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a b s t r a c t

We define families of aperiodic words associated to Lorenz knots that arise naturally as syllable permu-
tations of symbolic words corresponding to torus knots. An algorithm to construct symbolic words of
satellite Lorenz knots is defined. We prove, subject to the validity of a previous conjecture, that Lorenz
knots coded by some of these families of words are hyperbolic, by showing that they are neither satellites
nor torus knots and making use of Thurston’s theorem. Infinite families of hyperbolic Lorenz knots are
generated in this way, to our knowledge, for the first time. The techniques used can be generalized to
study other families of Lorenz knots.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Lorenz knots
Lorenz knots are the closed (periodic) orbits in the Lorenz

system [1]

x′
= −10x + 10y

y′
= 28x − y − xz (1)

z ′
= −

8
3
z + xy

while Lorenz links are finite collections of (possibly linked) Lorenz
knots.
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The systematic study of Lorenz knots and links was made
possible by the introduction of the Lorenz template or knot-holder
by Williams in [2,3]. It is a branched 2-manifold equipped with an
expanding semi-flow, represented in Fig. 1. It was first conjectured
by Guckenheimer andWilliams and later proved through thework
of Tucker [4] that every knot and link in the Lorenz system can be
projected into the Lorenz template. Birman andWilliamsmade use
of this result to investigate Lorenz knots and links [5]. For a review
on Lorenz knots and links, see also [6].

A T (p, q) torus knot is (isotopic to) a curve on the surface of
an unknotted torus T 2 that intersects a meridian p times and a
longitude q times. Birman andWilliams [5] proved that every torus
knot is a Lorenz knot.

A satellite knot is defined as follows: take a nontrivial knot C
(companion) and nontrivial knot P (pattern) contained in a solid
unknotted torus T and not contained in a 3-ball in T . A satellite knot
is the image of P under an homeomorphism that takes the core of
T onto C .
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Fig. 1. The Lorenz template.

Fig. 2. Lorenz map.

A knot is hyperbolic if its complement in S3 is a hyperbolic
3-manifold. Thurston [7] proved that a knot is hyperbolic iff it is
neither a satellite knot nor a torus knot. One of the goals in the
study of Lorenz knots has been their classification into hyperbolic
and non-hyperbolic, possibly further distinguishing torus knots
from satellites. Birman and Kofman [8] listed hyperbolic Lorenz
knots taken from a list of the simplest hyperbolic knots. In
a previous article we generated and tested for hyperbolicity,
using the program SnapPy, families of Lorenz knots that are a
generalization of some of those that appear in this list, which led
us to conjecture that the families tested are hyperbolic [9].
The first-return map induced by the semi-flow on the branch
line (the horizontal line in Fig. 1) is called the Lorenz map. If
the branch line is mapped onto [−1, 1], then the Lorenz map f
becomes a one-dimensional map from [−1, 1] \ {0} onto [−1, 1],
with one discontinuity at 0 and strictly increasing in each of the
subintervals [−1, 0[ and ]0, 1] (Fig. 2).
Lorenz braids

If the Lorenz template is cut open along the dotted lines in Fig. 1,
then each knot and link on the template can be obtained as the
closure of an open braid on the cut-open template, which will be
called the Lorenz braid associated to the knot or link [5]. These
Lorenz braids are simple positive braids (our definition of positive
crossing follows Birman and is therefore opposed to an usual
convention in knot theory). Each Lorenz braid is composed of n =

p + q strings, where the set of p left or L strings cross over at least
one (possibly all) of the q right strings, with no crossings between
strings in each subset. These sets can be subdivided into subsets
LL, LR, RL and RR according to the position of the startpoints and
endpoints of each string. An example of a Lorenz braid is shown in
Fig. 3, where we adopt the convention of drawing the overcrossing
(L) strings as thicker lines than the undercrossing (R) strings. This
convention will be used in other braid diagrams.

The braid group on n strings Bn is given by the presentation

Bn =


σ1, σ2, . . . , σn−1

σiσj = σjσi (|i − j| ≥ 2)
σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n − 2)


where the generator σi exchanges the endpoints of strings i and
i+1 with string i crossing over string i+1. In particular, all Lorenz
braids can be expressed as products of these generators.

