients (Cheng et al., 2004). Also, an increased H-reflex response, reflecting a 

possible dysfunction in the modulation process, has been demonstrated (unpublished 

data). It remains unknown if in the presence of a dysfunction of this modulation 

process, due to inappropriate inputs, it is possible to observe changes in APAs’ behavior 

in different initial conditions, like sitting and standing position. Aruin et al. (2003) 

reported that changes in the organization of APAs’ due to differences in body positions 

in sitting vs standing could be expected. 

Several studies about APAs’ patterns have been performed in relation to arm or leg 

movements (Maeda & Fujiwara, 2007; Slijper et al., 2002; Yoshida et al., 2008). 

However, there is a huge lack of knowledge in more challenging actions like sit-to-

stand (SitTS) and stand-to-sit (StandTS), which are very important functional tasks that 

become compromised in stroke patients (Bishop et al., 2005; Camargos et al., 2009; 

Cheng et al., 2004). During SitTS and StandTS sequences, tibialis anterior (TA) muscle 

seems to be the most representative muscle for APAs (Goulart & Valls-Solé, 2001) in 

order to stabilize the foot before forward movement of the body (Dehail et al., 2007; 

Khemlani et al., 1999). According to the reciprocal activation pattern, an opposite 

behavior of the SOL muscle should then be expected (Bishop et al., 2005; Knikou & 

Rymer, 2002). Therefore, the earlier activation of TA, which is important for the foot 

stability (Cheng et al., 2004; Khemlani et al., 1999), can be influenced by the level of 

activity of the soleus (SOL) muscle. 

The neuronal pattern evoked during a task is always targeted to maintain the body 

centre of mass over the base of support (Dietz, 1996) and sensory inputs can have 

global influences in selecting motor patterns (see, for example, the review in (Rossignol 

et al., 2006)). Despite the influence of SMA area over APAs generation, the finding that 

loading the ankle plantar flexors influence the behavior of SOL muscle (Mazzaro et al., 



2007) may justify the hypothesis that the activation timing of TA and SOL might be 

different due to differences in loading like it occurs during sitting vs standing position.  

The purpose of this study was to analyse the activation time of TA and SOL during 

SitTS and StandTS in the ipsilateral (IPSI) and contralateral (CONTRA) limb of stroke 

patients with an increased H-Reflex in the CONTRA limb, and compare it with healthy 

subjects. 

 
2. METHODS 

 

2.1 Sample  

This study included two groups with age raging from 30 to 65 years: the “healthy 

group” and the “stroke subjects” group. Ten voluntary individuals (three female and 

seven male), with a first isquemic stroke and an associated higher H-Reflex response in 

CONTRA limb, in relation to healthy subjects, participated in this study. The inclusion 

criteria were: lesion at the territory of middle cerebral artery (MCA), in a sub-cortical 

level, confirmed by computerized axial tomography of the brain; a score superior to 34 

on the Fugl-Meyer Assessment of Sensorimotor Recovery After Stroke scale 

(Lamontagne et al., 2002); able to perform SitTS and StandTS sequence independently 

(Camargos et al., 2009; Cheng et al., 2004). For both groups, subjects that were under 

medication that could affect motor performance and without cognitive function to 

understand orders (assessment using the Mini-Mental State Examination) were 

excluded. All subjects with previous history of neurologic disease, such as Parkinson 

disease, pontine and/or cerebellar lesions, sensory impairment, diabetes, 

thrombophlebitis, history of lower limb surgery or any orthopedic or rheumatoid 

conditions interfering with SitTS and StandTS sequences were also excluded. The 

healthy group consisted of 10 individuals (six female and four male) that were 

considered sedentary, according to the Centre for Disease Control for the American 

College of Sports Medicine (Thompson, 2001). The same exclusion criteria were 

applied for this group. 

This study was approved by the Ethics Committee of Escola Superior de Tecnologia 

da Saúde do Porto, in Portugal. All subjects gave their informed consent according to 

the Declaration of Helsinki.  

The “healthy subjects” and “stroke subjects” groups were characterized in relation to 

age, weight and height in order to assess their variability. Moreover, the stroke subjects 



group showed a time evolution superior to two years and seven of those individuals had 

the lesion on the left side and the other three on the right side (Table 1). 

 

 

2.2 Instruments 

For the lower limb evaluation, the corresponding part of the adapted version to the 

Portuguese population of the Fugl-Meyer Assessment of Sensorimotor Recovery After 

Stroke was used. 

