Estimação do Subespaço de Sinal em Dados Hiperespectrais

José M. P. Nascimento^{*} and José M. B. Dias^{**}

* Instituto Superior de Engenharia de Lisboa and Instituto de Telecomunicações edifício DEETC, R. Conselheiro Emídio Navarro, N 1, 1950-062 Lisboa, Portugal Telefone:+351.21.8317282, Fax:+351.21.8317114
E-mail: zen@isel.pt
** Instituto de Telecomunicações and Instituto Superior Técnico Av. Rovisco Pais, Torre Norte, Piso 10, 1049-001 Lisboa, Portugal Telefone: +351.21.8418466, Fax: +351.21.841472

E-mail: bioucas@lx.it.pt

Resumo

A redução de dimensionalidade é uma tarefa crucial no processamento e análise de dados hiperespectrais. Esta comunicação propõe um método de estimação do subespaço de sinal baseado no erro quadrático médio. O método consiste em primeiro estimar as matrizes de correlação do sinal e do ruído e em segundo seleccionar o conjunto de vectores próprios que melhor representa o subespaço de sinal. O eficiência deste método é ilustrada em imagens hiperespectrais sintéticas e reais.

Palavras-Chave : Redução de dimensionalidade; Subespaço de sinal; Dados hiperespectrais; Misturas lineares.

1 Introdução

A detecção remota de alta resolução espectral explora o facto de todas as substâncias dispersarem energia electromagnética, em diferentes comprimentos de onda, consoante a sua composição molecular [1]. Os sensores de detecção remota de alta resolução espectral, denominados por sensores hiperespectrais, geram imagens compostas por centenas de bandas contíguas de alta resolução espectral (< 10nm) no espectro óptico e infra-vermelho $(0.3 - 2.5\mu m)$ [2]. Em muitos casos a resolução espacial destes sensores é de 10 a 20 metros. Em consequência, o vector de observação associado a cada pixel é uma mistura da energia solar dispersada por várias substâncias com concentrações distintas (designadas por abundâncias) [3].

Cada pixel de uma imagem hiperespectral pode ser representado como um vector no espaço \Re^L , onde L é o numero de bandas. Segundo o modelo linear, os vectores espectrais são uma combinação linear das reflectâncias (assinaturas) das substâncias presentes na imagem. Assim, a dimensionalidade dos dados (número de substâncias) é muito menor que o número de bandas.

Um problema fundamental na redução de dimensionalidade em dados hiperespectrais é a determinação do número de substâncias presentes na imagem, também designada por dimesionalidade intrinseca (ID) do conjunto de dados. A estimação da ID permite uma redução da dimensionalidade dos dados correcta, trazendo ganhos computacionais e simultaneamente melhorar a relação sinal ruído (SNR). Para estimar a ID, são sobejamente conhecidas as técnicas de projecção, que minimizando um funcional de custo procuram o subespaço que melhor representa o sinal. São exemplos, a análise em componentes principais (principal component analysis - PCA) [4]; a maxima fracção de ruído (maximum noise fraction - MNF) [5] ou as componentes principais com ruído ajustado (noise adjusted principal components - NAPC) [6].

Recentemente Harsanyi, Farrand e Chang desenvolveram um detector de Neyman-Pearson (HFC), que determina o número de substâncias presentes numa imagem hiperespectral (ver [7]).

Esta comunicação propõe um novo método para estimar o número de substâncias bem como o subespaço de sinal de misturas lineares hiperespectrais. O método proposto estima a matriz de correlação do sinal e do ruído, esta última com base em regressão múltipla. O subespaço de sinal é determinado com base num conjunto de vectores próprios que melhor representam o erro quadrático médio do valor médio do conjunto de dados [8].

A comunicação organiza-se da seguinte forma: Na secção 2 descreve-se os fundamentos do método proposto. Na secção 3 avalia-se o algoritmo proposto com dados hiperespectrais simulados. Na secção 4 o algoritmo é testado com dados reais. A secção 5 apresenta as conclusões da comunicação.