Each Lorenz braid β is a simple braid, so it has an associated
permutation π . This permutation has only one cycle iff it is
associated to a knot, and has k cycles if it is associated to a link
with k components (knots).
Symbolic dynamics for the Lorenz map

Let f j = f ◦ f j−1 be the jth iterate of the Lorenz map f and f 0 be
the identity map.We define the itinerary of a point x under f as the
symbolic sequence (if (x))j, j = 0, 1, . . . where

(if (x))j =

L if f j(x) < 0
0 if f j(x) = 0
R if f j(x) > 0.
Fig. 3. A Lorenz braid.
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Fig. 4. Lorenz braid corresponding to w = LRRLR.
The itinerary of a point in [−1, 1] \ {0} under the Lorenz map
can either be an infinite sequence in the symbols L, R or a finite
sequence in L, R terminated by a single symbol 0 (because f is
undefined at x = 0). The length |X | of a finite sequence X =

X0 . . . Xn−10 is n, so it can be written as X = X0 . . . X|X |−10. A
sequence X is periodic if X = (X0 . . . Xp−1)

∞ for some p > 1. If p
is the least integer for which this holds, then p is the (least) period
of X .

The space Σ of all finite and infinite sequences can be ordered
in the lexicographic order induced by L < 0 < R: given X, Y ∈ Σ ,
let k be the first index such that Xk ≠ Yk. Then X < Y if Xk < Yk
and Y < X otherwise.

The shift map s : Σ \ {0} → Σ is defined as usual by s(X0X1 . . .)
= X1 . . . (it just deletes the first symbol). From the definition
above, an infinite sequence X is periodic iff there is p > 1
such that sp(X) = X . In order to simplify the notation, we
will also define the shift operator on finite aperiodic words.
Given a p-periodic sequence X = (X0X1 . . . Xp−1)

∞ where w =

X0X1 . . . Xp−1 is a finite aperiodic word of length p, we define
s(X0X1 . . . Xp−1) = X1 . . . Xp−1X0. Then s(X) = (X1 . . . Xp−1X0)

∞
=

(s(X0X1 . . . Xp−1))
∞. This shift operator defined on finite words has

an inverse s−1, defined by s(X0X1 . . . Xp−1) = Xp−1X0X1 . . . Xp−2.
The sequence w, s(w), . . . , sp−1(w) will also be called the orbit of
w and a word in the orbit of w will be generally called a shift of w.

A (finite or infinite) sequence X is called L-maximal if X0 = L
and for k > 0, Xk = L ⇒ sk(X) ≤ X , and R-minimal if X0 = R and
for k > 0, Xk = R ⇒ X ≥ sk(X). An infinite periodic sequence
(X0 . . . Xn−1)

∞ with least period n is L-maximal (resp. R-minimal)
if and only if the finite sequence X0 . . . Xn−10 is L-maximal (resp.
R-minimal). Given an aperiodic word w = X0 . . . Xn, we say that k
is the maximal (resp. minimal) position in w if sk(w) is L-maximal
(resp. R-minimal).

For a finite word w, nL and nR will denote respectively the
number of L and R symbols in w, and n = nL + nR the length
of w. Each finite aperiodic word is associated to a Lorenz braid
(whose closure is a Lorenz knot), which can be obtained through
the following procedure: given a word w of length n, order the
successive shifts s(w), s2(w), . . . , sn(w) = w lexicographically
and associate them to startpoints and endpoints in the associated
Lorenz braid, with points corresponding to words starting with L
lying on the left half and points corresponding to words starting
with R on the right half. Each string in the braid connects the
startpoint corresponding to sk(w) to the endpoint corresponding
to sk+1(w). Fig. 4 exemplifies this procedure for w = LRRLR.

Each periodic orbit of the flow has a unique corresponding
orbit in the Lorenz map, which in turn corresponds to the cyclic
permutation class of one aperiodic word in the symbols L, R
as clearly all periodic sequences resulting from shifting a given
sequence represent points in the same periodic orbit (see [5]).

The crossing number is the smallest number of crossings in any
diagram of a knot K . The braid index is the smallest number of
strings among braids whose closure is K .

The trip number t is the number of syllables (subwords of type
LaRb with maximal length) in an aperiodic word. The trip number
of a Lorenz link is the sum of the trip numbers of its components.
Franks and Williams [10], followed by Waddington [11], proved
that the braid index of a Lorenz knot is equal to its trip number.
This result had previously been conjectured by Birman and
Williams [5], who defined a minimal t-braid for Lorenz links [8]:

The minimal braid of a Lorenz link corresponding to a Lorenz
braid β is given by

∆2
t−1
i=1

(σ1 . . . σi)
ni

1
i=t−1

(σt−1 . . . σi)
mt−i

where ∆2 is the full-twist in t strings, and, denoting by π the
permutation associated with the Lorenz braid, the exponents are

ni = #{j : π(j) − j = i + 1 and π(j) < π2(j)}
mi = #{j : j − π(j) = i + 1 and π(j) > π2(j)}

Goal and plan
The purpose of this article is the classification of knots

corresponding to syllable permutations of the standard word of
a torus knot, that is, words composed of the same number of LRk

and LRk+1 syllables as the torus knot standardword, defined below,
arranged in a different order.