The EMG signal was acquired and processed using the Bioplux research system 

(Plux, Portugal), and the Acqknowledge software (Biopac Systems, Inc. USA). A force 

plate, FP4060-10 model from Bertec Corporation (U.S.A), connected to a Bertec AM 

6300 amplified, and to the Biopac MP150 Workstation, was used. For the H-Reflex 

measurement, the electrically induced EMG activity of soleus muscle was obtained 

using a Biopac MP150 Workstation (Biopac Systems Inc., Santa Barbara, CA, USA) 

with appropriate software for the data acquisition and analysis (Acqknowledge, version 

3.9). The EMG signals were acquired using pre-amplified active electrodes (TSD150B, 

Biopac Systems Inc., Santa Barbara, CA). The electromyographic and force plate data 

were collected at 1000 Hz. 

 

2.3 Procedures 

2.3.1 Preparation 

Immediately before the electrode placement, the skin was prepared to reduce the 

impedance to a level equal or inferior to 5 KΩ (Camargos et al., 2009; Cheng et al., 

2004; Correia et al., 1993). 

For TA EMGa data collection, the electrodes were placed on the 1/3 of the line that 

goes from the superior extremity of the fibula to the inferior extremity of the medial 

malleolus (Cheng et al., 2004). For the SOL muscle, the electrodes were placed 2 cm 

below medial gastrocnemius muscle and 2 cm medially to the midline of the leg 

(Palmieri et al., 2002). 

For H-reflex data, the stimulation electrodes were located in transversal 

configuration, with the cathode over the tibial nerve in the popliteal fossa, and the anode 

placed proximal to the patella on the lower anterior aspect of the thigh, in order to 

selectively activate Ia afferents at lower thresholds and to reduce the stimulus artifact 

(Chen & Zhou, 2011; Higashi et al., 2001; Palmieri et al., 2004; Tokuno et al., 2008). 



 

2.3.2 Data Collection 

a) Timing activation 

After an explanation about the procedures, all individuals performed the task with shorts 

and with standard shoes with soles of 1 cm high (Kim et al., 2011). It was also 

established a minimum interval of 5 minutes between the electrode placement and the 

EMG data acquisition. The task initiated from sitting position, with arms parallel to the 

body and 2/3 of the femur supported on the seat. A plinth was placed in height adjusted 

to 100% of the lower leg length (from the knee joint to the ground), as a reference for 

the subjects to assume the sitting position. Before the verbal command “You may stand 

up and remain still” and “you may sit down”, the individuals were instructed to perform 

the task at a normal speed without using the upper limbs or moving their feet (Dubost et 

al., 2005), while maintaining a visual reference placed 2 meters away. One minute rest 

between each trial was provided, and the necessary repetitions were performed in order 

to obtain three valid trials. On the stroke subjects group, both members were analyzed 

simultaneously, while on the healthy group each member was randomly selected. 

b)  H-Reflex  

Tests were performed with the subjects in supine laying position, with feet being 

supported in a slightly flexed position, with a  knees angle of approximately 20º. 

Subjects were familiarized with sub-maximal electrical stimuli over a period of 10 

minutes before the beginning of the testing session while confirmed the place of the 

cathode (Scaglioni et al., 2003). This placement was considered adequate when the 

stimulus threshold for eliciting the H-reflex was less than the required to induce a M-

wave in the soleus muscle and the value M-max and its stabilization was obtained 

(Palmieri et al., 2004; Tucker et al., 2005). 

The soleus muscles were stimulated by delivering percutaneous electric stimulation in 

the tibial nerve (Chen & Zhou, 2011; Higashi et al., 2001; Palmieri et al., 2004). Each 

stimulus, delivered from a constant-current stimulator, was inferior to 0.5 ms in order to 

avoid unpleasant sensations from the stimulation of skin nociceptors (Chen & Zhou, 

2011; Palmieri et al., 2004; Tucker et al., 2005). The pulse intensity was increased 

gradually from below the threshold of the H-reflex to supra-maximal for M response 

with increments of 10% of the individual maximal M-wave. Three pulses were 

delivered sequentially at each stimulus intensity (Palmieri et al., 2004; Tucker et al., 



2005). To minimize the effect of post-activation depression the inter-stimulus duration 

was no less than 10 s (Chen & Zhou, 2011; Palmieri et al., 2004). 