2 Estimação do subespaço

Considere-se $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2 \dots \mathbf{Y}_N]$ uma matriz de dimensão $L \times N$ cujas as colunas são vectores espectrais, um por cada pixel, onde N é o número de pixels e L o número de bandas. Assumindo o modelo de misturas lineares, cada vector espectral observado é dado por:

$$\mathbf{y} = \mathbf{x} + \mathbf{n}$$

= $\mathbf{M}\mathbf{s} + \mathbf{n}$, (1)

onde **y** é um vector de dimensão $(L \times 1)$, $\mathbf{M} \equiv [\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_p]$ a matriz de mistura (em que \mathbf{m}_i representa a assinatura da *i*-ésima substância e p o número de substâncias presentes na área em análise), $\mathbf{s} = [s_1, s_2, \dots, s_p]^T$ é o vector com as abundâncias de cada substância (a notação $(\cdot)^T$ representa o vector transposto) e \mathbf{n} modela o ruído do sistema que se assume de média nula e independente de \mathbf{x} .

Devido a limitações físicas [9], as abundâncias são positivas ($\mathbf{s} \ge 0$) e a soma de todas estas é unitária ($\mathbf{1}^T \mathbf{s} = 1$)¹.

A matriz de correlação do vector $\mathbf{y} \in \mathbf{R}_y = \mathbf{R}_x + \mathbf{R}_n$, onde $\mathbf{R}_x = \mathbf{M}\mathbf{R}_s\mathbf{M}^T$ é a matriz de correlação do vector de sinal \mathbf{x} , \mathbf{R}_n é a matriz de correlação do ruído e \mathbf{R}_s a matriz de correlação das abundâncias. A estimativa da matriz de correlação do sinal é dada por

$$\widehat{\mathbf{R}}_x = \widehat{\mathbf{R}}_y - \widehat{\mathbf{R}}_n,\tag{2}$$

onde $\hat{\mathbf{R}}_y = \mathbf{Y}\mathbf{Y}^T/N$ é a matriz de correlação amostral de $\mathbf{Y} \in \hat{\mathbf{R}}_n$ uma estimativa da matriz de correlação do ruído.

 $^{^1\}mathbf{1}$ denota um vector de uns com dimensão de $p\times 1$

Figura 1: (a) Ilustração da estimação do ruído por regressão múltipla; linha grossa: reflectância num pixel; line fina: reflectância mais ruído; (b): linha fina: ruído adicionado; linha tracejada: ruído estimado para o mesmo pixel.

Defina-se $\mathbf{Y}^i = [Y_{i1}, \dots, Y_{iN}]^T$, ou seja, \mathbf{Y}^i é o transposto de *i*-ésima linha da matriz \mathbf{Y} , que contém os dados lidos pelo sensor hiperespectral na *i*-ésima banda para todos os pixeis da imagem. Defina-se também a matriz $\mathbf{Y}^{\partial_i} = [\mathbf{Y}^1, \dots, \mathbf{Y}^{i-1}, \mathbf{Y}^{i+1}, \dots, \mathbf{Y}^L]$.

Assumindo que a dimensão do subespaço de sinal é muito inferior ao número de bandas, então a matriz de correlação do ruído, $\widehat{\mathbf{R}}_n$, pode ser estimada com base na teoria da regressão múltipla [10]. Este conceito assume que

$$\mathbf{Y}^{i} = \mathbf{Y}^{\partial_{i}}\boldsymbol{\beta}_{i} + \boldsymbol{\epsilon}_{i},\tag{3}$$

onde $\boldsymbol{\beta}_i = [\beta_1, \dots, \beta_{L-1}]^T$ é o vector de regressão e $\boldsymbol{\epsilon}_i$ o erro da regressão. Para cada $i \in \{1, \dots, L\}$, o vector de regressão é dado por $\boldsymbol{\beta}_i = [\mathbf{Y}^{\partial_i}]^{\#} \mathbf{Y}^i$, onde $(\cdot)^{\#}$ denota a matriz pseudo-inversa. Finalmente, é calculado $\hat{\boldsymbol{\epsilon}}_i = \mathbf{Y}^i - \mathbf{Y}^{\partial_i} \hat{\boldsymbol{\beta}}_i$ e a sua matriz de correlação de ruído $\hat{\mathbf{R}}_n$.

A Figura 1 (a) apresenta uma reflectância \mathbf{x} e a mesma reflectância com ruído $\mathbf{x} + \mathbf{n}$ para um dado pixel. Na Figura 1 (b), apresenta-se o ruído que foi adicionado e a sua estimativa, para o mesmo pixel. Repare-se que a estimativa do ruído com o método de regressão múltipla é muito semelhante ao ruído que foi adicionado ao sinal.