In Section 2 we characterize the symbolic words obtained by
permuting the syllables of words corresponding to torus knots
and their associated Lorenz braids. Section 3 deals with braids of
Lorenz satellite knots and an algorithm to find their corresponding
words, also proving that the permuted words cannot be obtained
this way. Finally, in Section 4 we show that in each set of syllable
permutations of a torus knot word, there is at most one word that
can possibly correspond to another torus knot, and prove that for
some classes of these sets there is no such word.
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Fig. 5. Lorenz braid of T (p, q)(p < q).
2. Torus knots and syllable permutations

As mentioned above, all torus knots are Lorenz knots. The torus
knot T (p, q) is the closure of a Lorenz braid in n = p + q strings,
with p left or L strings that cross over q right or R strings, such that
each L string crosses over all the R strings. The Lorenz braid of a
torus knot thus has the maximum number of crossings (pq) for a
Lorenz braid with pL strings and qR strings. Since T (q, p) = T (p, q)
wewill only consider torus knots T (p, q)with p < q. The structure
of the Lorenz braid of a torus knot T (p, q) (p < q) is sketched in
Fig. 5, where only the first and last L strings and some of the R
strings are drawn. The remaining L (R) strings are parallel to the
L (R) strings shown.

Lorenz knots corresponding to orbits in the Lorenz template
which are represented by evenly distributed words in the alpha-
bet {L, R} are torus knots [5]. Also, given a torus knot T (p, q) there is
an evenly distributed word with nL = p, nR = q, that represents it.
There is thus a bijection between torus knots and cyclic permuta-
tion classes of evenly distributedwords.Wewill call the L-maximal
word that represents T (p, q) the standard word w(p, q) for T (p, q).
These are also the words generated in the symbolic Farey tree [12].
Let k > 0 be the quotient of the integer division of q by p and
0 < r < p the remainder (q = kp + r). Then w(p, q) has p syl-
lables: rLRk+1 syllables and p − rLRk syllables, evenly distributed.
This aperiodicword is unique for each p, q satisfying the conditions
above.

Lemma 1. Any word resulting from permuting the syllables of the
standard word w(p, q) is aperiodic and therefore corresponds to a
Lorenz knot with the same braid index.

Proof. Let T (p, q), p < q be a torus knot and w a syllable
permutation of w(p, q). Then nL(w) = p and nR(w) = q. If there
was a subword v of w such that w = vj for some j > 1, then we
would have p = nL(w) = jnL(v) and q = nR(w) = jnR(v) and p, q
would not be relatively prime. �

Definition 1. We define P(p, q) as the set of L-maximal words
resulting from permutations of syllables of the standard word
w(p, q) for T (p, q).
Remark 1. Any word resulting from the permutation of syllables
of the standard word for T (p, q) is a shift of some word in P(p, q)
and is therefore equivalent to that word, i.e. it corresponds to the
same Lorenz knot.

Remark 2. The set of distinct permutations of p syllables, where
respectively r and p − r are identical, contains p!

r!(p−r)! words. This
set contains, for each L-maximal wordw, pwords that are shifts of
w (including itself). To keep only the L-maximal words we must
therefore further divide by p. Each set P(p, q), q = kp + r has
therefore exactly (p−1)!

r!(p−r)! words.

Remark 3. If 2 ≤ p ≤ 4, then P(p, q) contains only the standard
word for T (p, q): P(p, q) = {w(p, q)}.

Remark 4. If q = kp + r and r = 1 or r = p − 1, then the only
possible L-maximal word in P(p, q) is LRk+1(LRk)p−1 (r = 1) or
(LRk+1)p−1LRk (r = p − 1), so in both cases P(p, q) contains only
the standard word for T (p, q).

Inwhat follows,we therefore assume,whenever necessary, p >
4 and 1 < r < p − 1.

Next we find bounds for the number of crossings in the Lorenz
braid and in the minimal Birman–Williams (BW) braid. For a knot
which is the closure of a positive braid, the genus g is related to the
number of crossings c and the number of strings n by [5]

2g = c − n + 1. (2)

In the symbolic words under study there are no consecutive L
symbols, so for each knot in P(p, q) the trip number is t = nL = p.
The minimal BW braid [5] is a p-string braid and the number of
crossings (the length of the braid word) in the BW braid is the
crossing number of the knot, because in Eq. (2), if c takes the
minimum value, then nmust also be minimum, as the genus g is a
knot invariant.

We start by investigating the structure of the braids that
correspond to the words with permuted syllables. Let w be an
aperiodic word resulting from permuting the syllables of the
standard word w(p, q). Note that the shifts of w can be grouped
and ordered lexicographically:

LRkL · · · < LRk+1
· · · < RL · · · < R2L · · ·

< · · · < RkL · · · < Rk+1L · · ·
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Fig. 6. Lorenz braid corresponding to a syllable permuted word.
Also, there are:

• exactly p words (and corresponding strings) with the form
LR . . ., of which r are LRk+1 . . . and p − r are LRkL . . .;

• p words with each of the forms RL . . . , R2L . . . , . . . , RkL . . .;
• r words with the form Rk+1L.