2.3.3 Data Processing  

a) Timing activation 

The raw EMG signal and the force plate data were processed using the 

Acqknowledge software. The raw EMG signal was filtered with a band-pass filter of 20 

and 500 Hz and the values of root mean square were calculated (Billot et al., 2010; 

Lamontagne et al., 2002; Lamontagne et al., 2000). The signal from the force plate was 

also filtered, using a low pass filter of 10 Hz. 

SitTS events were identified by Bishop et al. (2005), through antero-posterior 

ground reaction force (FAP), where the peak of this force represents the transition 

between the flexion-momentum and momentum-transfer stages of SitTS. The study of 

APAs in SitTS can be done through observation of the variation in the FAP vector in the 

onset movement of SitTS (Bishop et al., 2005; Galli et al., 2008). In the present study, 

the moment onset was defined as time zero (T0) and was identified through FAP. T0 was 

defined as the instant lasting at least 50 ms when FAP value was greater or smaller than 

the mean of its baseline value plus 2 standard deviation (SD). The onset of TA and SOL 

relatively to T0, was identified by electromyography, and a rest interval was selected 

from -500 to -450 ms, being analyzed the average (M) and SD values. The beginning of 

the muscular activity was defined by the interval of time when the electromyographic 

signal exceeds the mean of its baseline value plus 2 SD during a time interval equal or 

superior to 50 ms. The mean time of TA and SOL onset was adopted for each subject.  

All procedures were performed for each trial, having the arithmetic mean of the 

values obtained for each variable in 3 satisfactory trials. The data acquisition was 

always performed by the same investigator to ensure the reproducibility of the technique 

and reduce subjectivity. 

b)H.-Reflex 

All EMG signals were filtered (10-1000 Hz) and the peak-to-peak amplitudes of 

the H-reflexes and M-waves were recorded for all the test stimulations in order to 

calculate the value of Mmax/Hmax ratio. 

 

2.4 Statistics 

The statistical analysis was performed using the Statistical Package for Social 

Sciences (SPSS, IBM, USA) version 18.0.0 for Microsoft Windows 7. Using 



descriptive statistics, the measures of central tendency (M) and dispersion (SD) for the 

timing of SOL and TA EMG activity were calculated. 

The Wilcoxon Signed Rank Test (Z) and Mann-Whitney Test (U) were applied to 

compare the activation timing between the IPSI and CONTRA limb of the individuals 

from the stroke group, and also between the stroke and the healthy group, respectively 

(Marôco, 2010). The Mann-Whitney Test was also used to compare the Mmax/Hmax 

values between CONTRA limb and a limb of healthy subjects. The Paired-Sample T 

Test and Independent-Sample T-Test were used to analyze the differences in the 

execution task time between SitTS and StandTS and between stroke and healthy 

subjects, respectively. Differences with a p< 0.05 were considered statistically 

significant. 

 

3. RESULTS 

The time of execution of SitTS and StandTS were compared, and no differences were 

obtained in stroke (p=0.349) and healthy (0.081) subjects. Also, no differences were 

observed between both groups in relation to time of execution of SitTS (p=0.605) and 

StandTS (p=0.191).  

 

SitTS and StandTS of healthy subjects requires TA preactivation followed by SOL 

activation after the beginning of the movement 

Analyzing TA and SOL onsets in healthy subjects during SitTS, it is observed that 

TA is activated prior the movement (-156.7 ± 98.2 ms), contrary to SOL, which starts to 

be active afterwards (170.6 ± 80.5 ms) (Fig.1A). Similarly, during StandTS, the TA 

activation timing occurs before the movement (-228.9 ± 185.1 ms), unlike what is 

observed in SOL (207.9 ± 402.2 ms) (Fig. 1A).  

 

SOL activation timing seems to be anticipated in both SitTS and StandTS in the IPSI 

and the CONTRA limbs of stroke subjects 

In the IPSI limb of stroke patients, in both SitTS and StandTS, TA seems to have an 

activation timing (-224.9 ± 103 ms and -188.4 ± 139.4 ms, respectively) that is not 

significantly different from what was observed in the healthy group (p=0.257 and p= 

0.643, respectively), occurring prior to the movement as well (Fig. 1B). In opposite, 

SOL onset appears before the beginning of the movement (-122.6 ± 150.9 ms for SitTS 

and -209.1 ± 160 ms for StandTS, respectively), being close to the activation timing of 



TA of the same limb (Fig. 1B). Moreover, SOL activation timing of the IPSI limb of 

stroke patients is significantly different from the SOL activation timing of healthy 

subjects (SitTS, p<0.0001; StandTS, p= 0.018). Similarly, the activation timing of SOL 

in the CONTRA limb (-222.7 ± 140.9 ms for SitTS and -152.0 ± 56.2 ms for StandTS) 

occurs before the movement, and no significant differences were found when the IPSI 

and CONTRA limbs were compared (p=0.086, p=0.753). 