Considere-se a decomposição singular (SVD) da matriz de correlação do sinal, $\widehat{\mathbf{R}}_x = \mathbf{E} \Sigma \mathbf{E}^T$, onde $\mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_L]$ é uma matriz com os vectores singulares ordenados por ordem decrescente do valores singulares respectivos. O espaço \Re^L pode ser dividido em dois subespaços ortogonais: $\langle E_k \rangle$ gerado por $\mathbf{E}_k = [\mathbf{e}_1, \dots, \mathbf{e}_k]$ e $\langle E_k^{\perp} \rangle$ gerado por $\mathbf{E}_k^{\perp} = [\mathbf{e}_{k+1}, \dots, \mathbf{e}_L]$, onde k é dimensionalidade do subespaço de sinal.

Dado que as abundâncias das substâncias nas misturas hiperespectrais são positivas, a projecção do valor médio de \mathbf{Y} em qualquer vector singular \mathbf{e}_i , $1 \le i \le k$, é sempre diferente de zero. Assim, o subespaço de sinal pode ser identificado pelo conjunto de vectores singulares que melhor representam o erro quadrático do valor médio dos dados.

O valor médio das amostras ${\bf Y}$ é

$$\overline{\mathbf{y}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{Y}_{i}$$

$$= \frac{1}{N} \mathbf{M} \sum_{i=1}^{N} \mathbf{s}_{i} + \frac{1}{N} \sum_{i=1}^{N} \mathbf{n}_{i}$$

$$= \mathbf{c} + \mathbf{w}, \qquad (4)$$

onde **c** está no subespaço de sinal e $\mathbf{w} \sim \mathcal{N}(0, \mathbf{R}_n/N)$ [$\mathcal{N}(\mu, \mathbf{C})$ denota uma função densidade normal com média μ e covariância **C**]. Considere-se que \mathbf{c}_k é a projecção de **c** no subespaço $\langle E_k \rangle$. A estimação de \mathbf{c}_k é obtida pela projecção de $\overline{\mathbf{y}}$ no subespaço de sinal $\langle E_k \rangle$, ou seja, $\hat{\mathbf{c}}_k = \mathbf{P}_k \overline{\mathbf{y}}$, onde $\mathbf{P}_k = \mathbf{E}_k \mathbf{E}_k^T$ é a matriz de projecção no subespaço $\langle E_k \rangle$.

O primeiro e segundo momentos do erro de estimação $\mathbf{c} - \widehat{\mathbf{c}}_k$ são

$$E[\mathbf{c} - \widehat{\mathbf{c}}_{k}] = \mathbf{c} - E[\widehat{\mathbf{c}}_{k}]$$

$$= \mathbf{c} - E[\mathbf{P}_{k}\overline{\mathbf{y}}]$$

$$= \mathbf{c} - \mathbf{P}_{k}\mathbf{c}$$

$$= \mathbf{c} - \mathbf{c}_{k}$$

$$\equiv \mathbf{b}_{k}, \qquad (5)$$

$$E\left[(\mathbf{c} - \widehat{\mathbf{c}}_k)(\mathbf{c} - \widehat{\mathbf{c}}_k)^T\right] = \mathbf{b}_k \mathbf{b}_k^T + \mathbf{P}_k \mathbf{R}_n \mathbf{P}_k^T / N, \qquad (6)$$

onde $\mathbf{b}_k = \mathbf{P}_k^{\perp} \mathbf{c}$ é a projecção de \mathbf{c} no subespaço $\langle E_k^{\perp} \rangle$. Assim, a função de densidade de probabilidade do erro estimado $\mathbf{c} - \hat{\mathbf{c}}_k$ é $\mathcal{N}(\mathbf{b}_k, \mathbf{b}_k^T \mathbf{b}_k + \mathbf{P}_k \mathbf{R}_n \mathbf{P}_k^T / N)$,