Moreover:

1. All thewords of type LR . . . are shifts ofwords of type RL . . ., and
the shift operator preserves lexicographical order.

For 1 ≤ i ≤ k − 1, the words of type RiL . . . are the shifts of
Ri+1L . . . words, with order preserved.

2. The p words of type RkL . . . are shifts of the r Rk+1L . . . and the
p − r LRkL . . . words, the shift operator preserving the order
within each subset.

The least word with the form RkL . . . , wl, is the shift of the
least Rk+1L . . . word. To see this, assume that wl is the shift of
a word of type LRkL . . .. This word has a preimage under the
iterated shift operator with the form RkLRkL . . ., resulting from
appending an RkL syllable to the beginning of wl, and therefore
RkLRkL . . . < wl = RkL . . ., which contradicts the fact that wl is
the least RkL . . . word.

Analogously, the greatest RkL . . . word, wg , is the shift of
the greatest LRkL . . . word. Assume that s−1(wm) is of type
Rk+1L . . .; wm has the form RkLRk+1L . . . (otherwise it would
not be the greatest RkL . . .), so s−1(wm) must have the form
Rk+1LRk+1L . . .. This word has a preimage under the shift with
the form RkLRk+1LRk+1 . . . and is greater than wg (it has one
more syllable Rk+1 immediately following the first RkL), which
contradicts the fact that wg is the greatest RkL . . . word.

3. The r words of type Rr+1L . . . are the shifts of the r LRk+1 . . .

words, with order preserved.

The Lorenz braids corresponding to the permuted words thus
have the structure sketched in Fig. 6. The dotted lines and enclosed
shaded regions represent two sets of strings and which both have
their endpoints in the range {kp + 2, . . . , (k + 1)p − 1}, so that
the strings from the first set with startpoints 1, . . . , p − r − 1 will
possibly cross over the strings with startpoints (k + 1)p + 2, (k +

1)p + r = p + q, preserving the order in each set of strings.
The Lorenz braids corresponding to the permuted words have a
number of crossing points c satisfying

(p − r − 1)(kp + 1) + (r + 1)(kp + r) ≤ c ≤ p(kp + r) = pq. (3)

For the standardwordw(p, q), since all the pL strings cross over
the q = kp + rR strings, we have c = p(kp + r).

Lemma 2. For the word (LRk+1)r(LRk)p−r , the corresponding braid
has the structure illustrated in Fig. 7, with exactly (p − r − 1)(kp +

1) + (r + 1)(kp + r) crossings. Since the L strings have the leftmost
possible endpoints and the R strings the maximum possible endpoints,
this braid has the minimum number of crossings in P(p, q) and
(LRk+1)r(LRk)p−r is the only word in P(p, q) corresponding to this
number of crossings.

Proof. The only endpoints that can change from one permuted
braid corresponding to awordw in P(p, q) are those corresponding
to shifts of w with the form RkL . . .. These can be ordered
lexicographically as follows:

s

Rk+1(LRk)p−r(LRk+1)r−1L


= Rk(LRk)p−r(LRk+1)r−1LR

< s

(LRk)p−r(LRk+1)r


= Rk(LRk)p−r−1(LRk+1)rL

< s

(LRk)p−r−1(LRk+1)r


= Rk(LRk)p−r−2(LRk+1)rLRkL < · · ·

· · · < s

LRk(LRk+1)r(LRk)p−r−1

= Rk(LRk)(LRk+1)r(LRk)p−r−2L
< s


Rk+1(LRk+1)(LRk)p−r(LRk+1)r−2L


= Rk(LRk+1)(LRk)p−r(LRk+1)r−2LR < · · ·

· · · < s

Rk+1(LRk+1)r−1(LRk)p−rL


= Rk(LRk+1)r−1(LRk)p−rLR
< s


LRk(LRk+1)r(LRk)p−r−1

= Rk(LRk+1)r(LRk)p−r−1L.

Identifying the words between brackets on the left with the
startpoints of the corresponding strings and the ordered words
on the right with the matching endpoints, we get the braid
represented in Fig. 7. �
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Fig. 7. Lorenz braid of (LRk+1)r (LRk)p−r .
The Lorenz braid of (LRk+1)r(LRk)p−r thus has exactly (p − r −

1)(kp+ 1) + (r + 1)(kp+ r) crossing points. This is the only braid
in P(p, q) with this number of crossings.