 

The TA and SOL activation timing pattern during SitTS and StandTS may be inverted 

in the CONTRA limb of stroke patients 

Although TA appears to be activated prior the movement in the CONTRA limb of 

stroke patients in both SitTS (-15.3 ± 52.4 ms) and StandTS (-79.0 ± 86.4 ms), data 

suggests that SOL activation timing occurs before TA (-222.7 ± 140.9 ms and -152.0 ± 

56.2 ms, respectively), which is against what should be expected (Fig. 1C). 

 

4. DISCUSSION 

 

Muscle activation timing represents only one of the several components of the motor 

control system (Cowan et al., 2001). Thus, it is important to be aware that for an 

efficient voluntary movement to happen, it must be preceded and accompanied by 

postural adjustments, the APAs, whose responsible muscles need to activate prior the 

prime muscle movers (Ruget et al., 2008). In SitTS and StandTS, the forward 

movement of the trunk over the lower limbs justifies the need of TA activation timing 

prior to the movement. This is based on the fact that the central nervous system can 

previously adjust anticipatory activity of muscles in response to perturbations/changes 

in the direction of the movement (Aruin & Shiratori, 2003).  

In the healthy subjects, we observed that, for both SitTS and StandTS, TA seems to 

play an important role for APAs since it is active prior to the beginning of the 

movement, with activation timing between the -250 ms APAs interval period referred 

by Shiratori et al. (2001). Following what was previously described, this finding was 

already expected and in agreement with other studies, which showed that TA seems to 

be the most representative muscle for APAs in order to stabilize the foot during SitTS 

and StandTS (Goulart & Valls-Solé, 2001; Khemlani et al., 1999). 



Moreover, based on the study of Kim et al. (2011) which showed that high-heeled 

shoes interfere with the amplitude and the timing characteristics of the EMG activities 

in SitTS, we hypothesized that a lower loading in sitting position, when compared to 

standing, would decrease the firing of the muscle afferents from the ankle extensors and 

thereby reduce the EMG background, allowing for a different TA activation timing 

between both sequences. Although no statistical significance was found, TA 

preactivation seems to occur earlier in StandTS than in SitTS. Nevertheless, in order to 

achieve evident conclusions, further research is required. 

Regarding the stroke subjects, we observed in both the IPSI and the CONTRA limbs 

that SOL activation timing seems to be anticipated, whether it is SitTS or StandTS, 

which is in line to what was found by Cheng et al. (2004). Taking into account that: 1) 

APAs result from an activation that occurs prior to the movement in order to set an 

adequate postural control to allow the movement to happen without perturbations, and 

that (2) the activation time of SOL muscle in the CONTRA and IPSI limb was lower 

than the -250 ms (APAs activation time defined by Shiratori & Latash (2001), we 

hypothesis that SOL might contribute to APAs in both limbs of the stroke subjects. It 

should be noted that no differences were observed in SOL activation timing between the 

IPSI and the CONTRA limbs. These results reinforce the idea of a dysfunction in both 

limbs of the stroke subjects, suggesting the existence of lesion or possible dysfunction 

of the ipsilateral networks involved in APAs generation. The cortico-reticular system, 

which involves inputs from SMA and PMC, may explain this fact. However, this 

finding can also be justified based on the asymmetrical posture that is commonly 

assumed by stroke patients, leading to different patterns of APAs as an anticipatory co-

activation of agonist-antagonist muscles to deal of the instability of the task (Aruin, 

2006). It was interesting to note that the IPSI and CONTRA seem to present different 

behavior concerning magnitude and phasic activation (Fig. 1). Consequently, it would 

be important in future studies to analyze these parameters, to better understand the 

nature of IPSI behavior. All subjects performed the movement sequences at their self-

selected velocity in order to get more homogeneous levels of effort between both 

groups. However, it would be important in future studies to analyze the effect of speed 

in APAs during the movement sequences analyzed as speed has been demonstrated to 

exert influence on APAs generation (Yoshida e tal.2008). But, the absent of significant 

differences for time execution tasks between healthy and stroke subjects and between 



tasks, in addition to the fact that no differences were observed in subjects’ height, 

suggests that the velocity did not upset our results. 