O erro quadrático médio (mse) entre $\mathbf{c} \in \widehat{\mathbf{c}}_k$ é

$$mse(k) = E[(\mathbf{c} - \widehat{\mathbf{c}}_{k})^{T}(\mathbf{c} - \widehat{\mathbf{c}}_{k})]$$

$$= tr\{E[(\mathbf{c} - \widehat{\mathbf{c}}_{k})(\mathbf{c} - \widehat{\mathbf{c}}_{k})^{T}]\}$$

$$= \mathbf{b}_{k}^{T}\mathbf{b}_{k} + tr(\mathbf{P}_{k}\mathbf{R}_{n}\mathbf{P}_{k}^{T}/N), \qquad (7)$$

onde tr(·) denota o operador traço. Dado que se desconhece \mathbf{b}_k , podemos aproximar a Eq. (7) estimando o valor de \mathbf{b}_k , ou seja, $\hat{\mathbf{b}}_k = \mathbf{P}_k^{\perp} \overline{\mathbf{y}}$. Contudo, $E[\hat{\mathbf{b}}_k] = \mathbf{b}_k$ e $E[\hat{\mathbf{b}}_k^T \hat{\mathbf{b}}_k] = \mathbf{b}_k^T \mathbf{b}_k + \text{tr}(\mathbf{P}_k^{\perp} \mathbf{R}_n \mathbf{P}_k^{\perp T}/N)$, ou seja, a estimativa de $\mathbf{b}_k^T \mathbf{b}_k$ é $\hat{\mathbf{b}}_k^T \hat{\mathbf{b}}_k - \text{tr}(\mathbf{P}_k^{\perp} \mathbf{R}_n \mathbf{P}_k^{\perp T}/N)$. O critério para determinar a dimensionalidade do subespaço de sinal é

$$\widehat{k} = \arg \min_{k} \left(\widehat{\mathbf{b}}_{k}^{T} \widehat{\mathbf{b}}_{k} + \operatorname{tr}(\mathbf{P}_{k} \mathbf{R}_{n} \mathbf{P}_{k}^{T}/N) - \operatorname{tr}(\mathbf{P}_{k}^{\perp} \mathbf{R}_{n} \mathbf{P}_{k}^{\perp}^{T}/N) \right)
= \arg \min_{k} \left(\overline{\mathbf{y}}^{T} \mathbf{P}_{k}^{\perp}^{T} \mathbf{P}_{k}^{\perp} \overline{\mathbf{y}} + 2\operatorname{tr}(\mathbf{P}_{k} \mathbf{R}_{n}/N) - \operatorname{tr}(\mathbf{R}_{n}/N) \right)
= \arg \min_{k} \left(\overline{\mathbf{y}}^{T} \mathbf{P}_{k}^{\perp} \mathbf{y} + 2\operatorname{tr}(\mathbf{P}_{k} \mathbf{R}_{n}/N) \right),$$
(8)

onde se usa os factos $\mathbf{P} = \mathbf{P}^T$ e $\mathbf{P}^2 = \mathbf{P}$ para qualquer matriz de projecção.

Note-se que o primeiro termo da equação (8) representa a energia da projecção do erro que é decrescente à medida que k aumenta; O segundo termo da mesma equação representa a energia do ruído é crescente com k.

Figura 2: Erro quadrático médio versus k. primeira experiência com $SNR = 35 \,\mathrm{dB}$ e p = 5.

3 Testes em dados hiperespectrais simulados

Nesta secção o método proposto é testado com dados hiperespectrais simulados. As assinaturas espectrais foram extraídas da base de dados de U.S. geological survey (USGS) [11]. As abundâncias das substâncias forma geradas de acordo com a distribuição de Dirichlet que é dada por:

$$p(\alpha_1, \alpha_2, \dots, \alpha_p) = \frac{\Gamma(\mu_1 + \mu_2 + \dots + \mu_p)}{\Gamma(\mu_1)\Gamma(\mu_2) \dots \Gamma(\mu_p)} \alpha_1^{\mu_1 - 1} \alpha_2^{\mu_2 - 1} \dots \alpha_p^{\mu_p - 1},$$
(9)

onde $0 \leq \alpha_i \leq 1$, $\sum_{i=1}^p \alpha_i = 1$, e $\Gamma(\cdot)$ denota a função Gamma. O valor médio da abundância da *i*-ésima substância, α_i , é $E[\alpha_i] = \mu_i / \sum_{k=1}^p \mu_k$.

Nesta secção realizaram-se dois tipos de experiências. Na primeira os testes realizados avaliam a eficiência do método proposto em função do número de substâncias presentes nos dados p e em função da relação sinal ruído SNR. Define-se SNR como

$$SNR \equiv 10 \log_{10} \frac{E[\mathbf{x}^T \mathbf{x}]}{E[\mathbf{n}^T \mathbf{n}]}.$$
(10)

Na segunda experiência, o método é avaliado em imagens onde algumas substâncias ocorrem num conjunto pequeno de pixeis.