Using Eq. (2) we can now find bounds for the genus g of knots
that are the closure of braids in P(p, q).

kp(p − 1) + r(r − 1) ≤ 2g ≤ (p − 1)(kp + r − 1)
= (p − 1)(q − 1). (4)

Again, the minimum corresponds to (LRk+1)r(LRk)p−r while the
maximum is the double of the torus knot genus and therefore
corresponds to the standard word w(p, q).

3. Lorenz satellite knots

El-Rifai studied Lorenz knots which are satellites of Lorenz
knots [13,14]. His construction of a satellite knot or link can be
interpreted in terms of Lorenz braids, as follows:

• Take three Lorenz braids A (left pattern), B (right pattern) and
C (companion) whose closures are Lorenz knots, such that
nR(A) = nL(B) = k.

• Inflate the braid C by replacing each string with k parallel
strings, thus obtaining an intermediate braid corresponding to
a link with k components.

• Add nL(A) vertical strings to the left and nR(B) vertical strings
to the right (corresponding to identity permutations of these
strings). The number of strings of the resulting braid is n =

nL(A) + nR(B) + kn(C), where n(C) is the number of strings in
C .

• Concatenate this braid with the n-braid obtained by putting A
on the left, B on the right and extend the remaining strings in C
with vertical strings, between A and B.

The procedure is illustrated in Fig. 8 for braids A, B, C
corresponding to the words wA = LRRLR, wB = LRRLRLR and
wC = LRRLR, respectively.

The construction can also be carried out with only one pattern
braid A or B. In that case, take the identity k-braid for B (A) and
assume nR(B) = 0 (nL(A) = 0) in the third step.

Remark 5. The closure of the resulting braid can be a knot or a link.
The braids A and B induce a permutation of the inflated strings of C
which is the product of permutations associated to A and B. If this
permutation has more than one cycle, then the resulting braid is a
link. An example is given below, with wA = LRRLR, wB = LRLRL
and wC = LRRLR (Fig. 9).

In order to obtain the aperiodic word of the satellite knot that
is the closure of the Lorenz braid constructed as above, we start
by defining permutations on the L and R points, respectively, of
a Lorenz braid whose closure is a Lorenz knot, or equivalently
on words starting respectively with L or R in the symbolic orbit
associated to the braid.

Definition 2. Let b be a Lorenz n-braid that closes to a knot,
π(b) the permutation associated to b and w the corresponding
L-maximal aperiodic symbolic word. We label the nL words which
start with L in the orbit ofw as l1, . . . , lnL and the nR words starting
with R as r1, . . . , rnR , such that, under the lexicographic order, l1 <
· · · < lnL and r1 < · · · < rnR .

We define the L-permutation associated to b, πL for i =

1, . . . , nL asπL(i) = j if lj is the first shiftedword that startswith an
L in the orbit s(li), . . . , sn(li). The R-permutation πR is defined for
i = 1, . . . , nR as πR(i) = j if rj is the first shifted word that starts
with an R in the orbit s(ri), . . . , sn(ri). MapsπL andπR are therefore
the first return maps on the sets of L-started and R-started words,
respectively.

Example. Forw = LRRLR, the shifted words, ordered lexicograph-
ically, are l1 = LRLRR, l2 = LRRLR, r1 = RLRLR, r2 = RLRRL, r3 =

RRLRL, soπL(1) = 2, πL(2) = 1, πR(1) = 2, πR(2) = 3, πR(3) = 1.

Proposition 1. The Lorenz braid constructed as above from Lorenz
braids A, B and C, with nR(A) = nL(B), is associated to a cyclic
permutation and therefore closes to a knot iff πR(A)πL(B) is cyclic (has
only one cycle). If only one braid A or B is used in the construction, then
the closure of the resulting Lorenz braid is always a Lorenz knot.

Proof. Let pA = nL(A), qB = nR(B) and nC = n(C). Let π be
the permutation corresponding to the satellite braid constructed
as above. For simplicity, denote πR(A) and πL(B) by πR and πL,
respectively. The orbit of a point p under the permutation pi is
p, π(p), . . . , π−1(p)


. The permutationπ is cyclic iff given a point

p, its orbit contains all points. We will subdivide the points in the
satellite braid in the following sets:

• A contains the first pA + k points, corresponding to the original
braid A;
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Fig. 8. Satellite for wA = LRRLR, wB = LRRLRLR and wC = LRRLR.
Fig. 9. Link for wA = LRRLR, wB = LRLRL and wC = LRRLR.
• B contains the last qB + k points, corresponding to the original
braid B;

• The remaining points (in the central part) are subdivided into k
sets Ci, i = 1, . . . , k according to the component of the inflated
braid they belong to.