In stroke subjects the tendency to have a decreased of excessive activation timing of 

SOL during StandTS (-152.0 ms), in relation to SitTS (-222.7 ms), can lead some clues 

about the possibility of having some modulation process also in CONTRA limb despite 

the higher H-Reflex. Considering this, it is possible to state, as in Aruin et al. (2003), 

that APAs were redistributed between muscles depending on the availability of the 

mechanical contact with the environment. In spite of we had not included the role of 

gravity and of the body alignment in our study, they can be hypothesized as possible 

contributors to these differences. Despite the inhibition mechanisms were mostly study 

in relation to magnitude of EMGa, a possible influence of these mechanisms in onset of 

muscle behavior can be hypothesized as there is some evidence for task dependency of 

reciprocal inhibition mechanisms (Kido et al., 2004). 

Notwithstanding the absence of statistical significance, the TA activation in the 

CONTRA limb seems to be delayed in both SitTS (-15.3 ms) and StandTS tasks (-79.0 

ms). This result is in agreement with the findings in (Chang et al., 2010), which include 

a delay in the activation timing of the primary postural muscles during stepping in post 

stroke individuals. In addition, it also seems that the activation timing pattern is inverted 

in the CONTRA limb, since SOL fires before TA. A previous study by Slijper et al. 

(2002) demonstrated that stroke subjects had asymmetrical APAs between both sides of 

the body. Moreover, it is important to note that no differences were found in TA and 

SOL between the CONTRA and the IPSI limbs during StandTS in stroke subjects, and 

differences were observed in TA during SitTS in the same subjects. This finding 

suggests that there is a neural connection in standing position, in spite of the higher H-

Reflex in CONTRA limb of the stroke group. This interpretation is supported by the 

evidence demonstrating that sensory information can be used to modify online the 

feedforward command of the APAs (Ruget et al., 2008). In fact, TA seems to have a 

better capacity of anticipatory postural behavior in StandTS when more loading is 

imposed over plantarflexors muscles. Moreover, the results of this study concerning the 

differences in timing activation response between SitTS and StandTS conditions can be 

supported by the fact that loading variation would be accompanied by an increased or 

decreased, in the baseline lower limb muscle activity (Marsden et al., 2003). Also, this 



finding suggests that it would be possible to organize APAs response in subjects with 

higher H-Reflex. 

The results obtained in the present study can be important to define better 

rehabilitation strategies for stroke subjects since the improvement of PC is a critical 

component to achieve independence in the activities of daily living (Lundy-Ekman 

2008). The therapeutic decisions must then consider whether there is a need to modify 

proprioceptive feedback from the muscles and joints to modulate SOL activity in order 

to allow a more previous TA activation timing. These issues reinforce the need to 

discuss the neural and the biomechanical aspects of SOL muscle activation in stroke 

subjects and the possible dysfunction of proprioceptive acuity. The results of this study 

support the importance of considering the IPSI limb in rehabilitation and in the 

biomechanical characterization of this group as this limb presents dysfunctional 

characteristics that have already been found in other studies (Silva et al., 2012a; Silva et 

al., 2012b). 

 

5. CONCLUSION 

In post-stroke subjects, APAs seem to be altered in both limbs, showing an 

anticipated activation timing of SOL in both IPSI and CONTRA limbs, and a delayed 

onset of TA in the CONTRA limb. 
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Table 1 – Mean (M) and standard deviation (SD) values of age, height, weight and H-reflex 

of healthy and stroke groups. Also, values of time evolution and side lesion are presented. 
 

 Stroke group Healthy group p-value 

Age (years) 55.3 (8.3) 50.4 (10.8) 0.280 

Height (cm) 164.7 (10.1) 167.8 (9.3) 0.971 

Weight (Kg) 76.5 (8.4) 67.6 (6.7) 0.052 

H-reflex 82.2 (22.9) 45.6 (27.6) 0.007 

Time evolution (months) 26.5 (10.2) --- --- 

Lesion side, number of subjects 
Right, n=3 

Left, n=7 
--- --- 

 
 

 

Fig 1. Activation timing of TA and SOL muscles in the IPSI, CONTRA in the stroke 
and the healthy groups. This is representative of the behavior in both sequences. 

 



 

Fig 2. Activation timing of TA (black symbol) and SOL (white symbol) during SitTS and StandTS in 
healthy subjects (A), in the IPSI (B) and in the CONTRA limb (C) of stroke patients. (The data is 

expressed as mean ± SD.) 
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