Na primeira experiência o cenário é composto por 10^4 pixeis e o número de substâncias presentes varia entre 3 e 15. As abundâncias seguem uma distribuição de Dirichlet com valores médios $\mu_i = 1/p$, i = 1, ..., p.

A Figura 2 apresenta o erro quadrático médio, ou seja, $\overline{\mathbf{y}}^T \mathbf{P}_k^{\perp} \overline{\mathbf{y}} + 2 \operatorname{tr}(\mathbf{P}_k \mathbf{R}_n / N)$ em função do parâmetro k, para $SNR = 35 \operatorname{dB}$ e p = 5. O mínimo do erro quadrático médio ocorre quando k = 5, que é o número de substâncias presentes na mistura hiperespectral.

A Tabela 1 apresenta a estimativa da dimensionalidade do subespaço de sinal em função da SNR e de p. Nesta tabela compara-se o método proposto com o método de *dimensionalidade virtual* (virtual dimensionality - VD), recentemente proposto em [7]. A VD é estimada pelo pelo método NWHFC, que é baseado no detector de Neyman-Pearson com uma probabilidade de falso alarme $P_f = 10^{-4}$. O método proposto estima o valor correcto de ID para SNR maiores que 25 dB e subestima-a à medida

Método	Novo (VD)	Novo (VD)	Novo (VD)	Novo (VD)	Novo (VD)
SNR (dB)	50	35	25	15	5
p = 3	3 (3)	3 (3)	3 (4)	3 (4)	3 (2)
p=5	5 (6)	5 (6)	5 (6)	5 (6)	4 (3)
p = 10	10 (11)	10 (11)	10 (9)	8 (8)	6 (2)
p = 15	15 (16)	15 (15)	13 (13)	9 (9)	5 (2)

Tabela 1: Dimensionalidade do subespaço de sinal \hat{k} em função da SNR e de p; a cheio: método proposto; entre parêntesis: estimação da VD com o método NWHFC ($P_f = 10^{-4}$).

Figura 3: Erro quadrático médio versus k, com $SNR = 35 \,\mathrm{dB}$, p = 8 (3 vectors espectrais apenas occorem em 4 pixeis cada; (segunda experiência)

que a *SNR* diminui. Comparando com o algoritmo NWHFC com o método proposto, este último apresenta sempre resultados iguais ou melhores.

Na segunda experiência, testou-se o método proposto com oito substâncias p = 8 e com SNR = 35 dB. As primeiras cinco substâncias seguem uma distribuição de Dirichlet como na experiência anterior e as restantes três estão presentes em apenas 4 pixeis cada. A Figura 3 apresenta o erro quadrático médio em função de k, quando p = 8. O valor mínimo de mse(k) ocorre para k = 8. Este resultado significa que o método tem a capacidade de detectar substâncias raras na imagem. No entanto, esta capacidade degrada-se com a diminuição da SNR.

4 Testes em dados AVIRIS

Nesta secção o método proposto é testado com dados reais adquiridos pelo sensor hiperespectral AVIRIS [12]. O cenário de teste, designado por Cuprite, enquadra uma exploração mineira no sul do estado do Nevada, a cerca de 200km da cidade de Las Vegas. Esta região é sobretudo composta por minerais, tendo sido alvo de estudos de detecção remota. Este estudo baseia-se em parte do conjunto de dados adquirido no voo AVIRIS de 19 de Junho 1997, compreendendo uma imagem de 250×190 pixeis como se ilustra na Figura 4 (a). O instrumento AVIRIS gera imagens compostas por 224 bandas

Figura 4: (a) Banda 30 (comprimento de onda $\lambda = 667.3nm$) de parte do cenário de teste Cuprite Nevada (dados AVIRIS); (b) Percentagem of da energia contida no subespaço $E_{9:23}$.

contíguas com cerca 10nm que cobrem o espectro desde $0.41\mu m$ a $2.45\mu m$.

Nesta experiência o valor estimado para a dimensionalidade do subespaço de sinal é $\hat{k} = 23$ (ver Figura 5 (b)). De acordo com [13] o número de substâncias presentes na região é de 8. O valor estimado é diferente principalmente por duas razões: a) Existem substâncias raras que não foram tomadas em conta no mapeamento [13]; b) Existência de variabilidade espectral nas assinaturas das substâncias.