Note that:

• If p ∈ Ci, then either π(p) ∈ Ci or π(p) ∈ A or π(p) ∈ B;
• If p ∈ A (p ∈ B) then the first point in the orbit of p not in A (B)

will be in one of the sets Ci.
• If p ∈ Ci andπ(p) ∈ A (π(p) ∈ B) then the first point in the orbit

of p not contained in A (B) will be contained in a set Cj (j ≠ i),
such that j = πR(i) (j = πL(i)), where πL and πR are the
k-permutations defined above.

Consider, for example, the point p with index pA + 1 ∈ A. The
sequence of sets visited by the orbit of p is (A, C1, B, CπR(1), A,

CπL(πR(1)), B, . . . , B, Cπ−1
L (1)). The orbit of p contains all the points
iff the sequence contains each set Ci exactly twice (one imme-
diately after A and one immediately after B). Since πL and πR
are cyclic permutations, this is equivalent to each set Ci ap-
pearing once after A. The sequence of indices for these sets
is (1, πLπR(1), (πLπR)

2(1), . . . , (πLπR)
−1(1)). This sequence con-

tains all the indices 1, . . . , k exactly once iff πLπR is a cyclic permu-
tation. Finally, πRπL is cyclic iff πLπR is cyclic (they are conjugate
permutations), which completes the proof. �

Given three Lorenz braids A, B and C , all of them closing to
knots, let πR(A) be the R-permutation of A and πL(B) be the
L-permutation of B as in Definition 2. Assume that πR(A)πL(B) is
cyclic.

For wB let mR(i) be the number of R symbols between the first
and second L symbols in li (mR(i) = 0 whenever there are two
consecutive L symbols), for i = 1, . . . , k. Likewise, for wA let mL(i)
be the number of L symbols between the first and second R symbols
in ri (mL(i) = 0 if the ith R is immediately followed by another R),
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for i = 1, . . . , k. For simplicity, we will write πR for πR(A) and πL
for πL(B).

The following algorithm returns the aperiodic word w(A, B, C)
corresponding to the satellite braid constructed through the
procedure above:

Algorithm. Input: Three aperiodic words wA, wB, wC with
nR(A) = nL(B) = k.

1. For i = 1, . . . , k, wi = wC .
2. j1 = k.

Insert RmR(j1) in w1 immediately after the maximal position;
j2 = πL(j1);
Insert LmL(j2) in w1 immediately after the minimal position.

3. For i = 2, . . . , k:
j2i−1 = πR(j2i−2);
Insert RmR(j2i−1) in wi immediately after the maximal position
of wi;
j2i = πL(j2i−1);
Insert LmL(j2i) in wi immediately after the minimal position of
wi.

4. wS = w1w2 . . . wk
Output: Aperiodic word wS(A, B, C) of satellite in L-maximal
form.

Proposition 2. If the satellite braid constructed as above from Lorenz
braids A, B and C represents a knot, then its aperiodic word is obtained
by the preceding algorithm.

Proof. First note that the satellite braid has exactly k n(C)+nL(A)+
nR(B) strings, and its corresponding word k t(C) syllables, (where
n(C) is the number of strings in C and t(C) is its trip number). Each
string in C originates k strings in the satellite. To these, nL(A) +

nR(B) strings are added. The LR strings in the satellite braid result
from the inflation of the LR strings in C . The nL(A) L strings of A
and the nR(B) R strings of B contribute, respectively, with nL(A)
LL strings and nR(B) RR strings. Therefore, the braid index of the
satellite knot or link is k t(C).

With the exception of the strings that result from the inflation
of the first RL string and the last LR string in C (connected,
respectively, to the R strings of A and the L strings of B), all strings in
the inflated braid are organized in sets of beams of k parallel strings
whose endpoints are the startpoints of another beam of k parallel
strings. The subwords in the word of the satellite braid will be the
same as in the word for C while the startpoints and endpoints of
strings are within the inflated braid.

If we follow the satellite braid beginning with the maximal
position of the last LR beam, corresponding to an L symbol both
in C and in the satellite word, then its endpoint will be the last in
B, corresponding to the endpoint of the last LR string of B. The L
symbol will thus be followed by mR(k) R symbols, corresponding
to RR strings in B. When an RL string of B is reached, the endpoint
is the R point in the last RL beam of the satellite braid given by
j2 = πL(k). Since the strings in the inflated braid are parallel, the
next symbols in the satellite braid are the sequence between the
maxima and minimal position of C . When a position in the first RL
braid is reached, mL(j2) L symbols are added in an analogous way
and the inflated braid is resumed at the πR(j2) and then continued
by the symbols in C until the πR(j2) position in the last beam. The
process continues until all the points on the satellite braid have
been visited once. �

Example. For the Lorenz braid in Fig. 8, A = LRRLR, B = LRRLRLR
and C = LRRLR and k = nR(A) = nL(B) = 3.