Grande parte da energia espectral encontra-se distribuída em poucos vectores singulares, como se observa na Figura 5 (a), onde se apresenta o valor da energia do sinal acumulada em função do número de vectores singulares. Pode-se constatar que 99.94% da energia total se encontra nos primeiros 8 vectores singulares. Esta ideia é reforçada na Figura 4 (b), onde se apresenta, em níveis de cinzento, a percentagem de energia contida no subespaço $\langle E_{9:23} \rangle = \langle [\mathbf{e}_9, \dots, \mathbf{e}_{23}] \rangle$, para cada pixel. Nota-se que existem poucos pixeis que contêm energia no subespaço $\langle E_{9:23} \rangle$ e que esta é apenas uma ínfima parte dessa energia espectral (menos que 0.16%).

A estimação da VD realizada pelo método HFC [7] ($P_f = 10^{-3}$) para o mesmo conjunto de dados é de $\hat{k} = 20$. Nota-se que um valor mais baixo da probabilidade de falso alarme, P_f , resulta num número mais baixo de substâncias. Este resultado evidencia que em conjuntos de dados com substâncias raras, o método proposto apresenta melhores resultados que o método HFC.

5 Conclusões

A determinação da dimensionalidade do subespaço de sinal é um problema em aberto na comunidade científica. Nesta comunicação, propõe-se um método, baseado num critério de erro quadrático médio, de estimação da dimensionalidade de dados hiperespectrais.

A partir de um conjunto de experiências com dados hiperespectrais simulados e reais, conclui-se

Figura 5: (a) Percentagem da energia do sinal em função do número de vectores singulares; (b) Erro queadrático médio versus k no teste com dados Cuprite.

que o método proposto obtém resultados semelhantes ou melhores do que os métodos considerados estado-da-arte. Por este motivo considera-se que este método é uma ferramenta útil na análise de imagens hiperespectrais.

Agradecimentos

Este trabalho foi financiado pela Fundação para a Ciência e Tecnologia, nos projectos POSC/EEA-CPS/61271/2005 e PDCTE/CPS/49967/2005 e pelo Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores do Instituto Superior de Engenharia de Lisboa.

Referências

- [1] B. Hapke, Theory of Reflectance and Emmittance Spectroscopy., Cambridge Univ. Press, Cambridge, U. K., 1993.
- [2] G. Shaw e D. Manolakis, "Signal Processing for Hyperspectral Image Exploitation," *IEEE Signal Processing Mag.* 19(1), pp. 12–16, 2002.
- [3] T. M. Lillesand, R. W. Kiefer e J. W. Chipman, *Remote Sensing and Image Interpretation*, John Wiley & Sons, Inc., fifth ed., 2004.
- [4] I. T. Jolliffe, Principal Component Analysis, Spriger Verlag, New York, 1986.
- [5] A. Green, M. Berman, P. Switzer e M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," *IEEE Trans. Geosci. Remote Sensing* 26(1), pp. 65–74, 1994.
- [6] J. B. Lee, S. Woodyatt e M. Berman, "Enhancement of high spectral resolution remote-sensing data by noiseadjusted principal components transform," *IEEE Trans. Geosci. Remote Sensing* 28, pp. 295–304, 1990.
- [7] C.-I. Chang, Hyperspectral Imaging: Techniques for spectral detection and classification, Kluwer Academic, New York, 2003.
- [8] L. L. Scharf, Statistical Signal Processing, Detection Estimation and Time Series Analysis, Addison-Wesley Pub. Comp., 1991.
- [9] D. Manolakis, C. Siracusa e G. Shaw, "Hyperspectral subpixel target detection using linear mixing model," *IEEE Trans. Geosci. Remote Sensing* 39(7), pp. 1392–1409, 2001.
- [10] R. Roger e J. Arnold, "Reliably estimating the noise in aviris hyperspectral imagers," International Journal of Remote Sensing 17(10), pp. 1951–1962, 1996.
- [11] R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King e W. M. Calvin, "The u.s. geological survey digital spectral library: Version 1: 0.2 to 3.0 μm," open file report 93-592, U.S. Geological Survey, 1993.
- [12] G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen e W. Porter, "The airborne visible/infrared imaging spectrometer (AVIRIS)," *Remote Sensing of the Environment* 44, pp. 127–143, 1993.
- [13] G. Swayze, R. Clark, S. Sutley e A. Gallagher, "Ground-truthing aviris mineral mapping at cuprite, nevada,," in Summaries of the Third Annual JPL Airborne Geosciences Workshop, 1, pp. 47–49, 1992.