In braid B, l1 = LRLRLRR, l2 = LRLRRLR, l3 = LRRLRLR, so
mR(1) = 1,mR(2) = 1,mR(3) = 2 and, in cycle notation, πL =

(1 2 3).
In braid A, r1 = RLRLR, r2 = RLRRL, r3 = RRLRL,mL(1) =

1,mL(2) = 1,mL(3) = 0 and πR = (1 2 3).
Starting with w1 = w2 = w3 = LRRLR and following the steps
above,

• add mR(3) = 2 R symbols after the maximal position of w1;
• πR(3) = 1, so add mL(1) = 1 L symbol to the minimal position

of w1;
• πL(1) = 2, so add mR(2) = 1 R to the maximal position of w2;
• πR(2) = 3, so addmL(3) = 0 L to the minimal position of w2;
• πL(3) = 1, so add mR(1) = 1 R at the maximal position of w3;
• πR(1) = 2, so addmL(2) = 1 L to the minimal position of w3.

The resulting aperiodic word
wS = w1w2w3 = LRRRRLLRLRRRLRLRRRLLR corresponds to the
satellite braid in Fig. 8.

Theorem 1. No permuted words in the sets P(p, q) can be obtained
through the satellite braid construction defined above.

Proof. As the words in P(p, q) have no LL subwords, they would
have to be obtained, by the procedure above, from the word of a
companion knot C which equally has no LL subsequences, taking A
as an identity braid and a Lorenz braid B. The word for C would
have the structure (in L-maximal form) LRb1 . . . LRba where a =

nL(C) > 1 (otherwise C would be trivial), b1 = max{bi} and at least
one k satisfying bk < b1 (otherwise the word would be periodic).
Each word in P(p, q) has syllables of only two types: LRk+1 and LRk.
The satellite construction, in this case, only adds R symbols to the
maximal positions ofw1, . . . , wk, so if it could be obtained through
this procedure then we would have min{bi} = k and b1 = k + 1.
But after the satellite construction, the resulting word would have
a first syllablewith at least b1+1 = k+2 symbolsR, and at least one
syllable with k symbols R and thus will not be in any P(p, q). �

El-Rifai showed [14] that a Lorenz knot that is a satellite of
a Lorenz knot can be presented as the closure of a Lorenz braid
constructed as outlined above.Mortonhas conjectured [13,15] that
all Lorenz satellite knots are cablings (satellites where the pattern
is a torus knot) on Lorenz knots.

IfMorton’s conjecture is true, thenwe conclude fromTheorem1
that Lorenz knots corresponding to syllable permutations of
standard torus words, that is, the knots corresponding to words in
the sets P(p, q) are not satellites.

4. Syllable permutations that do not correspond to torus knots

As seen above, the braid index of any braid corresponding to a
word in P(p, q) is given by t = nL = p. So, if any of these knots
were torus knots, then they would have to be of type T (p, q′) for
some q′.

As a consequence of Remarks 3 and 4 in Section 2, we again
assume p > 4, 1 < r < p − 1 below.

Lemma 3. No closure of a braid corresponding to a word in P(p, q)
is a torus knot T (p, q′), for q′ > q, and the only word in P(p, q)
corresponding to a braid that has T (p, q) as closure is the evenly
distributed wordw(p, q) corresponding to the standard T (p, q) braid.

Proof. If a word in P(p, q) corresponds to a knot T (p, q′), then the
genus of T (p, q′) must be in the range defined by Eq. (4), so in
particular, (p − 1)(q′

− 1) ≤ (p − 1)(q − 1) ⇒ q′
≤ q. The

only word in P(p, q) for which the genus is (p − 1)(q − 1) is the
word corresponding to the standard braid of T (p, q). �

Theorem 2. For each word w in P(p, q), 4 < p < q, distinct from
w(p, q), there is at most one torus knot T (p, q′), q′ < q, with the
same braid index and genus as the closure of the braid corresponding
to w.
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Proof. Let g be the genus of the closure of the Lorenz braid
corresponding to w. As w ∈ P(p, q), any torus knot with the same
braid index must be of type T (p, q′) for some q′ < q. The genus of
T (p, q′) is given by (p − 1)(q′

− 1) so q′ is uniquely determined
by (p − 1)(q′

− 1) = 2g . If p − 1 divides 2g then this equality
determines a unique q′, otherwise there is no q′ satisfying the
condition. �

Lemma 4. Let w ∈ P(p, q) = P(p, kp+r), p > 4, 1 < r < p−1. If
there is a (unique) torus knot T (p, q′) = T (p, k′p+ r ′)with the same
genus and braid index as the closure of the braid of w, then k′

= k
and 1 < r ′ < r < p − 1.

Proof. If k′ > k then k ≥ k+ 1, so q′
= k′p+ r ′

≥ (k+ 1)p+ r ′
=

kp + p + r ′ > kp + r = q. But q′ < q (Lemma 3) so k′
≤ k.

From the first inequality in Eq. (4), kp(p − 1) + r(r − 1) ≤

(p − 1)(k′p + r ′
− 1) or

(k − k′)p − r ′
+ 1


(p − 1) + r(r − 1) ≤ 0.

If k′ < k then (k − k′)p ≥ p so (k − k′)p − r ′
+ 1 ≥ p − r ′

+ 1 ≥ 0
and the inequality above does not hold.

For k = k′, q′ < q ⇒ r ′ < r . If r ′
= 1 then the same inequality

gives r(r − 1) < 0 (impossible) which completes the proof. �

Proposition 3. For each odd integer p > 4 and all integers k > 0,
the sets P(p, q), for q = kp + 2 and q = (k + 1)p − 2 contain no
words corresponding to braids whose closure is a torus knot, besides
w(p, q).

Proof. For all odd positive integers p and all k > 0, (p, kp+2) and
(p, (k+1)p−2) are pairs of relatively prime integers. If q = kp+2,
then r = 2 and there is no r ′ satisfying the condition of Lemma 4.
For q = (k+1)p−2, from the proof of Theorem 2, if there is aword
in P(p, q) corresponding to a braid whose closure is a torus knot of
genus g , then (p − 1) divides 2g . As the maximum 2g in P(p, q)
is (p − 1)(q − 1), there will be at least another (even) multiple of
(p − 1) in the set {kp(p − 1) + r(r − 1), . . . , (p − 1)(kp + r − 1)}
if kp(p − 1) + r(r − 1) ≤ (p − 1)(kp + r − 2) or

r(r − 1) ≤ (p − 1)(r − 2).

This inequality above does not hold, with any p > 4, for r =

p − 2, as can be seen from simple substitution, which completes
the proof. �

Proposition 4. If p > 4 is even and not a multiple of 3, then for
any integer k the sets P(p, kp + 3) and P(p, (k + 1)p − 3) contain
no words corresponding to braids whose closure is a torus knot. Also,
if p < 12 and p is even, then P(p, q) contains no words other than
w(p, q) corresponding to torus knots.

Proof. If p is even and not a multiple of 3 then (p, kp + 3) and
(p, (k + 1)p − 3) are pairs of relatively prime integers. Also, since
p−1 is odd, (p−1)(kp+r−1) is an evenmultiple of p−1 (because
it is equal to 2g for the torus knot T (p, kp+r)), so (p−1)(kp+r−2)
is odd. There will be at least another even multiple of (p − 1)
in the set {kp(p − 1) + r(r − 1), . . . , (p − 1)(kp + r − 1)} if
kp(p − 1) + r(r − 1) ≤ (p − 1)(kp + r − 3). Direct substitution
shows that this inequality does not hold for r = 3 and r = p − 3
or, for any 1 < r < p − 1, for p < 12 even. �

Remark 6. If p is even, then (p, kp + 2) and(p, (k + 1)p − 2)
are not pairs of relatively prime integers. The same happens with
(p, kp + 3) and (p, (k + 1)p − 3) if p is a multiple of 3.
5. Conclusion

• Wehave defined sets P(p, q) ofwords resulting frompermuting
the syllables of the standard words for torus knots T (p, q), 1 <
p < q and characterized their corresponding Lorenz braids. For
p ≤ 4 P(p, q) = {w(p, q)}. We have shown that for each word
w in the sets P(p, q) there is at most a torus knot T (p, q′) with
the same braid index and genus as the knot corresponding tow.

• A procedure to obtain Lorenz satellite braids was defined, and
an algorithm for finding its aperiodic word was devised. We
have used this algorithm to prove that, provided Morton’s
conjecture is true, no set P(p, q) contains words corresponding
to satellite knots.

• From Theorem 1, Propositions 3 and 4 and Thurston’s theorem
[7] we can finally state that:

If Morton’s conjecture is true, then the words in sets
P(p, kp+2), P(p, (k+1)p−2) for p odd and P(p, kp+3), P((k+
1)p − 3), for p even and p not a multiple of 3, distinct from the
standard w(p, q) torus word, correspond to hyperbolic Lorenz
knots.

• We have recently performed an extensive computational
test [16], in which we computed the volumes of all knot
complements corresponding to words in the (non-empty) sets
P(p, q) with 5 ≤ p ≤ 19 and 6 ≤ q ≤ 100. We found all of
them to be hyperbolic, with the expected exception of the torus
knots T (p, q) corresponding to the standardwordsw(p, q). This
allowed us to conjecture that the results of this work can be
extended to all P(p, q) sets.

• We believe that the techniques used in this paper can
be generalized to study other families of words and their
corresponding Lorenz braids and knots and thus possibly
generate other infinite families of hyperbolic Lorenz knots.
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